CN106576414A - 占用感测智能照明系统 - Google Patents

占用感测智能照明系统 Download PDF

Info

Publication number
CN106576414A
CN106576414A CN201580033085.6A CN201580033085A CN106576414A CN 106576414 A CN106576414 A CN 106576414A CN 201580033085 A CN201580033085 A CN 201580033085A CN 106576414 A CN106576414 A CN 106576414A
Authority
CN
China
Prior art keywords
occupancy
optical transport
light
space
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580033085.6A
Other languages
English (en)
Other versions
CN106576414B (zh
Inventor
王泉
张心驰
K·L·博耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rensselaer Polytechnic Institute
Original Assignee
Rensselaer Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rensselaer Polytechnic Institute filed Critical Rensselaer Polytechnic Institute
Publication of CN106576414A publication Critical patent/CN106576414A/zh
Application granted granted Critical
Publication of CN106576414B publication Critical patent/CN106576414B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种使用扰动调制光和分布式非成像颜色传感器来估计占用的智能照明系统和方法。公开了一种系统,该系统包括:多个非成像颜色传感器;多个彩色可控灯;扰动空间内的所述彩色可控灯的系统;从所述非成像颜色传感器收集获得的颜色信息,并且基于收集的颜色信息来构建光传输模型的系统;估计空间内的占用模式或分布的系统;以及调节模块,其基于所述光传输模型和预定的控制策略来调节所述彩色可控灯。

