CN106575674B - 利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法 - Google Patents

利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法 Download PDF

Info

Publication number
CN106575674B
CN106575674B CN201480081346.7A CN201480081346A CN106575674B CN 106575674 B CN106575674 B CN 106575674B CN 201480081346 A CN201480081346 A CN 201480081346A CN 106575674 B CN106575674 B CN 106575674B
Authority
CN
China
Prior art keywords
quantum dot
graphene
silicon quantum
mixed structure
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480081346.7A
Other languages
English (en)
Other versions
CN106575674A (zh
Inventor
崔石镐
申东熙
金成�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Kyung Hee University
Original Assignee
Industry Academic Cooperation Foundation of Kyung Hee University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Kyung Hee University filed Critical Industry Academic Cooperation Foundation of Kyung Hee University
Publication of CN106575674A publication Critical patent/CN106575674A/zh
Application granted granted Critical
Publication of CN106575674B publication Critical patent/CN106575674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66151Tunnel diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/814Group IV based elements and compounds, e.g. CxSiyGez, porous silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

提供一种通过硅量子点的大小和控制石墨烯的掺杂浓度,提高二极管性能及电性特性的包括石墨烯硅量子点混合结构的隧穿二极管。本发明的理想隧穿二极管,可活用在二极管基础的光电子元件。