Description

占用感测智能照明系统
技术领域
本发明的主题涉及空间中的照明的智能控制,更具体地,涉及使用扰动调制光和分布式非成像颜色传感器来提供占用(occupancy)感测的智能照明系统。
背景技术
响应于诸如外部的(即,自然的)照明变化和房间占用模式的变量在空间中的随时间推移的照明(具体地,合成照明)的智能控制有可能带来能耗、人类舒适度和幸福感,以及工人生产力方面的益处。
现有的系统具有各种不足,包括:(1)它们常常只检测人的存在,而不检测他们在房间中的数量和空间分布;以及(2)他们通常使用摄像机或其他高分辨率传感器,其产生针对实时操作的高计算负载并且可能存在重大的隐私或安全问题。需要以有成本效益的方式识别并且响应于房间的占用者(例如,集群中的一个工作组与围坐在会议桌前的多个人)的空间分布以实现合成光的最佳空间和光谱分布。
遗憾的是,当前的系统不能够提供这样的结果。
发明内容
本公开利用分布于整个空间的颜色可控照明和非成像颜色传感器来估计人在该空间中的空间分布,以进行实时照明调整。提供了其中引入了对颜色可控光的小扰动的解决方案。这些扰动被设计并且排序为人类察觉不到,但可以由颜色传感器准确地测量。在照明中的不同扰动下,用传感器进行快速的一系列测量,并且使用这些测量来估计光传输模型。该光传输模型包含随颜色(例如,红、绿、蓝(RGB))的变化而变化的各灯具-传感器对之间的光通量的测量。这是以使得从模型中减去(例如,来自窗的)环境照明从而只留下关系的线性(可控)部分这样的方式进行的。当确定了光传输模型时,提供用于估计房间中的占用模式的各种选项。
在第一方面,本发明提供了一种智能照明系统,该智能照明系统包括:多个非成像颜色传感器;多个彩色可控灯;扰动空间内的所述彩色可控灯的系统;从所述非成像颜色传感器收集获得的颜色信息并且基于收集的颜色信息来构建光传输模型的系统;估计空间内的占用的系统;以及调节模块,其基于所述光传输模型和预定的控制策略来调节所述彩色可控灯。
在第二方面,本发明提供了一种用于控制在具有多个颜色传感器和多个彩色可控灯的空间中的照明的方法,该方法包括以下步骤:向所述彩色可控灯输出控制值,以使得在空间内产生基础光;周期性地输出另外的控制值,以扰动所述空间内的所述彩色可控灯;从所述颜色传感器收集获得的颜色信息;基于所述颜色信息来构建光传输模型;(要么直接地,要么相对于初始模型被改变的)利用所述光传输模型来计算所述空间的估计的占用;以及响应于所估计的占用和预定的控制策略来调节所述基础光。
在第三方面,本发明提供了一种基于所估计的占用来调节一组颜色可控LED灯的照明控制系统,该系统包括:照明控制器,其向所述一组颜色可控LED灯输出值,以在所述空间内生成基础光并且使得扰动被加入到所述基础光中;传感器数据管理器,其从位于所述空间内的多个非成像颜色传感器接收感测到的颜色信息;光传输建模器,其将所感测到的颜色信息和相关联的扰动信息存储在光传输模型中;以及占用估计系统,其(要么直接地,要么相对于基础模型被改变的)基于所述光传输模型来计算所述空间的估计的占用,其中,所述估计的占用被提供至所述照明控制器以调节所述基础光。
附图说明
通过以下结合附图对本发明的各种方面进行的详细描述,将更容易理解本发明的这些和其他特征,其中:
图1描绘了根据实施方式的具有用于实现感测阶段的系统的智能照明房间。
图2描绘了根据实施方式的具有用于实现调节阶段的系统的图1的智能照明房间。
图3描绘了根据实施方式的具有照明系统的计算机系统。
图4描绘了根据实施方式的空间内的一组光路。
图5描绘了根据实施方式的4×3子矩阵的聚集体。
图6描绘了根据实施方式的LED装置的光度图(luminosity plot)。
图7描绘了根据实施方式的LED装置的光度图。
图8描绘了根据实施方式的光反射模型。
图9描绘了根据实施方式的被加入到基础光中的扰动的示图。
图10描绘了根据实施方式的用于实现智能照明的方法的流程图。
附图不一定是按比例绘制。附图仅仅是示意性表示,不旨在描述本发明的具体参数。附图旨在只描绘本发明的典型实施方式,因此不应该被视为限制本发明的范围。在附图中,相同的编号表示相同的元件。
具体实施方式
如本文中所详述的,提供了一种占用敏感的智能照明系统,使得当房间的占用改变时,系统产生最适于当前占用场景的照明条件,以使舒适度最佳并且使能耗最小。“占用”通常是指人在诸如房间、走廊、楼梯、封闭空间等空间中的数量和/或空间分布。然而,它还可以指可移入或移出空间或围绕空间移动并影响照明的其他类型的物体(例如,动物、机器人等)的数量和空间分布。为了实现占用敏感的智能照明,实现控制策略模块和占用感测模块,它们分两个阶段工作:感测阶段和调节阶段。在感测阶段中,占用感测模块收集传感器读数来估计占用;在调节阶段中,控制策略模块基于所估计的占用来决定应该产生什么照明条件。
图1和图2描绘了用于控制在智能房间10中的照明的智能照明系统11,在智能房间10中,估计房间10的占用16并相应地调节照明。智能照明房间10包括一组颜色可控的LED(发光二极管)灯具12和一组非成像颜色传感器14。非成像颜色传感器14通常包括低成本传感器,这些传感器不收集图像数据,而是替代地只感测并且收集颜色信息。在图1中示出的感测阶段中,设置控制策略模块18来生成进入房间10中的基础光x0并且设置占用感测模块20来估计房间10的占用。在图2中示出的调节阶段中,感测模块20使得控制策略模块18按照所估计的占用来更新进入房间10中的基础光x0
在感测阶段(图1)中,占用感测模块20使得一系列微妙的扰动被添加到(即“干扰”)彩色LED照明灯具12中的基础光。颜色传感器14感测针对被占用感测模块20存储并且处理的每个扰动的颜色信息,以估计房间的占用。更具体地,控制策略模块18将颜色可控LED装置12的基础光x0扰动成预定值。当前的LED技术允许LED装置12传递快速变化的照明条件,其可以由颜色传感器14感测到。在本文中描述的例示实施方式中,颜色可控LED装置12可用对三个颜色通道(红、绿、蓝(RGB))进行控制来实现。然而,应当理解,可同样地使用具有附加或不同颜色通道的LED装置。针对每个通道的控制值输入可以是0和1之间的标量值。因此,可用一组控制值来控制每个LED装置,以设置每个颜色分量,例如,RGB LED装置可接收诸如C=[0.65,0.88,0.34]的多组控制值。
在设置了初始基础光x0之后,占用感测模块20将一系列扰动δx添加到基础光x0,并且通过颜色传感器14来测量针对每个扰动的感测输出y0y。感测输出的收集被存储、分析并且随后被使用以在调节阶段中更新基础光。在典型的实施方式中,基础光将被控制为在大的颜色范围内缓慢地改变,而扰动将被控制为在小的颜色范围内快速地且理想地不可察觉地改变。这类似于其中低频信息附加在(ride on)高频载波上的电子通信中的幅度调制(AM)。不同之处在于,在本系统中,载波或基础光的强度类似于低频分量且扰动类似于高频分量。其示例在图9中示出,其中,一系列扰动90被添加到基础光92,使得提供具有感测阶段94、调节阶段96、下一个感测阶段98等的扰动调制光。可基于触发事件(例如,开门)等,以规则或不规则频率(例如,每2分钟、在工作时间期间更经常地、在夜间不经常地)按任何方式来实现周期性感测阶段之间的时间。