Description

利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法
技术领域
本发明涉及通过硅量子点的大小和石墨烯的掺杂浓度的控制,提高二极管性能及电性特性的,包括石墨烯硅量子点混合结构的隧穿二极管及其制造方法。
背景技术
石墨烯不仅具有高的导电性,在光学上也具有高的性能,在柔性显示器和触摸屏等下一代显示领域,和太阳电池等能源事业领域、智能窗、RFID等多种电子产业领域,以新材料被扩大活用度。
最近几年,石墨烯不仅在基础学文的发展,而且在可成长产业性技术的可能性,受到很多关注。特别地,最近随着石墨烯的大面积制作法的开发,在多种产业领域其应用可能性被扩大。
其中,利用广泛使用在整个产业的化学蒸汽沉积(chemical vapor deposition,CVD),制作的石墨烯是大面积且具有高透过性及导电性,所以,被期待作为透明电极的应用可能性。
为了将石墨烯活用在光及电子元件,可实现半导体元件结构的基本二极管结构。特别地,石墨烯与广泛使用在现整个产业的硅基础的物质,形成混合结构被开发成元件时,与其他物质进行比较,其波及效果会很大。
以金属半导体或金属氧化膜半导体结构为基础,可制造多种形态的二极管,但因金属的低透明度,金属半导体结构作为光元件,在应用存在困难。
到现在研究的石墨烯硅接合机构的大部分,显示石墨烯的金属性,和结合大量(bulk)单结晶硅晶片的半导体性质的隧穿(Tunneling)结合二极管的应用可能性。
但是,单结晶硅不可调整带隙能量(bandgap eneegy),所以,与石墨烯接合体现理想元件的性能存在困难的问题。
为了判断二极管性能,通常使用在电流-电压曲线导出的理想因子(Idealfactor)n值,作为二极管作用的理想n值被知为1和2之间。
但是,到现在开发的石墨烯单结晶硅接合隧穿二极管的理想因子值为5以上,显示非常高的数值,具有不可发挥理想二极管性能的问题。
对此,需要即可调整硅带隙能量,也可调整石墨烯电性特性的,更优秀的理想元件的必要性。
发明内容
技术课题
本发明将提供利用包括石墨烯硅量子点(quantum dots)的混合结构的隧穿二极管。
此外,本发明将提供通过硅量子点的大小控制,调整能量带隙提高二极管性能的包括石墨烯硅量子点混合结构的隧穿二极管。
此外,本发明将提供通过石墨烯的掺杂浓度的控制,提高电性特性的包括石墨烯硅量子点混合结构的隧穿二极管。
此外,本发明将提供在隧穿二极管基础的光电子元件,可活用的理想的包括石墨烯硅量子点混合结构的隧穿二极管。
技术方案
根据一个实施例,包括石墨烯硅量子点混合结构的隧穿二极管,其包括:混合结构(hybrid structure),以包括形成在硅氧化物薄膜内的硅量子点(Si quantum dots)的硅量子点层,和形成在所述硅量子点层上的掺杂的石墨烯构成;及电极,形成在所述混合结构的上下部。
所述隧穿二极管根据所述掺杂的石墨烯的掺杂浓度及所述硅量子点的大小,理想因子(Ideal factor)可具有1至2的值。
此外,所述硅量子点层在基板上将SiO2薄膜及SiOx薄膜按顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,可包括形成在所述SiO2薄膜内的所述硅量子点。
所述x以具有0.8至1.6的值被控制,对应于所述x的值可调整所述硅量子点的大小。
此外,所述SiO2薄膜及SiOx薄膜分别以2nm的厚度单位,可按顺序叠层23回至25回。
所述掺杂的石墨烯将催化层与含有碳混合气体进行反应,在所述催化层上以化学蒸汽沉积CVD方式沉积形成的石墨烯,可调整掺杂浓度。
所述沉积形成的石墨烯转移至所述硅量子点层上,可形成所述混合结构。
所述掺杂的石墨烯将具有10至30mM浓度的AuCl3,旋转涂布在所述沉积形成的石墨烯,可在90℃至110℃退火处理。
包括石墨烯硅量子点混合结构的隧穿二极管制造方法,其步骤包括:在基板上形成包括形成在硅氧化物薄膜内的硅量子点的硅量子点层;在所述硅量子点层上形成掺杂的石墨烯,形成混合结构;及在所述混合结构的上下部形成电极。
形成所述硅量子点层的所述步骤包括:在基板上将SiO2薄膜及SiOx薄膜按顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,在所述SiO2薄膜内形成所述硅量子点,且所述x以具有0.8至1.6的值被控制,对应于所述x的值可调整所述硅量子点的大小。
形成混合结构的所述步骤可包括:将催化层与含有碳混合气体进行反应,在所述催化层上以化学蒸汽沉积方式沉积,形成石墨烯;所述形成的石墨烯转移至所述硅量子点层上;及将具有10至30mM浓度的AuCl3进行旋转涂布,在90℃至110℃退火处理掺杂所述石墨烯。
技术效果