应当理解,虽然描述了各种示例性实施方式,但本发明不旨在限于特定的设备或设计规范。例如,传感器响应功能(例如,相对于角度或波长)、所使用的原色的数量、灯具的发光功能等的变化旨在被涵盖在其中。
图3描绘了用于实现针对智能照明系统11的照明控制系统38的示例性计算机系统30,照明控制系统38包括控制策略模块18和占用感测模块20。如所示出的,控制策略模块18包括策略管理器40和照明控制器42。策略管理器40例如基于用户输入的控制策略56和/或其他预定设置来定义针对房间10的所期望的照明策略。例如,照明策略可提供一定量的照明、照明的分布、或照明的浓度,以在空间内实现某种期望的结果,例如,最大节能、高效任务的照明、观看TV模式、日间模式、夜间模式、阅读模式、展示模式、博物馆模式、就餐模式、清洁模式等。指定并且实现控制策略的细节通常在本公开的范围之外。照明控制器42负责操纵LED照明灯具12的控制值,并且可包括用于设置并且调节房间内的基础光x0的基础光管理器44。基础光管理器44提供针对房间10中的照明的初始设置,然后基于所期望的策略和所估计的房间10中的占用变化来提供周期性调节的设置。扰动管理器46确定并且实现另外的(further)或调节的控制值,以引起对LED照明灯具12的扰动,随后通过占用感测模块20来评价(evaluate)该扰动,以估计占用。
占用感测模块20通常包括扰动策略48、传感器数据管理器50和光传输建模器52。扰动策略48负责确定由照明控制器42周期性地输出的扰动的量和类型。传感器数据管理器50负责从颜色传感器14周期性地收集传感器数据并且将所收集的数据与由LED装置12生成的相关联的扰动对准。例如,这可以使用标准输入/输出技术(例如,用高速缓存、文件系统等)来完成。光传输建模器52负责随后将传感器信息和相关联的的扰动数据存储在光传输模型内。在本文中描述的例示性实施方式中,光传输模型包括光传输矩阵;然而,可同样地使用其他建模构造(例如,图形、神经网络等)。占用估计系统54(直接地或借助对模型的改变)处理光传输模型,以提供或计算所估计的占用,该占用被反馈回照明控制器42以周期性地调节基础光x0。可以任何方式将所估计的占用呈现为例如二进制数据、数据结构、可视模型、数据矢量、表、XML数据等。
因此,光传输模型或矩阵为估计占用并且调节基础光x0提供了基础。如图1和图2中所示,由颜色传感器14测得的感测的输出y0y被收集并且被输入到光传输模型或矩阵A中。例如,假设在房间10中有12个不同的LED灯(每个灯具有红、绿和蓝三个通道),然后系统的输入是36维控制信号x。另外,假设有12个颜色传感器,每个颜色传感器具有红、绿、蓝和白四个通道,则测得的输出是48维信号y。x和y之间的关系被给出为:
y=Ax+b
其中,A是光传输矩阵并且矢量b是对环境光的传感器响应。光传输矩阵A只取决于占用情况,并且不受输入光或任何环境光的影响。光传输矩阵A因此提供占用的签名(signature)。矢量b被抵消如下。当输入被设置成给定水平X0时,传感器的输出是y0=A x0+b。如果在输入中添加小扰动δx,则新的输出变成y0+δy=A(x0+δx)+b。通过简单的减法,就消除了b,并且δy=Aδx。这里,X0被称为基础光,其由控制策略模块19确定。如果y0被测量一次并且使用不同的δx,测量y0+δy多次,则提供用于求解A的线性系统。换句话讲,LED装置的输入X0被随机生成的m1维信号δx1,δx2,...,δxn扰动,并且系统测量传感器读数δy1,δy2,...,δyn的m2维度变化。令X=[δx1,δx2,...,δxn]且Y=[δy1,δy2,...,δyn],其中,x是m1×n阵列并且y是m2×n阵列。结果是线性系统Y=AX
当确定A时,可考虑两种不同的情况:超定系统(overdetermined system)和欠定系统(underdetermined system)。特定的实现通常将取决于在所需的时间间隔内可进行多少次测量,这进而取决于传感器和灯的数量、它们的响应时间和计算机的速度。如果可进行足够的测量来确保n>m1,则该超定线性系统可以通过伪逆矩阵A=Y XT(XXT)-1来简单地求解,该矩阵对应于误差的弗罗贝尼乌斯范数(Frobenius norm)的最小值minA||Y-AX||F
如果没有足够的测量,则线性系统是欠定的,并且没有唯一解。然后,需要添加额外的约束来找到特定的唯一解。如果灯具可极其快速地改变光并且传感器可非常快速地进行测量,则可在A和b二者都恒定的非常短的时间段中进行n次不同的测量。然而,在现实世界中,在指定输入控制信号之后在传递相应的光之前,灯具具有延迟。另外,传感器具有两种延迟:积分时间和通信时间(握手时间)。积分时间是在其期间光电二极管测量光通量的时间间隔;通信时间是在其期间传感器向系统发送测量结果的时间间隔。由于这些延迟,如果n太大,则可不再假设在n次测量期间A和b是恒定的。这是解决欠定系统的动机。虽然在系统运行时间中不可以有非常大的n,但是作为运行系统之前的离线校准步骤,可针对空房间进行许多次测量。
假定已经使用A=Y XT(XXT)-1确定了针对空房间的光传输矩阵A0。现在,如果房间占用改变,则光传输矩阵A也将改变。为了恢复新的A,系统再次随机地用X=[δx1,δx2,...,δxn]扰动LED输入,并且测量颜色传感器输出Y=[δy1,δy2,...,δyn]的变化,以确定约束Y=AX。为了确保实时性能,系统只能在短时间间隔内进行有限数量的测量,在该时间间隔期间,可假设占用、基础光X0和对环境光的传感器响应b都是恒定的。因此,n<m1,从而导致欠定系统。为了求解A,添加额外的约束。一种假设是光传输模型中的改变是稀疏的(sparse)-当占用改变时,大多数光路不受影响。
A的每个元可被认为是从该LED到该传感器的所有光路上从一个传感器通道到一个LED通道的响应的总和。这些光路包括连接LED装置和传感器的线段(直接路径)和众多反射路径(主要是漫反射)。显然,直接路径是主要组件。当人类对象进入房间时,他或她只挡住了有限数量的这些直接路径,如图4中所例示。可以按以下这种方式来理解稀疏性假设:因为房间被稀疏地占用,所以当房间占用改变时,只有少量直接路径将改变。
目标是使A和A0之间的差异最小。由于Y=AX,所以我们使得A0X-Y=(A0-A)X。令Z=A0X-Y以及E=A0-A。Z可被理解为由于房间占用的变化而导致的传感器响应的变化,E可理解为由于房间占用的改变而导致的光传输模型的变化。矩阵E被称为光传输改变或差分矩阵。然后,问题变成Z=EX,其中,E近似零矩阵,其可以被公式化为:
s.t.Z=EX,
其中,f(·)是描述矩阵E有多不足或多稀疏的目标函数。这里,应当理解,E不是真的几乎为零,因为它是模型中的变化,当占用改变时,变化应该是明显的。系统只是寻找在约束Z=EX下最接近零矩阵的E。函数f(·)存在不同的选择:
f1(E)=rank(E),
f2(E)=||E||F=||vec(E)||2