此外,根据本发明,通过在包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点的大小控制,可调整能量带隙提高隧穿二极管的性能。
此外,根据本发明,通过在包括石墨烯硅量子点混合结构的隧穿二极管的石墨烯的掺杂浓度的控制,可提高隧穿二极管的电性特性。
此外,根据本发明,通过包括石墨烯硅量子点混合结构的隧穿二极管,可提供隧穿二极管基础的,能够活用在光电子元件的理想隧穿二极管。
附图说明
图1是示出根据本发明的实施例,具有石墨烯硅量子点混合的隧穿二极管。
图2a至图2e是示出根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造过程。
图3是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管,含有的硅量子点的透射电子显微镜TEM图像。
图4是示出根据本发明的实施例,包括在隧穿二极管的硅量子点,根据SiO_x薄膜的x值的硅量子点的平均大小图表。
图5a是示出根据本发明的实施例,对包括在隧穿二极管的硅量子点。根据按硅量子点大小波长的光激发光(Photoluminescence;PL)光谱,且图5b是示出根据硅量子点大小的图5a的光激发光峰值的变化。
图6是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示石墨烯转移后对表面的原子力显微镜AFM图像。
图7是示出在本发明的包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示对转以后石墨烯的拉曼光谱的图表。
图8是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示石墨烯转移前和后的光激发光PL的光谱。
图9是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,按石墨烯的掺杂浓度的拉曼光谱。图10是示出根据石墨烯的掺杂浓度的2D峰值及G峰值的最高点。
图11是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据石墨烯掺杂浓度的石墨烯面抵抗图表。
图12是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据石墨烯掺杂浓度的电流-电压曲线的图表。图13a是示出在图12,对隧穿二极管逆方向情况时的理想因子的图表,图13b是示出在图12,对隧穿二极管正方向情况时的理想因子的图表。
图14是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据硅量子点大小的电流-电压曲线图表。图15a是示出在图14,对隧穿二极管逆方向情况时的理想因子的图表,图15b是示出在图14,对隧穿二极管正方向情况时的理想因子的图表。
图16是示出根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管制造方法的流程图。
具体实施方式
以下,参考图及附图记载的内容,详细说明本发明的实施例,但本发明不限制或限定于实施例。
由元件(elements)或层不同的元件或层的“上(on)”或“之上(on)”指称,包括不仅是其他元件或层的之上,而且在中间具有其他层或其他元件的所有情况。相反,元件由“直接上(directly on)”或“就在上”指称的,显示中间没有其他元件或层。
在空间上的相对用语“之下(below)”、“以下(beneath)”、“下部(lower)”、“上(above)”、“上部(upper)”等,如图示出可为了方便地叙述一个元件或构成要素和其他元件或构成要素间的相关关系被使用。在空间上的相对用语在图示出的方向相加使用时或运行时,理解为包括元件的相互不同方向的用语。例如,颠倒在图示出的元件时,以其他元件的“之下(below或beneath)”叙述的元件,可放置在其他元件的“上(above)”。因此,示例性的用语“之下”可都包括下和上的方向。元件也可向其他方向指向,在这种情况下,空间上相对用语可根据指向被解释。
在本说明书使用的用语是为了说明实施例,且不限制本发明。在本说明书中,单数形在语句上没有特别提及时,包括复数形式。在说明书使用的“包括(comprises)”和/或“含有(comprising)”提及的构成要素、步骤、动作和/或元件,不排除一个以上的其他构成要素、步骤、动作和/或元件的存在或附加。
没有其他定义时,在本说明书使用的所有用语(包括技术及科学用语),可由所属领域的技术人员共同理解的意思被使用。此外,一般使用的定义在字典的用语,没有特别定义时,不能理想的或过度的解释。