f3(E)=||vec(E)||0
f4(E)=||vec(E)||1
这里,vec(·)表示矩阵的矢量化(将各列叠加成单列矢量)。目标函数f(·)的不同选择具有不同的实际意义,并且对应于不同的假设。如果E的秩被最小化,则E中的许多行被假设是线性相关的。换句话讲,占用的变化以类似的方式影响从源到不同传感器的光路。使E的弗罗贝尼乌斯范数最小化并非易事,但其解也是秩最小化的解。
使目标函数f3(E)或f4(E)最小化将导致稀疏矩阵E其中,E的许多项是零。稀疏E意味着由于房间占用的变化,仅有限数量的直接光路已改变。
秩最小化
这里提出的秩最小化问题不同于上面的矩阵完成问题,其中,目标是从其元的小的子集恢复低秩矩阵。约束是线性系统,而非已知的元的子集。为了用目标函数来解决以上问题,使X的奇异值分解(SVD)为X=USVT,其中,U是m1×m1矩阵,S是m1×n矩阵,并且V是n×n矩阵。然后,约束变成ZV=EUS。由于n<m1,因此可将把S写为具有S1的矢量并且将0写为其元,其中,S1是X的奇异值的n×n对角矩阵。令EU=F=[F1 F2],其中,F1是m1×n并且F2是m1×(m1-n)。此时,约束简单地为F1S1=ZV,或F1=ZV S1 -1,并且F2可以是任意子矩阵。由于秩在酉变换下是不变的,因此已知大于或等于rank(F1)的rank(E)=rank(EU)=rank(F)。显然,当F2=0时,rank(E)=rank(F1),因此解是E=[ZV S1 -10]UT
这里感兴趣的观察是秩最小化问题的解也是弗罗贝尼乌斯范数最小化问题的解。这是因为,弗罗贝尼乌斯范数在酉变换下也是不变的:
并且当F2=0时,它也取最小值。
秩最小化问题还可被视为稀疏恢复问题,因为矩阵的秩简单地为该矩阵的非零奇异值的数量。因此,使矩阵的秩最小化等同于使奇异值的其矢量的范数l0最小化。
稀疏恢复
为了用目标函数来解决以上问题,可将Z=EX重写为其克罗内克(Kronecker)积形式:
这是标准压缩感测问题,其中,vec(E)是所关注的未知稀疏信号,vec(Z)是测量结果的矢量,并且克罗内克积
是感测矩阵。
使f3(E)最小化是l0优化问题,其是NP困难。然而,可使用诸如正交匹配追踪(OMP)的贪婪(greedy)算法来有效地找到近似解。使f4(E)最小化是l1优化问题,可被改写为线性规划问题。
扰动调制照明
在感测阶段期间扰动基础光X0存在各种策略。为了高传输矩阵的准确恢复和人类对象的舒适度,可以考虑以下内容:
1、扰动模式应当具有丰富的变化以从场景捕获充足的信息。
2、扰动的幅度应该足够小以不干扰房间中的人或动物(例如,诸如服务犬)。
3、扰动的幅度应该大到足以由颜色传感器进行准确测量。
为了满足第一个要求,随机生成的模式通常是足够的。如果扰动的幅度被定义为ρ=maxi||δxi||,则权衡ρ的选择。当ρ小至0.005时,传感器响应在噪声中明显丢失或失真,并且随着ρ变大,传感器响应变得表现良好。在例示性实施方式中,ρ=0.025,使得扰动不容易被注意到,但是可由颜色传感器准确地感测到。
应注意,当设计传感器时,可考虑所实现传感器的传感器灵敏度和信号失真的定量分析。
假设有n个幅度为ρ的随机生成的扰动模式δx1、δx2、…、δxn。在感测阶段中,应用这些模式来测量传感器输出中的改变,并且恢复光传输矩阵A。这里出现了一个问题:应该按什么次序将这些扰动模式布置以最大化人类对象的舒适度。直观地,光应该逐渐改变。例如,如果只有一个灯具通道,并且存在强度为1、1、2和2的四个扰动。布置0”1”2”2”1”0显然比0”1”2”1”2”0更佳,由于在前的布置的光改变更平缓,并且因此不太明显。这里,扰动序列开始并且结束于0,因为扰动是基于基础光。为了逐渐变化,相邻扰动模式应该尽可能相似。令(i1,i2,...,in)是(1,2,...,n)的置换。然后,(δxil,δxi2,...,δxin)是模式(δx1,δx2,...,δxn)的重新排序。优化问题可被公式化为:
其中,||·||是所选择的矢量范数,通常是l2范数。
优化问题有非常直接的图解释。创建具有n+1个顶点的加权完全无向图(weightedcomplete undirected graph)G,其中,每个扰动模式δxi是顶点,并且0也是一个顶点(对应于基础光)。两个顶点之间的边缘的权重仅仅是两个对应的扰动模式之间的差异的范数。找到解等同于找到G的最短哈密顿回路(Hamiltonian cycle)或已经被深入研究的著名旅行商问题(Travelling Salesman Problem)(TSP)。
旅行商问题对于NP困难而言是熟知的,没有有效的精确算法。然而,可使用许多启发式算法来找到次优但非常好的解。可使用诸如遗传算法的任何算法来求解它。
对光传输矩阵的分析
可按任何方式来实现光传输模型或矩阵的解释和使用以估计占用。在本文中描述了三种不同的方法(分类、3D场景估计和光反射),尽管可以同样地使用其它方法。
1、分类
光传输矩阵A仅取决于房间占用,并且独立于至LED装置的光或环境光。因此,一旦恢复了矩阵A,就可以从该矩阵推导关于房间占用的高层信息。最简单的方法是直接使用矩阵A(或矩阵E=A0-A)的数字元作为占用场景的特征,并且使用监督学习来区分智能房间中的各种占用场景。
对于该分类任务,可将颜色传感器安装在智能房间的墙壁上。然而,注意的是,可将传感器安装在墙壁上或天花板上用于该分类任务,只要它们遍布整个房间以采集整个空间。对于分类任务,不需要灯具或传感器的空间坐标。只需要矩阵A的值。
分类问题示例
考虑两个分类示例,但是其他示例可类似地实现。第一个示例是四类分类问题,其中,目标是确定房间是否为:(1)空的,(2)被一小群(一个至三个)人占用,(3)被聚集在房间中的一大群(四个至七个)人占用,或(4)被分散在房间中的一大群人占用。
更加困难的第二种方法是十五类分类问题,其中,目标是区分单个个体和一小群(两个或三个)人,并且还定位他们占用房间的哪个部分。在这种情况下,房间被划分成6个区域并且这十五类是:(1)空的,(2)至(7)六个区域之一包含一个个体,(8)至(13)六个区域之一包含一小群人,(14)聚集的一大群人,(15)分散的一大群人。如所指出的,可采用其他的分类方法。
可使用包括测试和训练数据的监督学习来实现分类方法。例如,可在各种房间占用场景下收集针对房间的数据,在这些场景下,LED装置被随机扰动并且传感器输出被测得。在各事件期间,人类对象进入房间并且记录主体的数量和位置。
可使用矩阵E的元作为特征,使得特征维度为m1m2=1728。然后,将这些特征归一化—每个元被减去其平均值并且除以训练集合上的其标准偏差。对于建立的分类问题中的每一个,可使用径向基函数(RBF)内核支持矢量机(SVM)作为分类机,并且可使用平均精度均值(mean average precision)(mAP)作为良好测量。因为不同类别具有不同尺寸,所以诸如精度的其他性能量度可高度偏置,尤其当某些最简单的类明显大于其他类时。对于每种类别,训练一对多SVM,并且使用决策分数来计算平均精度(AP)。然后,mAP简单地为针对所有类别的平均精度的平均值。
在使用秩最小化来恢复光传输变化的四类分类场景中,相比于25.54%的随机推测的mAP,实验结果实现了88.62%的mAP。使用l1最小化,实现了81.92%的mAP。使用l0最小化,mAP为71.19%。
对于十五类分类问题,使用秩最小化来恢复光传输变化,相比于7.95%的随机推测的mAP,实现了78.69%的mAP。使用l1最小化,mAP是68.37%,而使用l0最小化,mAP是50.76%。对于分类的数量变成禁止直接使用类别的大空间,空间可被细分并且处理为一组较小的子空间和组合的结果。
2、具有光阻模型的3D场景估计
以上的分类方法直接使用矩阵A或E的数字元来从训练数据学习占用模式。房间、灯具或传感器的几何或空间信息没有被集成到分类方法中,这导致一些限制。在该方法中,使用了3D场景估计方法,该方法利用室内空间的空间信息,尤其是占用者对光路的阻挡。
回想一下,空房间的光传输矩阵表示为A0。在运行时,光传输矩阵是A,并且E=A0-A是差分矩阵。矩阵E也是m2×m1,并且E的每个元对应于一个灯具通道和一个传感器通道(在给定波长或颜色下从一个灯具到一个传感器的光流)。如果矩阵E的一个元具有大的正值,则意味着从相应的灯具到相应的传感器的光路中的许多光路非常有可能被阻挡。从任何给定灯具到任何给定传感器,存在众多漫反射路径和一个直接路径,这个直接路径是连接图4中示出的灯和传感器的线段60。显然,如果存在一个直接路径的话,该直接路径是主要路径。因此,E的大的元将很可能意味着对应的直接路径已经通过占用的变化被阻挡。该模型被称为光阻模型(light blockage model)(LBM)。
虽然E的每个元对应于一个直接路径,但是相反的情况是不正确的,因为每个LED装置或传感器具有多个通道。假设LED装置的数量是NL,并且传感器的数量是NS。m1×m2矩阵E可被聚合(aggregate)到NS×NL矩阵使得从的元到所有直接路径的映射是双射。在本文中提供的示例中,m1=3NL=36并且m2=4NS=48。如图5中所示,对每个灯具-传感器对执行聚合,作为三个颜色通道(红、绿和蓝)上的求和,或者仅仅:
图5示出E的4×3子矩阵的聚合。
体素呈像
在聚合之后,如果在(i,j)处具有大的元,则从灯具j到传感器i的直接路径非常有可能被阻挡,尽管不知道为什么阻挡沿着该路径发生或阻挡沿着该路径具体地在何处发生。通过假设房间占用者具有与光路的厚度相比较大的横截面,与该直接路径靠近的任何位置也可能被占用。如果在3D空间中两个或更多个这样的直接路径相交或近似相交,则阻挡最有可能发生在它们的交叉处62,如图4中所示。基于该假设,描述了以下重构算法。令P是3D空间中的任意点,并且di,j(P)是从点P到从灯具j到传感器i的直接路径的点到线距离。点P被占用的置信度是C(P),是通过以下公式计算:
其中,G(·,·)是高斯核:
C(P)的分母是LED装置和传感器的非均匀空间分布的归一化项。σ是占用的连续性和平滑度的度量,并且应该与期望的占用者的物理尺寸相关。为简化起见,σ假定为各向同性。如果在每个位置P(x,y,z)3D空间被离散和评估,则可呈现场景的3D体素V(x,y,z)=C(P(x,y,z))。该3D体素也被称为3D置信图。
3、具有光反射模型的占用图估计
3D场景估计方法可能需要将传感器安装在墙壁上并且可能具有房间大小限制。为了估计在传感器安装在天花板上的情况下的占用,可以使用基于光反射模型的占用估计方法。
当所有的颜色传感器安装在天花板上时,不再有关于z轴(垂直)方向的任何信息。光阻模型不再有效,因为不存在从灯具到传感器的直接光路。所有的光路都是漫反射路径。因此,提出了基于几何光学和光度测定的光反射模型。
在描述光反射模型之前,需要描述灯具和传感器的物理量。在光度测定中,发光强度测量由光源在每单位立体角度的特定方向上发射的功率。从传感器读取的数值是光通量,其测量光的感知功率。针对光源,发光强度通常是非各向同性的。例如,在图6中提供了Vivia 7DR3-RGB灯具的极发光强度分布图。如果法向方向上的发光强度是Imax,则在与法向方向成角度θ的方向上,发光强度是Imax·q(θ),其中,q(θ)被称为极发光强度分布函数。图7描绘了作为θ的函数的Imax·q(θ)的图。
在将颜色传感器安装在天花板上的情况下,聚合差分矩阵中的大的值意指从相应的灯具到相应的传感器的光路受到影响。虽然这些光路都是漫反射路径,但是它们提供了关于房间中的哪些区域比其他区域更可能被占据的粗略估计。出于此目的,考虑在地板上的一个非常小的区域ds1和一个灯具-传感器对。如图8中所示,灯具正向下照亮房间,并且颜色传感器向下“看”。假设颜色传感器的感测面积是ds2,从灯具到ds1的光路的角度是θ1,从ds1到ds2的光路的角度是θ2,从灯具到ds1的距离是D1,并且从ds1到ds2的距离是D2。还假设ds1是朗伯表面(Lambertian surface),其是具有反照率α的理想漫射(matte)。首先,考虑从灯具到达ds1的光通量。沿着从灯具到ds1的光路的发光强度是Imax·q(θ1),并且立体角是:ds1 cosθ1/4πD1 2。因此,到达ds1的光通量是发光强度和立体角的乘积:
由于ds1的反照率是α,因此在法向方向上从ds1反射的光的发光强度与αΦ成比例。为了简化,使用αΦ来表示在法向方向上的发光强度。由于ds1是朗伯表面,因此表面的亮度是各向同性的,并且发光强度遵守朗伯余弦定律。因此,沿着从ds1到ds2的光路的反射光的发光强度是αΦ1 cos θ2。从ds1到ds2的立体角是:ds2 cos θ2/4πD2 2。因此,最终,从灯具到达ds1并被ds1反射的光通量是:
对于所有灯具,Imax和函数q(·)是相同的。对于所有传感器,ds2是相同的。对于地板上的不同位置,我们假设反照率α是恒定的,并且使用相同面积的ds1。然后,Φ2是地板上的位置的函数:
其中,K是与位置无关的常数。θ1、θ2和D1和D2都依赖于位置。这里给定的传感器响应仅仅是示例。包括透镜和壳体的传感器的物理构造将改变其响应作为相对于瞄准线的角度的函数。该响应容易被测量(或指定)并且被作为系统设计的部分并入模型中。
可如下地实现这种方法的置信图。直观地,如果矩阵中有大的值,则可找到相应的灯具-传感器对,并且可计算在地板上的所有位置处的Φ2。在Φ2具有较大的值的位置处,占用更有可能在那里。
基于这种直观,可以在离线的所有灯具-传感器对的所有位置处预先计算Φ2。在所有位置处的预先计算的Φ2被称为相应的灯具-传感器对的反射核。令针对灯具j和传感器i的反射核是Ri,j。然后,置信图可被简单地计算为所有这些反射核的加权和:
应当理解,虽然参照图8描述的特定模型假设作为角度的函数的传感器响应限于余弦缩短,但实际的传感器响应通常将更加鲁棒,并且可容易地将这些响应建模到反射核中。