一方面,在说明本发明中,判断相关的公知功能或构成的具体说明,可不必要的模糊本发明的要点时,其详细地说明给予省略。并且,在本说明书使用的用语(terminology)作为适当的表现本发明的实施例被使用的用语,这可根据用户、运营者的意图或本发明的所属领域的惯例等不同。因此,对本用语的定义以本说明书整个内容为基础下定义。
图1是示出根据本发明的实施例,具有石墨烯硅量子点混合的隧穿二极管。
参照图1,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管100,包括掺杂的石墨烯130及硅量子点111基础的混合结构130(hybrid structure)及形成在混合结构130上下部的电极140。
本发明的包括石墨烯硅量子点混合的隧穿二极管100,根据掺杂的石墨烯120的掺杂浓度及硅量子点111的大小,具有理想因子(Ideal factor)1至2的值。
混合结构130包括含有形成在硅氧化物薄膜内的硅量子点111的硅量子点层110,和形成在硅量子点层110上的掺杂的石墨烯120。
掺杂的石墨烯120将催化层与含有碳气体进行反应,在所述催化剂层上以化学蒸汽沉积CVD方式沉积并形成的石墨烯,可调整掺杂浓度。
例如,掺杂的石墨烯120的掺杂浓度将具有10至30mM浓度的AuCl3,旋转涂布在所述沉积形成的石墨烯,可在90℃至110℃退火处理被调整。
此外,根据实施例,所述沉积形成的石墨烯转移在所述硅量子点层110上,形成混合结构130。
硅量子点层110在基板150上,以SiO2薄膜及SiOx薄膜顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,可包括形成在所述SiO2薄膜内的硅量子点111。所述x以具有0.8至1.6的值被控制,且对应于所述x的值,可调整硅量子点111的大小。
此外,所述SiO2薄膜及SiOx薄膜分别以2nm的厚度单位,可按顺序叠层23回至25回。
图2a至图2e是示出根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造过程。
<硅量子点的制造>
如图1所示,包括石墨烯硅量子点混合结构的隧穿二极管,包括含有形成在硅氧化物薄膜内的硅量子点111的硅量子点层110。
参照图2a及图2b,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法,可包括硅量子点层110在基板150上,以SiO2薄膜112及SiOx薄膜113顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,在SiO2薄膜112内部形成硅量子点111的过程。
例如,硅量子点层110利用离子束溅射沉积法,在基板150上将2nm的SiO2薄膜112及2nm的SiOx薄膜113,以交替选定的周期沉积,可在1000℃至1200℃的氮气氛上进行20分钟的急速热处理被形成。在这种情况下,2nm的SiO2薄膜112及2nm的SiOx薄膜113,以25回合的周期可沉积100nm厚度,所述x使具有0.8至1.6的值被控制,对应于所述x的值,可调整所述硅量子点的大小。
此外,所述x值可使用X线光电子能谱XPS进行调整。以下,参照图3至图6,对制作的硅量子点的特性进行说明。
图3是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管,含有的硅量子点的透射电子显微镜TEM图像。
更具体地,图3示出如图2所述,利用离子束溅射沉积法,在基板150上将2nm的SiO2薄膜112及2nm的SiOx薄膜113,以交替25回的回数周期沉积,可在1000℃至1200℃的氮气氛上进行20分钟的急速热处理,形成硅量子点层110断面的透过电子显微镜图像,所述x控制为1.0。
参照图3,可确认在硅氧化物SiO2薄膜内,均匀地形成具有2.5至3.0nm大小的硅量子点。
图4是示出根据本发明的实施例,包括在隧穿二极管的硅量子点,根据SiOx薄膜的x值的硅量子点的平均大小图表。
参照图4,可确认随着x值从0.8增加到1.6,硅量子点的平均大小从3.4nm减少至1.9nm。
图5a是示出根据本发明的实施例,对包括在隧穿二极管的硅量子点。根据按硅量子点大小波长的光激发光(Photoluminescence;PL)光谱,且图5b是示出根据硅量子点大小的图5a的光激发光峰值的变化。
参照图5a,可确认对于硅量子点的大小1.9nm、2.1nm、2.5nm、2.8nm及3.4nm的所有情况,光激发光峰值从近红外线邻域到可视光线领域被观察。
此外,参照图5b,根据硅量子点的大小从3.4nm减少至1.9nm,光激发光峰值的能量经硅量子点的量子限制效应(Quantum Confinement Effect;QCE),从1.60eV蓝移至1.76eV。