参照图10,提供了用于在空间中实现智能照明的例示性方法的流程图。在S1处,设置了用于空间的彩色LED的初始基础光控制值。在S2处,将一系列扰动引入照明中并且在S3中,收集来自一组颜色传感器的传感器信息。在S4处,将传感器信息和相关联的扰动数据存储在光传输模型中。接下来,在S5处,(要么直接地,要么基于对光传输模型的改变)基于光传输模型来计算估计的占用。在S6处,基于所估计的占用和限定的控制策略来调节基础光。然后,该处理循环回到S2,其中,S2至S6被(以规则或不规则的间隔)周期性地重复。
所描述的占用感测方法允许智能照明系统不仅推断空间中的人的存在,而且确定他们在该空间中的空间分布。该系统不需要摄像机,从而避免了隐私和/或安全问题。替代地,简单的颜色传感器与诸如颜色可控的固态灯具结合使用,经由逆变换、反射和机器学习模型的组合,实时地并且以完全保密的方式来确定人在房间中的位置。颜色传感器非常便宜并且以房间占用者不可见的方式来调制现有的固态照明灯具,以询问(interrogate)该空间。房间的占用者的空间分布可用于对空间中正在进行的活动分类,并且据此,驱动合适的控制策略以优化合成光的亮度、空间分布和光谱特性,以降低能耗,同时改进人类舒适度、幸福感以及生产力。
再次参照图3,应当理解,计算系统30可包括任何类型的计算装置,并且例如,包括至少一个处理器32、存储器36、输入/输出(I/O)34(例如,一个或更多个I/O接口和/或装置)和通信路径17。一般来说,处理器32执行用于实现至少部分地固定在存储器中的本发明的照明控制系统38的程序代码。在执行程序代码的同时,处理器32可处理数据,从而可导致从存储器36和/或I/O34读取变换后的数据和/或将变换后的数据写入存储器36和/或I/O34以进行进一步处理。路径17提供了计算系统30中的各组件之间的通信链路。I/O34可包括一个或更多个人类I/O装置,使用户能够与计算系统30相互作用。
本发明的各方面可以是系统、方法、和/或计算机程序产品。计算机程序产品可包括其上具有用于使处理器执行本发明的各方面的计算机可读程序指令的计算机可读存储介质(或介质)。
计算机可读存储介质可以是有形装置,其可保持并且存储指令以供指令执行设备使用。计算机可读存储介质可以是例如但不限于电子存储设备,磁存储设备,光存储设备,电磁存储设备,半导体存储设备或前述的任何合适的组合。计算机可读存储介质的更具体示例的非穷尽的列表包括以下:便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存存储器)、静态随机存取存储器(SRAM)、便携式压缩式光盘只读存储器(CD-ROM)、数字通用光盘(DVD)、记忆棒、软盘、机械编码装置(诸如,其上记录有指令的凹槽中的穿孔卡或凸起结构)、和以上的任何合适的组合。如本文中使用的,计算机可读存储介质不被解释为是暂态信号本身,例如,无线电波或其他自由传播的电磁波、通过波导或其他传输介质传播的电磁波(例如,经过光纤电缆的光脉冲)、或通过导线传输的电信号。
本文中描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理装置或者经由网络(例如,互联网、局域网、广域网和/或无线网络)下载到外部计算机或外部存储装置。网络可包括铜传输电缆、光传输光纤、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理装置中的网络适配器卡或网络接口从网络接收计算机可读程序指令并且转发计算机可读程序指令,以存储在各个计算/处理装置内的计算机可读存储介质中。
用于执行本发明的操作的计算机可读程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或用一种或更多种编程语言(包括诸如Smalltalk、C++等面向对象的编程语言和诸如“C”编程语言或类似编程语言的传统过程化编程语言)的任何组合来编写的源代码或目标代码。计算机可读程序指令可以完全在用户的计算机上执行、部分地在用户的计算机上作为独立软件包来执行、部分地在用户的计算机上并且部分地在远程计算机上来执行或完全在远程计算机或服务器上来执行。在后者情况下,远程计算机可通过任何类型的网络(包括局域网(LAN)或广域网(WAN))连接到用户的计算机,或者可(例如,使用互联网服务供应商通过互联网)与外部计算机连接。在一些实施方式中,包括例如可编程逻辑电路、现场可编程门阵列(FPGA)、或可编程逻辑阵列(PLA)的电子电路可通过利用计算机可读程序指令的状态信息来执行计算机可读程序指令以个性化电子电路,以便执行本发明的各方面。
本文中参照根据本发明的实施方式的方法、设备(系统)和计算机程序产品的流程例示和/或框图来描述了本发明的各方面。应该理解,流程例示和/或框图中的各框和流程图和/或框图中的框的组合可通过计算机可读程序指令来实现。
这些计算机可读程序指令可被提供到通用计算机、专用计算机、或其他可编程数据处理设备的处理器,以产生机器,使得借助于计算机或其他可编程数据处理设备的处理器执行的指令创建用于实现流程图和/或框图的一个或多个框中指定的功能/动作的装置。这些计算机可读程序指令也可被存储在计算机可读存储介质中,计算机可读存储介质可指导计算机、可编程数据处理设备、和/或其他装置以特定方式运行,使得其中存储有指令的计算机可读存储介质包括包括实现流程图和/或框图的一个或多个框中指定的功能/动作的方面的指令的制造制品。
计算机可读程序指令还可以被加载到计算机、其他可编程数据处理设备或其他装置上,以使得在计算机、其他可编程数据处理设备或其他装置上执行一系列操作步骤来产生计算机实现的处理,使得在计算机、其他可编程数据处理设备或其他装置上执行的指令实现流程图和/或框图的一个或多个框中指定的功能/动作。
附图中的流程图和框图例示出了根据本发明的各种实施方式的系统、方法和计算机程序产品的可能实现的架构、功能和操作。就此而言,流程图或框图中的每个框可代表指令的模块、片段或部分,其包括用于实现指定逻辑功能的一个或更多个可执行指令。在一些替代实现方式中,框中指出的功能可不按附图中指出的次序发生。例如,取决于所涉及的功能,连续示出的两个框事实上可基本同时执行,或者这些框可有时按相反的顺序执行。还将注意到,框图和/或流程例示中的每个框以及框图和/或流程例示中的框的组合可通过基于专用硬件的系统实现,该系统执行指定功能或动作或执行专用硬件和计算机指令的组合。
虽然应该理解本发明的程序产品可借助诸如CD、DVD等存储介质被手动直接加载到计算机系统中,但是还可通过将程序产品发送到中央服务器或一组中央服务器的,将程序产品自动或半自动地部署到计算机系统中。随后,可将程序产品下载到将执行程序产品的客户端计算机中。另选地,程序产品可借助电子邮件被直接发送到客户端系统。可随后通过电子邮件上的按钮,将程序产品分离(detach)到目录或加载到目录中,该按钮执行将程序产品分离到目录的程序。另一种选择是将程序产品直接发送到客户端计算机硬盘驱动器上的目录。
已经出于例示和描述的目的,展示了对本发明的各种方面的前述描述。这不旨在是穷尽或者将本发明限于所公开的精确形式,并且,显然,许多修改和变化是可能的。对于本领域的个体技术人员而言可为显而易见的这种修改和变化被包括在由所附权利要求书限定的本发明的范围内。