相反,如图5b示出,光激发光的强度在硅量子点大小为2.8nm最大,这显示根据本发明的实施例,2.8nm大小的硅量子点的密度高,结晶性最卓越。
参照图2c及图2d,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法,包括利用化学蒸汽沉积法制造单一层的石墨烯120后,将制造的单一层石墨烯120转移在硅量子点层120上的过程。
混合结构130包括含有形成在硅氧化物薄膜内的硅量子点111的硅量子点层110,和形成在硅量子点层110上的掺杂的石墨烯120。
掺杂的石墨烯120将催化层与含有碳气体进行反应,在所述催化剂层上以化学蒸汽沉积CVD方式沉积并形成的石墨烯,可调整掺杂浓度。以下,对掺杂的石墨烯的制作过程进行更详细地说明。
<掺杂的石墨烯硅量子点混合结构的制作>
利用化学蒸汽沉积法的单一层石墨烯制造,将活用为催化层的铜(或镍)沉积在基板上,在高温与甲烷及氢的混合气体进行反应,使适当量的碳融入或吸收在催化层且进行冷却,包括在催化层的碳原子在表面结晶化,在金属上形成石墨烯结晶结构。
之后,在合成的石墨烯薄膜去除催化层,使从基板分离之后,可制造单一层的石墨烯。
在本发明的实施例,将70μm的铜箔放在石英管(quartz tube),甲烷气体的流量从10sccm变化至30sccm,氢气为10sccm、工程压力固定为3mTorr,合成石墨烯。
之后,将混合聚甲基丙烯酸甲脂(Poly(methyl methacrylate)及苯的PMMA旋转涂布在合成的石墨烯上,通过PMMA的涂膜,使PMMA使用过硫酸铵(ammonium persulfate)溶液,去除铜箔时,做抓住石墨烯固定的作用。
之后,在过硫酸铵溶液去除铜箔之后,将残留在石墨烯上的过硫酸铵溶液由去离子水(DI water)清洗,且将清洗的石墨烯转移在300nmSiO2/Si基板上。
其次,将石墨烯转移在SiO2/Si基板之后,通过热处理提高基板及石墨烯之间的结合力。热处理之后,使用丙酮去除留在石墨烯上的PMMA,为了去除留在石墨烯表面的PMMA残渣,以急速热处理器进行热处理,最终制造单一层的石墨烯。
再次参照图2c,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法,包括利用化学蒸汽沉积法制造单一层的石墨烯120之后,将制造的单一层的石墨烯120转移在硅量子点层120上的过程。
再次参照图2d,掺杂的石墨烯硅量子点混合结构130,可由调整转移在硅量子点层120上的石墨烯120掺杂浓度来形成。
具体地,掺杂的石墨烯120可将p形或n形掺杂溶液,旋转涂布在石墨烯,退货处理的制作。例如,掺杂的石墨烯120在沉积形成的石墨烯,旋转涂布具有10mM至30mM浓度的AuCl3,在90℃至110℃退火处理10分钟。掺杂的石墨烯120的掺杂浓度可调整并控制AuCl3的浓度。
<石墨烯硅量子点混合结构的隧穿二极管的制作>
参照图2e,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法,包括在通过图2a至图2d的制造过程形成的基板上,掺杂的石墨烯硅量子点混合结构130的上下部,形成电极的过程。
例如,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法,可包括在掺杂的石墨烯硅量子点混合结构130的上下部,依次地沉积铬/金(Cr/Au)金属,形成电极的过程。
图6是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示石墨烯转移后对表面的原子力显微镜AFM图像。
参照图6,可确认石墨烯均匀地转移至在硅量子点层上。这是因为,硅量子点层的氧化膜以亲水性(hydrophilic),使石墨烯转移至所述硅量子点层上,结合时稳定、匀质地形成。
图7是示出在本发明的包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示对转以后石墨烯的拉曼光谱的图表。
如石墨烯的二维物质因强电子声子(phonon)耦合(coupling),观察多种拉曼峰值(peak)。参照图7,经本发明的实施例,可确认对于单一层石墨烯,作为1580~1590cm-1附近的G峰值,和2700cm-1附近的2D峰值,显示与声子有关的拉曼峰值。
通常,G峰值和2D峰值的拉曼强度比(I(G/2D)),与石墨烯的厚度(层数)有关,D峰值和G峰值的拉曼强度比(I(D/G)),与石墨烯的结晶性(或结合量)深度有关。
如图7示出,G峰值和2D峰值的拉曼强度比(I(G/2D))是0.47,D峰值和G峰值的拉曼强度比是0.09,根据本发明的实施例,在硅量子点层上转移后的石墨烯,被确认为优质。
图8是示出根据本发明的实施例,在包括石墨烯硅量子点混合结构的隧穿二极管的硅量子点层上,显示石墨烯转移前和后的光激发光PL的光谱。
参照图8,在转移石墨烯前后,可确认几乎没有光激发光的强度变化,这表示即使在硅量子点层上转移石墨烯,在光吸收及发光亮没有变化,且石墨烯的透过度非常高。
图9是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,按石墨烯的掺杂浓度的拉曼光谱,且图10是示出根据石墨烯的掺杂浓度的2D峰值及G峰值的最高点。
参照图9,按石墨烯的掺杂浓度,可确认D峰值、G峰值及2D峰值的生成,参照图10,根据掺杂浓度的增加,2D峰值和G峰值的最高位置向高波数(wavenumber)方向蓝移(blue-shift)。这些拉曼峰值的变化,表示由石墨烯的AuCl3的掺杂浓度,电子的结构变化,具体地表示电子的结构逐渐地向一个方向的拉曼散射能量高的方向变化。
图11是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据石墨烯掺杂浓度的石墨烯面抵抗图表。
参照图11,初期状态石墨烯的面抵抗被观察为450~500ohm/sq,掺杂的石墨烯的面抵抗,根据掺杂浓度增加到30mM为止,可确认单纯地减少至170ohm/sq。
图12是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据石墨烯掺杂浓度的电流-电压曲线的图表,且图13a是示出在图12,对隧穿二极管逆方向情况时的理想因子的图表,并且图13b是示出在图12,对隧穿二极管正方向情况时的理想因子的图表。
理想二极管的理想因子n的值在1.0至2.0之间的范围。理想因子的值越接近1为最理想的二极管,表示电荷陷阱(trap sites or states)少。此外,理想因子的值越接近1,电子空穴的在结合率(recombination rate)低。
在图12、图13a及图13b的包括石墨烯硅量子点混合结构的隧穿二极管,是硅量子点的大小具有2.8nm的情况,石墨烯AuCl3的掺杂浓度在0至30mM范围,具有在正方向及逆方向具有1.0至2.0之间值的理想二极管的特性。
此外,根据本发明的实施例,包括石墨烯硅量子点混合机构的隧穿二极管,在石墨烯AuCl3的掺杂浓度为20mM时,可确认在正方向及逆方向所有情况下,理想因子为最接近1.0的值,隧穿二极管的性能被优化。
图14是示出根据本发明的实施例,对包括石墨烯硅量子点混合结构的隧穿二极管,根据硅量子点大小的电流-电压曲线图表,且图15a是示出在图14,对隧穿二极管逆方向情况时的理想因子的图表,并且图15b是示出在图14,对隧穿二极管正方向情况时的理想因子的图表。
在图14、图15a及图15b的包括石墨烯硅量子点混合结构的隧穿二极管,是根据图13a及图13b的结果石墨烯AuCl3的掺杂浓度为20mM的情况,可确认即使石墨烯AuCl3的掺杂浓度相同,根据硅量子点大小隧穿二极管的理想因子不一定。
在硅量子点的大小为2.8nm,可确认二极管理想因子接近1。即,根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管,在石墨烯AuCl3的掺杂浓度为20mM,硅量子点大小为2.8nm的情况下,石墨烯/硅结合二极管的性能被优化。
图16是示出根据本发明的实施例,包括石墨烯硅量子点混合结构的隧穿二极管的制造方法流程图。
参照图16,在步骤1610,在基板上形成硅量子点层,其包括形成在硅氧化物薄膜内的硅量子点。
步骤1610可以是在基板上将SiO2薄膜及SiOx薄膜按顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,在所述SiO2薄膜内形成所述硅量子点的步骤。在这种情况下,所述x以具有0.8至1.6的值被控制,且对应于所述x的值,可调整所述硅量子点的大小。
在步骤1620,形成掺杂在硅量子点层上的石墨烯,形成混合结构。
步骤1620可包括将催化层与含有碳混合气体进行反应,在催化剂层上以化学蒸汽沉积CVD方式沉积,形成石墨烯的步骤。
此外,步骤1620可包括形成的石墨烯转移在硅量子点层上,旋转涂布具有10至30mM浓度的AuCl3,在90℃至110℃退火处理掺杂石墨烯的步骤。
在步骤1630,在混合结构的上下部形成电极。
如上述,虽然由限定的实施例和图说明了实施例,但本领域的技术人员从所述记载,可进行多种修改及变更。例如,说明的技术与说明的方法,以不同的顺序执行,和/或说明的系统、结构、装置、电路等的构成要素与说明的方法以不同的形态结合或组合,或由其他构成要素或均等物代替或置换,也可达到适当的结构。
所以,其他体现、其他实施例及与专利申请范围均等的,也属于后述的权利要求的范围。