Claims (20)

1.一种智能照明系统,所述智能照明系统包括:
多个非成像颜色传感器;
多个彩色可控灯;
扰动空间内的所述彩色可控灯的系统;
从所述非成像颜色传感器收集获得的颜色信息并且基于收集的颜色信息来构建光传输模型的系统;
估计空间内的占用的系统;以及
调节模块,所述调节模块基于所述光传输模型和预定的控制策略来调节所述彩色可控灯。
2.根据权利要求1所述的系统,其中,所述彩色可控灯包括发光二极管(LED)。
3.根据权利要求2所述的系统,其中,所述LED包括多个颜色通道。
4.根据权利要求1所述的系统,其中,所述光传输模型包括光传输矩阵。
5.根据权利要求4所述的系统,其中,基于利用监督学习来评价所述光传输矩阵中的数据的分类方法来估计所述占用。
6.根据权利要求4所述的系统,其中,基于识别所述空间内的被阻挡的光路的三维(3D)场景估计方法来估计所述占用。
7.根据权利要求4所述的系统,其中,基于评价反射光的占用图估计方法来估计所述占用。
8.一种用于控制具有多个颜色传感器和多个彩色可控灯的空间中的照明的方法,所述方法包括以下步骤:
向所述彩色可控灯输出控制值,以使得在空间内产生基础光;
周期性地输出另外的控制值,以扰动所述空间内的所述彩色可控灯;
从所述颜色传感器收集获得的颜色信息;
基于所述颜色信息来构建光传输模型;
利用所述光传输模型来计算所述空间的估计的占用;以及
响应于所估计的占用和预定的控制策略来调节所述基础光。
9.根据权利要求8所述的方法,其中,所述彩色可控灯包括发光二极管(LED)。
10.根据权利要求9所述的方法,其中,所述LED包括多个颜色通道。
11.根据权利要求8所述的方法,其中,所述光传输模型包括光传输矩阵。
12.根据权利要求11所述的方法,其中,基于利用监督学习来评价所述光传输矩阵中的数据的分类方法来估计所述占用。
13.根据权利要求11所述的方法,其中,基于识别所述空间内的被阻挡的光路的三维(3D)场景估计方法来估计所述占用。
14.根据权利要求11所述的方法,其中,基于评价反射光的占用图估计方法来估计所述占用。
15.一种基于估计的占用来调节一组颜色可控LED灯的照明控制系统,所述系统包括:
照明控制器,所述照明控制器向所述一组颜色可控LED灯输出控制值,以在空间内产生基础光并且引起对所述基础光的扰动;
传感器数据管理器,所述传感器数据管理器从位于所述空间内的多个非成像颜色传感器接收感测到的颜色信息;
光传输建模器,所述光传输建模器将所感测到的颜色信息和相关联的扰动信息存储在光传输模型中;以及
占用估计系统,所述占用估计系统基于所述光传输模型来计算所述空间的估计的占用,其中,所估计的占用被提供至所述照明控制器以调节所述基础光。
16.根据权利要求15所述的照明控制系统,其中,所述照明控制系统还包括策略管理器,所述策略管理器包括用于进一步调节所述基础光的控制策略。
17.根据权利要求15所述的照明控制系统,其中,所述光传输模型包括光传输矩阵。
18.根据权利要求17所述的照明控制系统,其中,基于监督学习来评价所述光传输矩阵中的数据来计算所估计的占用。
19.根据权利要求17所述的照明控制系统,其中,基于所述空间内的被阻挡的光路的识别来计算所估计的占用。
20.根据权利要求17所述的照明控制系统,其中,基于所述空间内的反射光来计算所估计的占用。
CN201580033085.6A 2014-06-20 2015-06-16 智能照明系统、用于控制照明的方法及照明控制系统 Expired - Fee Related CN106576414B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462014745P 2014-06-20 2014-06-20
US62/014,745 2014-06-20
PCT/US2015/036002 WO2015195645A1 (en) 2014-06-20 2015-06-16 Occupancy sensing smart lighting system

Publications (2)

Publication Number Publication Date
CN106576414A true CN106576414A (zh) 2017-04-19
CN106576414B CN106576414B (zh) 2019-09-06

Family

ID=54936035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580033085.6A Expired - Fee Related CN106576414B (zh) 2014-06-20 2015-06-16 智能照明系统、用于控制照明的方法及照明控制系统

Country Status (5)

Country Link
US (1) US9907138B2 (zh)
EP (1) EP3158834B1 (zh)
JP (1) JP6579450B2 (zh)
CN (1) CN106576414B (zh)
WO (1) WO2015195645A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205303A (zh) * 2017-06-30 2017-09-26 欧普照明股份有限公司 颜色传感器模组、智能照明装置及智能照明控制方法
CN108925007A (zh) * 2018-08-14 2018-11-30 广东宇之源太阳能科技有限公司 一种感应智能照明系统
CN109890105A (zh) * 2018-12-29 2019-06-14 中国计量大学 开放式办公室照明系统和控制方法及固定光色检测模块
CN111741554A (zh) * 2017-09-05 2020-10-02 深圳市盛路物联通讯技术有限公司 一种智能光控方法及装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11160148B2 (en) * 2017-06-13 2021-10-26 Ideal Industries Lighting Llc Adaptive area lamp
US11792898B2 (en) 2012-07-01 2023-10-17 Ideal Industries Lighting Llc Enhanced fixtures for area lighting
EP3158834B1 (en) 2014-06-20 2020-02-12 Rensselaer Polytechnic Institute Occupancy sensing smart lighting system
US9961750B2 (en) * 2016-02-24 2018-05-01 Leviton Manufacturing Co., Inc. Advanced networked lighting control system including improved systems and methods for automated self-grouping of lighting fixtures
US10529696B2 (en) 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
EP3482533B1 (en) 2016-07-05 2021-06-30 Lutron Technology Company LLC State retention load control system
US11437814B2 (en) 2016-07-05 2022-09-06 Lutron Technology Company Llc State retention load control system
US10028356B2 (en) * 2016-07-13 2018-07-17 Yam Ho Yeung Smart lighting system and method
WO2018074970A1 (en) * 2016-10-18 2018-04-26 Plejd Ab Lighting system and method for automatic control of an illumination pattern
JP6783934B2 (ja) * 2016-11-15 2020-11-11 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 照明システムのためのエネルギー測定
US11037330B2 (en) * 2017-04-08 2021-06-15 Intel Corporation Low rank matrix compression
US11295520B2 (en) 2017-07-26 2022-04-05 Signify Holding B.V. Methods for street lighting visualization and computation in 3D interactive platform
US10651357B2 (en) 2017-08-03 2020-05-12 Cree, Inc. High density pixelated-led chips and chip array devices
US10734363B2 (en) 2017-08-03 2020-08-04 Cree, Inc. High density pixelated-LED chips and chip array devices
EP3493652B1 (de) * 2017-12-01 2020-07-08 Zumtobel Lighting GmbH Automatische anpassung der lichtfarbe von leuchten
DE102017221671A1 (de) 2017-12-01 2019-06-06 Zumtobel Lighting Gmbh Bewegungserfassung von Personen mittels Farbsensoren
US10529773B2 (en) 2018-02-14 2020-01-07 Cree, Inc. Solid state lighting devices with opposing emission directions
US10383196B1 (en) 2018-09-28 2019-08-13 Synapse Wireless, Inc. Systems and methods for controlling lighting conditions in a manufacturing environment
US10903265B2 (en) 2018-12-21 2021-01-26 Cree, Inc. Pixelated-LED chips and chip array devices, and fabrication methods
WO2021087109A1 (en) 2019-10-29 2021-05-06 Cree, Inc. Texturing for high density pixelated-led chips
US11437548B2 (en) 2020-10-23 2022-09-06 Creeled, Inc. Pixelated-LED chips with inter-pixel underfill materials, and fabrication methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340868B1 (en) * 1997-08-26 2002-01-22 Color Kinetics Incorporated Illumination components
US20040105264A1 (en) * 2002-07-12 2004-06-03 Yechezkal Spero Multiple Light-Source Illuminating System
US6759954B1 (en) * 1997-10-15 2004-07-06 Hubbell Incorporated Multi-dimensional vector-based occupancy sensor and method of operating same
US20110206254A1 (en) * 2010-02-22 2011-08-25 Canfield Scientific, Incorporated Reflectance imaging and analysis for evaluating tissue pigmentation
CN102291886A (zh) * 2010-06-15 2011-12-21 红杉系统公司 基于目标的照明控制
US20120066168A1 (en) * 2010-09-14 2012-03-15 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069654A (en) 1960-03-25 1962-12-18 Paul V C Hough Method and means for recognizing complex patterns
US7521667B2 (en) * 2003-06-23 2009-04-21 Advanced Optical Technologies, Llc Intelligent solid state lighting
US9655217B2 (en) * 2006-03-28 2017-05-16 Michael V. Recker Cloud connected motion sensor lighting grid
US8519566B2 (en) * 2006-03-28 2013-08-27 Wireless Environment, Llc Remote switch sensing in lighting devices
US8138690B2 (en) * 2008-04-14 2012-03-20 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and meter circuit
US8275471B2 (en) * 2009-11-06 2012-09-25 Adura Technologies, Inc. Sensor interface for wireless control
US8773336B2 (en) * 2008-09-05 2014-07-08 Ketra, Inc. Illumination devices and related systems and methods
US8457793B2 (en) * 2008-09-10 2013-06-04 Enlighted, Inc. Intelligent lighting management and building control system
EP3089558A3 (en) * 2008-11-26 2017-01-18 Wireless Environment, LLC Wireless lighting devices and applications
US8362707B2 (en) * 2008-12-12 2013-01-29 Cirrus Logic, Inc. Light emitting diode based lighting system with time division ambient light feedback response
JP5478902B2 (ja) * 2009-01-20 2014-04-23 スタンレー電気株式会社 光学距離センサー
CN102388678A (zh) * 2009-04-09 2012-03-21 皇家飞利浦电子股份有限公司 智能照明控制系统
JP2011222429A (ja) * 2010-04-13 2011-11-04 Hakutsu Technology Corp 照明の調光制御システム
US8305014B1 (en) * 2010-05-10 2012-11-06 Cooper Technologies Company Lighting control using scan and step change
US8651705B2 (en) 2010-09-07 2014-02-18 Cree, Inc. LED lighting fixture
AU2011323165B2 (en) * 2010-11-04 2015-04-23 Osram Sylvania Inc. Method, apparatus, and system for occupancy sensing
US9357618B2 (en) 2011-04-04 2016-05-31 Koninklijke Philips N.V. Device and method for illumination control of a plurality of light sources
US8981651B2 (en) * 2011-08-11 2015-03-17 The Board Of Trustees Of The Leland Stanford Junior University Tiered sensing and resource allocation system for energy use optimization in commercial buildings
US9148935B2 (en) * 2011-09-21 2015-09-29 Enlighted, Inc. Dual-technology occupancy detection
US8558466B2 (en) * 2011-09-21 2013-10-15 Enlighted, Inc. Event detection and environmental control within a structure
EP2774459B1 (en) * 2011-11-03 2021-01-06 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
EP2749135A1 (en) * 2011-12-14 2014-07-02 Koninklijke Philips N.V. Methods and apparatus for sensing light output and controlling light output
JP2015519687A (ja) * 2012-04-20 2015-07-09 レンセレイアー ポリテクニック インスティテュート 照明空間を特性評価するための検知照明システム及び方法
US9155166B2 (en) * 2012-12-18 2015-10-06 Cree, Inc. Efficient routing tables for lighting networks
EP3158834B1 (en) 2014-06-20 2020-02-12 Rensselaer Polytechnic Institute Occupancy sensing smart lighting system
US10045427B2 (en) * 2014-09-29 2018-08-07 Philips Lighting Holding B.V. System and method of autonomous restore point creation and restoration for luminaire controllers
US9739427B1 (en) * 2016-02-09 2017-08-22 Michael W. May Networked LED lighting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340868B1 (en) * 1997-08-26 2002-01-22 Color Kinetics Incorporated Illumination components
US6759954B1 (en) * 1997-10-15 2004-07-06 Hubbell Incorporated Multi-dimensional vector-based occupancy sensor and method of operating same
US20040105264A1 (en) * 2002-07-12 2004-06-03 Yechezkal Spero Multiple Light-Source Illuminating System
US20110206254A1 (en) * 2010-02-22 2011-08-25 Canfield Scientific, Incorporated Reflectance imaging and analysis for evaluating tissue pigmentation
CN102291886A (zh) * 2010-06-15 2011-12-21 红杉系统公司 基于目标的照明控制
US20120066168A1 (en) * 2010-09-14 2012-03-15 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205303A (zh) * 2017-06-30 2017-09-26 欧普照明股份有限公司 颜色传感器模组、智能照明装置及智能照明控制方法
CN107205303B (zh) * 2017-06-30 2023-06-20 欧普照明股份有限公司 颜色传感器模组、智能照明装置及智能照明控制方法
CN111741554A (zh) * 2017-09-05 2020-10-02 深圳市盛路物联通讯技术有限公司 一种智能光控方法及装置
CN108925007A (zh) * 2018-08-14 2018-11-30 广东宇之源太阳能科技有限公司 一种感应智能照明系统
CN109890105A (zh) * 2018-12-29 2019-06-14 中国计量大学 开放式办公室照明系统和控制方法及固定光色检测模块
CN109890105B (zh) * 2018-12-29 2021-01-29 中国计量大学 开放式办公室照明系统和控制方法

Also Published As

Publication number Publication date
JP2017522692A (ja) 2017-08-10
JP6579450B2 (ja) 2019-09-25
CN106576414B (zh) 2019-09-06
EP3158834A1 (en) 2017-04-26
US20170135177A1 (en) 2017-05-11
US9907138B2 (en) 2018-02-27
WO2015195645A1 (en) 2015-12-23
EP3158834B1 (en) 2020-02-12
EP3158834A4 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
CN106576414A (zh) 占用感测智能照明系统
US11989490B2 (en) Methods and systems for an automated design, fulfillment, deployment and operation platform for lighting installations
CN104823522B (zh) 用于对照明空间提取特征的传感照明系统和方法
CN103999025B (zh) 基于视觉的交互式投影系统
TW201832136A (zh) 光學物品及與其交互作用之系統
CN106133477A (zh) 根据光覆盖区对照明装置的光源的位置估计
CN103547022A (zh) 照明控制系统
JP6884219B2 (ja) 画像解析技法
JP2020504294A (ja) 環境内の空間光分布を決定する方法
Woodstock et al. Sensor fusion for occupancy detection and activity recognition using time-of-flight sensors
US20210199498A1 (en) A method of measuring illumination, corresponding system, computer program product and use
Woodstock et al. Fusion of color and range sensors for occupant recognition and tracking
Zhang RGB-D Multicamera Object Detection and Tracking Implemented through Deep Learning
Stoeller Recognising individuals by appearance across non-overlapping stereo cameras
CN108925007A (zh) 一种感应智能照明系统
CN115280119A (zh) 收集和虚拟模拟与物理空间相关的昼夜照明数据的技术
Zhang et al. Illumination adaptation with rapid-response color sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190906