Claims (10)

1.一种包括石墨烯硅量子点混合结构的隧穿二极管,其包括:
混合结构,以包括形成在硅氧化物薄膜内的硅量子点的硅量子点层,和形成在所述硅量子点层上的单层的掺杂的石墨烯构成;及
电极,形成在所述混合结构的上下部;
其中,所述硅量子点层在基板上将SiO2薄膜及SiOx薄膜按顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,包括形成在所述SiO2薄膜内的所述硅量子点。
2.根据权利要求1所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述隧穿二极管根据所述掺杂的石墨烯的掺杂浓度及所述硅量子点的大小,理想因子具有1至2的值。
3.根据权利要求1所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述x以具有0.8至1.6的值被控制,对应于所述x的值调整所述硅量子点的大小。
4.根据权利要求3所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述SiO2薄膜及SiOx薄膜分别以2nm的厚度单位,按顺序叠层23回至25回。
5.根据权利要求1所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述掺杂的石墨烯将催化层与含有碳混合气体进行反应,在所述催化层上以化学蒸汽沉积方式沉积形成的石墨烯,调整掺杂浓度。
6.根据权利要求5所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述沉积形成的石墨烯转移至所述硅量子点层上,形成所述混合结构。
7.根据权利要求5所述的包括石墨烯硅量子点混合结构的隧穿二极管,其特征为,所述掺杂的石墨烯将具有10至30mM浓度的AuCl3,旋转涂布在所述沉积形成的石墨烯,在90℃至110℃退火处理。
8.一种包括石墨烯硅量子点混合结构的隧穿二极管制造方法,其步骤包括:
在基板上形成包括形成在硅氧化物薄膜内的硅量子点的硅量子点层;
在所述硅量子点层上形成单层的掺杂的石墨烯,形成混合结构;及
在所述混合结构的上下部形成电极;
其中,形成所述硅量子点层的步骤包括:
在基板上将SiO2薄膜及SiOx薄膜按顺序叠层之后,在1000℃至1200℃的氮气氛上热处理,在所述SiO2薄膜内形成所述硅量子点。
9.根据权利要求8所述的包括石墨烯硅量子点混合结构的隧穿二极管制造方法,其特征为,
所述x以具有0.8至1.6的值被控制,对应于所述x的值调整所述硅量子点的大小。
10.根据权利要求8所述的包括石墨烯硅量子点混合结构的隧穿二极管制造方法,其特征为,形成混合结构的所述步骤包括:
将催化层与含有碳混合气体进行反应,在所述催化层上以化学蒸汽沉积方式沉积,形成石墨烯;
所述形成的石墨烯转移至所述硅量子点层上;及
将具有10至30mM浓度的AuCl3进行旋转涂布,在90℃至110℃退火处理掺杂所述石墨烯。
CN201480081346.7A 2014-08-21 2014-10-14 利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法 Active CN106575674B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140108713A KR101596157B1 (ko) 2014-08-21 2014-08-21 그래핀-실리콘 양자점 하이브리드 구조를 이용한 터널링 다이오드 및 그 제조방법
KR10-2014-0108713 2014-08-21
PCT/KR2014/009605 WO2016027925A1 (ko) 2014-08-21 2014-10-14 그래핀-실리콘 양자점 하이브리드 구조를 이용한 터널링 다이오드 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN106575674A CN106575674A (zh) 2017-04-19
CN106575674B true CN106575674B (zh) 2019-08-23

Family

ID=55350859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480081346.7A Active CN106575674B (zh) 2014-08-21 2014-10-14 利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法

Country Status (4)

Country Link
US (1) US9935207B2 (zh)
KR (1) KR101596157B1 (zh)
CN (1) CN106575674B (zh)
WO (1) WO2016027925A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964499A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 复合材料及其制备方法和应用
US11133433B2 (en) * 2019-02-18 2021-09-28 Uchicago Argonne, Llc Hybrid phonon-enhanced optical absorbers and emitters
CN113644138B (zh) * 2021-06-21 2023-04-18 西安电子科技大学 单层MoS2-Si基隧穿二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281884A (zh) * 2008-05-20 2008-10-08 南京大学 一种可用于硅基光电集成器件的SiOx薄膜制备方法
KR20120059063A (ko) * 2010-11-30 2012-06-08 삼성엘이디 주식회사 양자점 발광 소자 및 그의 제조 방법
CN103247730A (zh) * 2012-02-01 2013-08-14 三星电子株式会社 用于发射紫外光的发光二极管及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3645433B2 (ja) * 1998-10-27 2005-05-11 日本電信電話株式会社 半導体量子井戸構造およびその製造方法
KR100370822B1 (ko) * 2000-08-26 2003-02-05 한국과학기술원 낙타 등 다이오드와 결합된 양자구조를 가지는 장파장적외선 감지 소자와 그 소자의 구동 방법
JP4249430B2 (ja) * 2002-04-09 2009-04-02 独立行政法人科学技術振興機構 量子ドットダイオード型整流器
KR101295664B1 (ko) * 2011-06-24 2013-08-13 그래핀스퀘어 주식회사 안정한 그래핀 필름 및 그의 제조 방법
KR101257492B1 (ko) * 2011-10-17 2013-04-24 경희대학교 산학협력단 Sb 또는 InP 도핑을 이용한 실리콘 양자점 태양전지 및 그 제조방법
GB201220804D0 (en) 2012-11-20 2013-01-02 Provost Fellows Foundation Scholars And The Other Members Of Board Of Asymetric bottom contacted 2D layer devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281884A (zh) * 2008-05-20 2008-10-08 南京大学 一种可用于硅基光电集成器件的SiOx薄膜制备方法
KR20120059063A (ko) * 2010-11-30 2012-06-08 삼성엘이디 주식회사 양자점 발광 소자 및 그의 제조 방법
CN103247730A (zh) * 2012-02-01 2013-08-14 三星电子株式会社 用于发射紫外光的发光二极管及其制造方法

Also Published As

Publication number Publication date
WO2016027925A1 (ko) 2016-02-25
CN106575674A (zh) 2017-04-19
US9935207B2 (en) 2018-04-03
US20170229589A1 (en) 2017-08-10
KR101596157B1 (ko) 2016-02-22

Similar Documents

Publication Publication Date Title
Zhu et al. MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates
Zheng et al. Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties
Kim et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides
Wang et al. Synthesizing 1T–1H Two-Phase Mo1–x W x S2 Monolayers by Chemical Vapor Deposition
Browning et al. Atomic layer deposition of MoS2 thin films
Su et al. Band gap-tunable molybdenum sulfide selenide monolayer alloy
Huang et al. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy
Kozhakhmetov et al. Scalable low-temperature synthesis of two-dimensional materials beyond graphene
Nie et al. Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector
Biroju et al. Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS2/graphene van der Waals solids
Li et al. Water-assisted chemical vapor deposition synthesis of boron nitride nanotubes and their photoluminescence property
Ham et al. Engineering the crystallinity of tin disulfide deposited at low temperatures
Avellaneda et al. Thin films of tin sulfides: Structure, composition and optoelectronic properties
CN106575685A (zh) 利用石墨烯硅量子点混合结构的光电二极管及其制造方法
Lin et al. Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide
Ren et al. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer
CN106575674B (zh) 利用石墨烯硅量子点混合结构的隧穿二极管及其制造方法
Xue et al. High-temperature in situ investigation of chemical vapor deposition to reveal growth mechanisms of monolayer molybdenum disulfide
Kang et al. Large scale growth of vertically standing MoS2 flakes on 2D nanosheet using organic promoter
Deepak et al. Fullerene-Like (IF) Nb x Mo1-x S2 Nanoparticles
Jiang et al. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils
Damisa et al. Morphological and optical study of thin films of CuAlS2 deposited by metal organic chemical vapour deposition technique
Grüneis Synthesis and electronic properties of chemically functionalized graphene on metal surfaces
Lekoui et al. Effect of annealing temperature on the properties of Ag doped ZnO thin films
Miller et al. Investigating the Formation of MoSe2 and TiSe2 Films from Artificially Layered Precursors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant