CN106566815B - A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor - Google Patents

A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor Download PDF

Info

Publication number
CN106566815B
CN106566815B CN201610965315.9A CN201610965315A CN106566815B CN 106566815 B CN106566815 B CN 106566815B CN 201610965315 A CN201610965315 A CN 201610965315A CN 106566815 B CN106566815 B CN 106566815B
Authority
CN
China
Prior art keywords
amyrin
leu
enoxolone
saccharomyces cerevisiae
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610965315.9A
Other languages
Chinese (zh)
Other versions
CN106566815A (en
Inventor
李春
朱明�
王彩霞
孙文涛
周安琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610965315.9A priority Critical patent/CN106566815B/en
Publication of CN106566815A publication Critical patent/CN106566815A/en
Application granted granted Critical
Publication of CN106566815B publication Critical patent/CN106566815B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15006Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/99039Beta-amyrin synthase (5.4.99.39)

Abstract

The present invention discloses a kind of production enoxolone or its precursor: 11- hydroxy-beta-amyrin, or 11- oxygen-β-amyrin, or 30- hydroxy-beta-amyrin, or 11, 30- hydroxy-beta-amyrin, or 30- hydroxyl -11- oxygen-β-amyrin, or 30- aldehyde radical -11- oxygen-β-amyrin saccharomyces cerevisiae engineered yeast and its construction method, its production stage is to construct β-amyrin synthase expression box respectively, the Oxidase Expression box of 11, β-amyrin carbon, the Oxidase Expression box that 11- oxygen-β-amyrin is 30, carbon, cytochrome P450 reductase expression cassette, and it imports in saccharomyces cerevisiae genome jointly.The present invention couples the synthesis of enoxolone with the growth of yeast, realizes enoxolone or the yeast synthesis of its precursor, this method do not need the induction of effector agent, simple process, can be used for fermenting and producing enoxolone and its key precursor object.

Description

A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor
Technical field
The present invention relates to a kind of building of saccharomyces cerevisiae engineered yeast and fermenting and producing enoxolones or its precursor: 11- hydroxyl Base-β-amyrin (11-hydroxy- β-amyrin) or 11- oxygen-β-amyrin (11-oxo- β-amyrin) or 30- Hydroxy-beta-amyrin (30-hydroxy- β-amyrin) or 11,30- hydroxy-beta-amyrin (11,30-hydroxy- β- ) or 30- hydroxyl -11- oxygen-β-amyrin (30-hydroxy-11-oxo- β-amyrin) or 30- aldehyde radical -11- amyrin The method of oxygen-β-amyrin (Glycyrrhetaldehyde), belongs to bioengineering field.
Background technique
Terpene substances are one kind of Secondary metabolites, have diversified bioactivity and pharmacology value.Medicine Verified triterpene compound such as glycyrrhizic acid (Glycyrrhizin, GL) of science is in liver protection, anti-inflammatory, antitumor, antiviral Etc. have very important effect, while also can be used as sweetener or food additives.Enoxolone (Glycyrrhetinic acid, GA) is the precursor substance of glycyrrhizic acid synthesis, and compared with glycyrrhizic acid, enoxolone lacks 2 molecules Glucuronic acid base be easier to penetrating cell film so polarity is weaker, and remain with the consistent physiological activity of glycyrrhizic acid with Function, it is easier to play its bioactivity and function in the cell.In liquorice root, the content of enoxolone is extremely low, mainly Exist in the form of glycyrrhizic acid.Plant extract there are period length, low efficiency, it is at high cost, environmental disruption is big the disadvantages of.Enoxolone is multiple Miscellaneous molecular structure, harsh synthesis condition also make its chemical synthesis be difficult to carry out.With the development of synthetic biology, utilization is micro- There is biosynthesis enoxolone etc. the compound of great pharmaceutical value to have become a kind of development trend.Microbe synthesis has week The features such as phase is short, and yield is high, mild condition, process control, therefore the dependence to plant resources can be effectively relieved, to have Higher economic benefit and social value.
In saccharomyces cerevisiae engineered yeast, enoxolone or its precursor 11- hydroxy-beta-amyrin or 11- oxygen-β-perfume Resinol or 30- hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl -11- oxygen-β-botany bar gum Alcohol or the synthesis of 30- aldehyde radical -11- oxygen-β-amyrin are that squalene is synthesized through mevalonate pathway, then aoxidize shark through 2,3- Alkene monooxygenase, β-amyrin synthase are catalyzed to form β-amyrin.This research is on this basis, further to excavate discovery β- The synthesis of amyrin to enoxolone is common by two oxidase C YP88D6 and CYP72A154 (or CYP72A63) sequences Catalysis is completed, and does not find both enzymes in microorganism, therefore, it is necessary to two enzymes in introduced plant Radix Glycyrrhizae in Saccharomyces cerevisiae It is inside expressed, to realize the biosynthesis of enoxolone.
Summary of the invention
The object of the present invention is to provide a kind of 11, carbon CYP450 oxidase genes of oxidation of beta-amyrin.
A second object of the present invention is to provide a kind of 11, carbon CYP450 oxidase genes of oxidation of beta-amyrin The protein of coding.
Third object of the present invention is to provide a kind of cytochrome P450 reductase genes.
Fourth object of the present invention is to provide a kind of protein of cytochrome P450 reductase gene coding.
Fifth object of the present invention is to provide a kind of production enoxolone or its precursor 11- hydroxy-beta-amyrin, Or 11- oxygen-β-amyrin or 30- hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl -11- The construction method of oxygen-β-amyrin or 30- aldehyde radical -11- oxygen-β-amyrin saccharomycete.
It is set sixth object of the present invention is to provide a kind of using production enoxolone or its precursor 11- hydroxy-beta-perfume Lipidol or 11- oxygen-β-amyrin or 30- hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl The wine brewing ferment of the construction method of base -11- oxygen-β-amyrin or 30- aldehyde radical -11- oxygen-β-amyrin saccharomycete building Female engineering bacteria.
Technical solution of the present invention is summarized as follows:
A kind of 11, carbon CYP450 oxidase genes of oxidation of beta-amyrin, it is SEQ ID No.5 in sequence table The nucleotide sequence.
A kind of protein of 11, the carbon CYP450 oxidase genes coding of oxidation of beta-amyrin, it is sequence table Amino acid sequence described in SEQ ID No.6.
A kind of cytochrome P450 reductase gene, it is nucleotides sequence described in SEQ ID No.11 in sequence table Column.
A kind of protein of cytochrome P450 reductase gene coding, it is described in sequence table SEQ ID No.12 Amino acid sequence.
A kind of production enoxolone or its precursor 11- hydroxy-beta-amyrin or 11- oxygen-β-amyrin or 30- Hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl -11- oxygen-β-amyrin or 30- aldehyde radical - The construction method of 11- oxygen-β-amyrin saccharomyces cerevisiae engineered yeast, includes the following steps:
(1) β-amyrin synthase expression box building:
By the method for left homology arm, Yeast promoter, β-amyrin synthase, yeast terminator application Overlap extension PCR Connection, obtains β-amyrin synthase expression cassette;
(2) building of 11, oxidation of beta-amyrin carbon CYP450 oxidizing ferment (I) expression cassette:
By Yeast promoter, the CYP450 oxidizing ferment (I) of 11, oxidation of beta-amyrin carbon, yeast terminator application weight The method connection of folded extension PCR, obtains the expression cassette of the CYP450 oxidizing ferment of 11, oxidation of beta-amyrin carbon.
(3) building of 11- oxygen-β-amyrin 30, carbon CYP450 oxidizing ferment (II) expression cassette is aoxidized:
By Yeast promoter, the CYP450 oxidizing ferment (II) of oxidation 11- oxygen-β-amyrin 30, carbon, yeast termination Son is connected using the method for Overlap extension PCR, obtains the CYP450 oxidizing ferment of oxidation 11- oxygen-β-amyrin 30, carbon Expression cassette.
(4) building of cytochrome P450 reductase expression cassette
The method of Yeast promoter, cytochrome P450 reductase, yeast terminator application Overlap extension PCR is connected It connects, obtains the expression cassette of cytochrome P450 reductase.
(5) building of selection markers expression cassette
By yeast terminator TPGK1, Geneticin expression cassette gene PTEF1-kanMX-TTEF1, right homology arm HOR application overlapping The method of extension PCR is connected with this, obtains selection markers expression cassette.
(6) CYP450 of above-mentioned β-amyrin synthase expression box and/or 11, oxidation of beta-amyrin carbon is aoxidized Enzyme (I) expression cassette, and/or CYP450 oxidizing ferment (II) expression cassette of oxidation 11- oxygen-β-amyrin 30, carbon, and/or it is thin Born of the same parents' cytochrome p 450 oxidoreducing enzyme expression cassette is inserted into saccharomyces cerevisiae INVSc1 or W303a or W303 ɑ or BJ2168, or In BY4742 or BY4700 or CEN.PK2-1C or CEN.PK2-1D genomic integration site, obtain production enoxolone or Its precursor: 11- hydroxy-beta-amyrin or 11- oxygen-β-amyrin or 30- hydroxy-beta-amyrin or 11,30- Hydroxy-beta-amyrin or 30- hydroxyl -11- oxygen-β-amyrin or 30- aldehyde radical -11- oxygen-β-amyrin wine brewing ferment Female engineering bacteria.
The Yeast promoter is GPDp and/or PGK1p and/or TDH1p and/or TEF1p and/or ADH1p, and/ Or PGI1p and/or TDH2p and/or HXT2p and/or HXT7p and/or TEF2p and/or PYK1p and/or ENO2p, and/ Or PDC1p and/or FBA1p and/or GPM1p and/or TPI1p and/or GAL7p and/or GAL1p and/or GAL10p.
The yeast terminator is TDH3t and/or PGK1t and/or TDH1t and/or TEF1t and/or ADH1t, and/ Or PGI1t and/or TDH2t and/or HXT2t and/or HXT7t and/or TEF2t and/or PYK1t and/or ENO2t, and/ Or PDC1t and/or FBA1t and/or GPM1 and/or CYC1t and/or TPI1t.
The genomic integration site is the site HO and/or the site YPRCtau3 and/or the site URA3 and/or TRP1 Site and/or the site LEU2 and/or the site HIS3 and/or the site delta and/or the site rDNA.
The β-amyrin synthase nucleotide sequence Genbank registration sequence number is AB037203.
CYP450 oxidizing ferment (I) gene of 11, carbon of the oxidation of beta-amyrin is SEQ ID No.16 in sequence table The nucleotide sequence or CYP450 oxidase C YP88D6, nucleotide sequence Genbank registration sequence number are AB433179。
CYP450 oxidizing ferment (II) gene of oxidation 11- oxygen-β-amyrin 30, carbon is CYP450 oxidizing ferment CYP72A154, nucleotide sequence Genbank registration sequence number are AB558153 and/or CYP450 oxidase C YP72A63, Its nucleotide sequence Genbank registration sequence number is AB558146.
The cytochrome P450 reductase is nucleotide sequence described in SEQ ID No.10 in sequence table, or thin Born of the same parents cytochrome p 450 oxidoreducing enzyme LjCPR1, nucleotide sequence Genbank registration sequence number are AB433810 and/or nucleosides Acid sequence Genbank registration sequence number is the cytochrome P450 reductase AtCPR1 and/or protein of BT008426.1 Sequence Genbank registration sequence number is the cytochrome P450 reductase AtCPR2 of NP_001328167.1.
A kind of above-mentioned production enoxolone or its precursor: 11- hydroxy-beta-amyrin or 11- oxygen-β-amyrin, Or 30- hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl -11- oxygen-β-amyrin or 30- The saccharomyces cerevisiae engineered yeast of the construction method building of aldehyde radical -11- oxygen-β-amyrin saccharomycete.
The present invention is exactly the Radix Glycyrrhizae using metabolic engineering and synthetic biology technology introduced plant source in saccharomyces cerevisiae body The route of synthesis of hypo acid realizes the Microbe synthesis of enoxolone and its key precursor object.Entire production process is convenient, fast It is prompt, pollution-free, there is boundless application prospect.The saccharomyces cerevisiae of production enoxolone and its key precursor object of the invention Engineering bacteria provides a kind of practicable method for the heterologous production of enoxolone and its key precursor object.
Detailed description of the invention
Fig. 1 saccharomyces cerevisiae engineered yeast fermenting and producing 11- hydroxy-beta-amyrin (11-hydroxy- β-amyrin) group Analysis total ion chromatogram.
Fig. 2 saccharomyces cerevisiae engineered yeast fermenting and producing 11- hydroxy-beta-amyrin (11-hydroxy- β-amyrin) matter Spectrogram.
The component analysis of Fig. 3 saccharomyces cerevisiae engineered yeast fermenting and producing 11- oxygen-β-amyrin (11-oxo- β-amyrin) Total ion chromatogram.
Fig. 4 saccharomyces cerevisiae engineered yeast fermenting and producing 11- oxygen-β-amyrin (11-oxo- β-amyrin) mass spectrogram.
Fig. 5 saccharomyces cerevisiae engineered yeast fermenting and producing 30- hydroxy-beta-amyrin (30-hydroxy- β-amyrin) group Analysis total ion chromatogram.
Fig. 6 saccharomyces cerevisiae engineered yeast fermenting and producing 30- hydroxy-beta-amyrin (30-hydroxy- β-amyrin) matter Spectrogram.
Fig. 7 saccharomyces cerevisiae engineered yeast fermenting and producing 11,30- hydroxy-beta-amyrin (11,30-hydroxy- β- Amyrin component analysis total ion chromatogram).
Fig. 8 saccharomyces cerevisiae engineered yeast fermenting and producing 11,30- hydroxy-beta-amyrin (11,30-hydroxy- β- Amyrin mass spectrogram).
Fig. 9 saccharomyces cerevisiae engineered yeast fermenting and producing 30- hydroxyl -11- oxygen-β-amyrin (30-hydroxy-11-oxo- β-amyrin) component analysis total ion chromatogram.
Figure 10 saccharomyces cerevisiae engineered yeast fermenting and producing 30- hydroxyl -11- oxygen-β-amyrin (30-hydroxy-11-oxo- β-amyrin) mass spectrogram.
Figure 11 saccharomyces cerevisiae engineered yeast fermenting and producing 30- aldehyde radical -11- oxygen-β-amyrin (Glycyrrhetaldehyde) component analysis total ion chromatogram.
Figure 12 saccharomyces cerevisiae engineered yeast fermenting and producing 30- aldehyde radical -11- oxygen-β-amyrin (Glycyrrhetaldehyde) mass spectrogram.
The component analysis total ion chromatogram of Figure 13 saccharomyces cerevisiae engineered yeast fermenting and producing enoxolone.
The mass spectrogram of Figure 14 saccharomyces cerevisiae engineered yeast fermenting and producing enoxolone.
Enoxolone synthesis path figure in Figure 15 saccharomyces cerevisiae.
Specific embodiment
Below by the preferred embodiment of synthesis enoxolone and its key precursor object and this hair is illustrated in conjunction with attached drawing Bright various aspects and feature.It should be appreciated by those skilled in the art the purpose of, specific experiment example simply to illustrate that, without It is to limit the scope of the invention.Under conditions of without departing substantially from Claims scope, those skilled in the art can be for this The various aspects of invention are modified, but these modifications also belong to protection scope of the present invention.For example, by institute in this experimental example The promoter or terminator used replaces with other promoters or terminator commonly used in the art, is the other technologies people of this field Member is it will be appreciated that with realization.
In addition, it should be noted that unless otherwise indicated, a variety of materials and reagent employed in example are equal in detail below For material commonly used in the art and reagent, can be obtained by normal commercial sources;Used method is art technology Conventional method well known to personnel.
Experimental example 1: the acquisition of related gene in enoxolone route of synthesis
A, β-amyrin synthase gene acquisition
It is excellent by codon according to β-amyrin synthase gene (Genbank registration sequence number is AB037203) sequence Change, make β-amyrin synthase gene codon that there is yeast Preference, the optimization gene sequence of generation is SEQ ID No.1。
B, the acquisition of 11, oxidation of beta-amyrin carbon CYP450 oxidase genes
According to CYP450 oxidase C YP88D6 gene (Genbank registration sequence number is AB433179) sequence, pass through password Son optimization, makes the codon of CYP88D6 gene have yeast Preference, and the optimization gene sequence of generation is SEQ ID No.2.
According to CYP450 oxidase C YP88D6 gene (Genbank registration sequence number be AB433179) primers, SEQ ID No.3:5 '-ATGGAAGTACATTGGGTTTGC-3 ' and SEQ ID No.4:5 '- CTAAGCACATGAGACCTTCATCACC-3 ' carries out PCR amplification using ExTaq enzyme, obtains using Glycyrrhiza Uralensis cDNA as template To 1482bp segment, shown in SEQ ID No.5, to be cloned into pMD18-T carrier, sequencing is proved and reported CYP88D6 phase Than the variation that 23 bases have occurred, 11 variations are had occurred in amino acid.The amino acid sequence of fragment expression shown in SEQ ID No.5 Column are shown in SEQ ID No.6.
C, the acquisition of 11- oxygen-β-amyrin 30, carbon CYP450 oxidase genes is aoxidized
According to CYP450 oxidase C YP72A154 gene (Genbank registration sequence number is AB558153) sequence, by close Numeral optimization, makes the codon of CYP72A154 gene have yeast Preference, and the optimization gene sequence of generation is SEQ ID No.7。
According to CYP450 oxidase C YP72A63 gene (Genbank registration sequence number is AB558146) sequence, by close Numeral optimization, makes the codon of CYP72A63 gene have yeast Preference, and the optimization gene sequence of generation is SEQ ID No.8。
D, the acquisition of cytochrome P450 reductase gene
It is screened according to Radix Glycyrrhizae transcript profile database, obtains cytochrome P450 reductase gene, design primer, SEQ ID No.9:5 '-ATGACTTCGAATTCCGATTTGG-3 ' and SEQ ID No.10:5 '- TCACCAGACATCCCTGAGGTAACG-3 ' carries out PCR amplification using ExTaq enzyme, obtains using Glycyrrhiza Uralensis cDNA as template It is sequenced shown in SEQ ID No.11, to be cloned into pMD18-T carrier to 2076bp segment and determines its complete sequence.SEQ ID The amino acid sequence of fragment expression shown in No.11 is shown in SEQ ID No.12.
E, the acquisition of riddled basins
According to Geneticin (G418) expression cassette sequence in pRS42K carrier, design primer SEQ ID No.13:5 '- GACATGGAGGCCCAGAATACCC-3 ' and SEQ ID No.14:5 '-TCGACACTGGATGGCGGCGT-3 ', with pRS42K matter Grain is template, carries out PCR amplification using ExTaq enzyme, 1394bp segment is obtained, to be cloned into shown in SEQ ID No.15 PMD18-T carrier, sequencing prove that it does not mutate.
F, the acquisition of genome homology arm
According to the left homology arm HOL in the site HO in saccharomyces cerevisiae genome (SEQ ID No.16) and right homology arm sequence HOR (SEQ ID No.17), design primer SEQ ID No.18:5 '-AATTATCCTGGGCACGAGTGAAACAAAGC-3 ' and SEQ ID No.19:5 '-ACGCCATTTTAAGTCCAAAGGCACAATTTTAC-3 ' (as shown in SEQ ID No.53), amplification HO are left Homology arm HOL;Primer SEQ ID No.20:5 '-CTGGGGGAACAACTTCACAG-3 ' and SEQ ID No.21:5 '- ACTGTAAGATTCCGCCACATTTTATAC-3 ' expands right homology arm HOR and uses ExTaq using INVSc1 genome as template Enzyme carries out PCR amplification, is cloned into pMD18-T carrier, and sequencing proves that it does not mutate.
Experimental example 2: the building of expression cassette
A, β-amyrin synthase expression box building
By left homology arm HOL, Yeast promoter PFBA1, β-amyrin synthase gene, yeast terminator TCYC1Using overlapping The method of extension PCR is connected with this, obtains β-amyrin synthase expression box PFBA1-bAS-TCYC1
B, the building of 11- oxygen-β-amyrin 30, carbon CYP450 Oxidase Expression boxes is aoxidized
By yeast terminator TCYC1, Yeast promoter PGPD, CYP450 oxidase gene CYP72A154 or CYP72A63, ferment Female terminator TADH1It is connected using the method for Overlap extension PCR with this, obtains oxidation 11- oxygen-β-amyrin 30, carbon CYP450 oxidizing ferment TCYC1-PGPD–CYP72A154-TADH1Or TCYC1-PGPD-CYP72A63-TADH1
C, the building of 11, oxidation of beta-amyrin carbon CYP450 Oxidase Expression boxes
By yeast terminator TADH1, Yeast promoter PENO2, 11, oxidation of beta-amyrin carbon CYP450 oxidizing ferment base Because of UNI47 or CYP450 oxidase gene CYP88D6, yeast terminator TTYS1It is connected using the method for Overlap extension PCR with this, Obtain β-amyrin synthase expression box TADH1-PENO2-UNI47-TTYS1Or TADH1-PENO2-CYP88D6-TTYS1
D, the building of cytochrome P450 reductase expression cassette
By yeast terminator TTYS1, Yeast promoter PPGK1, cytochrome P450 reductase gene C PR, yeast termination Sub- TPGK1It is connected using the method for Overlap extension PCR with this, obtains cytochrome P450 reductase expression cassette TTYS1-PPGK1- CPR-TPGK1
E, the building of selection markers expression cassette
By yeast terminator TPGK1, Geneticin expression cassette gene PTEF1-kanMX-TTEF1, right homology arm HOR application overlapping The method of extension PCR is connected with this, obtains selection markers expression cassette TPGK1–PTEF1-kanMX-TTEF1-HOR
Experimental example 3: the acquisition of the saccharomyces cerevisiae engineered yeast of enoxolone is produced
The yeast conversion of segment is carried out using Li-acetate method
Using the homologous recombination function of yeast itself, the above-mentioned expression cassette built is all transferred to saccharomyces cerevisiae jointly The site HO of INVSc1 genome.It is screened, is obtained using the YPD solid plate of addition Geneticin (G418) after conversion Transformant is transferred in the YPD fluid nutrient medium of addition Geneticin (G418) and carries out culture 1-2 days, extracts genome, PCR mirror Determine positive colony, plate streaking or glycerol stock save.
Has production there are the synzyme of enoxolone, acquisition on the basis of MVA approach, is exogenously introduced using yeast itself The saccharomyces cerevisiae engineered yeast strain of enoxolone function.
Experimental example 4: the acquisition of the saccharomyces cerevisiae engineered yeast of production enoxolone and its key precursor object
The culture of seed liquor: being inoculated into 2ml YPD culture medium, 30 DEG C from picking positive colony in screening flat board, 200rpm shaken cultivation 18 hours.
Fermenting experiment: being inoculated into 100ml YPD culture medium, 30 DEG C according to 1% inoculum concentration (absorbance about 0.1), 200rpm shaken cultivation 120 hours, sampling in every 24 hours was primary, measured containing for enoxolone in cell and its key precursor object Amount, the results show that saccharomyces cerevisiae engineered yeast ferments, final glycyrrhetic acid content is 1.515mg/L, precursor (11- hydroxy-beta- Amyrin content is that 6.9mg/L, 11- oxygen-β-amyrin content are that 23mg/L, 30- hydroxy-beta-amyrin content are 25mg/L, 11,30- hydroxy-beta-amyrin content are that 15mg/L, 30- hydroxyl -11- oxygen-β-amyrin content are 40mg/ L, 30- aldehyde radical -11- oxygen-β-amyrin content is 2.8mg/L) there is different yield.
Experimental example 5: the identification of saccharomyces cerevisiae engineered yeast tunning
Tunning 8000rpm is centrifuged 5 minutes, supernatant is removed, precipitating is resuspended with 1.5ml saturated sodium-chloride, and pearl is broken broken 20 minutes, isometric ethyl acetate extraction, rotary evaporation was transferred in gas phase bottle, adds 500 μ l N, O- to powdered Bis- (trimethyl silicon substrate) three fluoro acetamides and 500 μ l pyridines, 80 DEG C are reacted 30 minutes, are cooled to room temperature.Utilize Shimadzu GC2010QP gas chromatography-mass spectrometry analyzes extract.Temperature program: 80 DEG C are kept for 1 minute, with 20 DEG C/min 290 DEG C are risen to, is kept for 38 minutes;250 DEG C of injector temperature, split ratio 5:1,1 μ l of sample introduction, chromatographic mass spectrometry interface temperature is 290 ℃.The results show that total ion chromatogram and mass spectrogram combination define the characteristic peak of enoxolone, illustrate saccharomyces cerevisiae engineered yeast Enoxolone and its precursor: 11- hydroxy-beta-amyrin or 11- oxygen-β-amyrin or 30- can successfully be synthesized Hydroxy-beta-amyrin or 11,30- hydroxy-beta-amyrin or 30- hydroxyl -11- oxygen-β-amyrin or 30- aldehyde radical - 11- oxygen-β-amyrin.
Experiment shows using TDH1p and/or TEF1p and/or ADH1p and/or PGI1p and/or TDH2p, and/or HXT2p and/or HXT7p and/or TEF2p and/or PYK1p and/or PDC1p and/or GPM1p and/or TPI1p, and/or FBA1p or GPD or ENO2p or PGK1p in GAL7p and/or GAL1p and/or GAL10p replacement experimental example 2, can obtain Obtain corresponding expression cassette.
Using TDH3t and/or TDH1t and/or TEF1t and/or PGI1t and/or TDH2t and/or HXT2t, and/ Or HXT7t and/or TEF2t and/or PYK1t and/or ENO2t and/or PDC1t and/or FBA1t and/or GPM1, and/ Or PGK1t or ADH1t or CYC1t or TYS1t in TPI1t replacement experimental example 2, corresponding expression cassette can be obtained.
Utilize Wine brewing yeast strain W303a or W303 ɑ or BJ2168 or BY4742 or BY4700 or CEN.PK2- 1C or CEN.PK2-1D can substitute the INVSc1 bacterial strain in experimental example 3.
With the following site YPRCtau3 and/or URA3 and/or TRP1 and/or LEU2 and/or HIS3 of genome, And/or the site delta and/or rDNA can substitute the site HO in experimental example 3.
SEQUENCE LISTING
<110>Beijing Institute of Technology
<120>a kind of saccharomyces cerevisiae engineered yeast and construction method for producing enoxolone or its precursor
<130> 1
<160> 21
<170> PatentIn version 3.5
<210> 1
<211> 2298
<212> DNA
<213>artificial sequence
<400> 1
atgtggagat tgaagatcgc tgaaggtggt aaggacccat acatctactc tactaacaac 60
ttcgttggta gacaaacttg ggaatacgac ccagacggtg gtactccaga agaaagagct 120
caagttgacg ctgctagatt gcacttctac aacaacagat tccaagttaa gccatgtggt 180
gacttgttgt ggagattcca aatcttgaga gaaaacaact tcaagcaaac tatcgcttct 240
gttaagatcg gtgacggtga agaaatcact tacgaaaagg ctactactgc tgttagaaga 300
gctgctcacc acttgtctgc tttgcaaact tctgacggtc actggccagc tcaaatcgct 360
ggtccattgt tcttcttgcc accattggtt ttctgtatgt acatcactgg tcacttggac 420
tctgttttcc cagaagaata cagaaaggaa atcttgagat acatctacta ccaccaaaac 480
gaagacggtg gttggggttt gcacatcgaa ggtcactcta ctatgttctg tactgctttg 540
aactacatct gtatgagaat cttgggtgaa ggtccagacg gtggtcaaga caacgcttgt 600
gctagagcta gaaagtggat ccacgaccac ggtggtgtta ctcacatccc atcttggggt 660
aagacttggt tgtctatctt gggtgttttc gactggtgtg gttctaaccc aatgccacca 720
gaattctgga tcttgccatc tttcttgcca atgcacccag ctaagatgtg gtgttactgt 780
agattggttt acatgccaat gtcttacttg tacggtaaga gattcgttgg tccaatcact 840
ccattgatct tgcaattgag agaagaattg ttcactgaac catacgaaaa ggttaactgg 900
aagaaggcta gacaccaatg tgctaaggaa gacttgtact acccacaccc attgttgcaa 960
gacttgatct gggactcttt gtacttgttc actgaaccat tgttgactag atggccattc 1020
aacaagttgg ttagagaaaa ggctttgcaa gttactatga agcacatcca ctacgaagac 1080
gaaacttcta gatacatcac tatcggttgt gttgaaaagg ttttgtgtat gttggcttgt 1140
tgggttgaag acccaaacgg tgacgctttc aagaagcact tggctagagt tccagactac 1200
ttgtgggttt ctgaagacgg tatgactatg caatctttcg gttctcaaga atgggacgct 1260
ggtttcgctg ttcaagcttt gttggctact aacttggttg aagaaatcgc tccaactttg 1320
gctaagggtc acgacttcat caagaagtct caagttagag acaacccatc tggtgacttc 1380
aagtctatgt acagacacat ctctaagggt tcttggactt tctctgacca agaccacggt 1440
tggcaagttt ctgactgtac tgctgaaggt ttgaagtgtt gtttgttgtt gtctatgttg 1500
ccaccagaaa tcgttggtga aaagatggaa ccagaaagat tgtacgactc tgttaacgtt 1560
ttgttgtctt tgcaatctaa gaagggtggt ttgtctgctt gggaaccagc tggtgctcaa 1620
gaatggttgg aattgttgaa cccaactgaa ttcttcgctg acatcgttgt tgaacacgaa 1680
tacgttgaat gtactggttc tgctatccaa gctttggttt tgttcaagaa gttgtaccca 1740
ggtcacagaa agaaggaaat cgaaaacttc atcgctaacg ctgttagatt cttggaagac 1800
actcaaactg ctgacggttc ttggtacggt aactggggtg tttgtttcac ttacggttct 1860
tggttcgctt tgggtggttt ggctgctgct ggtaagactt tcgctaactg tgctgctatc 1920
agaaaggctg ttaagttctt gttgactact caaagagaag acggtggttg gggtgaatct 1980
tacttgtctt ctccaaagaa gatctacgtt ccattggaag gttctagatc taacgttgtt 2040
cacactgctt gggctttgat gggtttgatc cacgctggtc aagctgaaag agacccagct 2100
ccattgcaca gagctgctaa gttgatcatc aactctcaat tggaagaagg tgactggcca 2160
caacaagaaa tcactggtgt tttcatgaag aactgtatgt tgcactaccc aatgtacaga 2220
gacatctacc caatgtgggc tttggctgaa tacagaagaa gagttccatt gccatctact 2280
ccagtttgtt tgacttaa 2298
<210> 2
<211> 1482
<212> DNA
<213>artificial sequence
<400> 2
atggaagttc actgggtttg tatgtctgct gctactttgt tggtttgtta catcttcggt 60
tctaagttcg ttagaaactt gaacggttgg tactacgacg ttaagttgag aagaaaggaa 120
cacccattgc caccaggtga catgggttgg ccattgatcg gtgacttgtt gtctttcatc 180
aaggacttct cttctggtca cccagactct ttcatcaaca acttggtttt gaagtacggt 240
agatctggta tctacaagac tcacttgttc ggtaacccat ctatcatcgt ttgtgaacca 300
caaatgtgta gaagagtttt gactgacgac gttaacttca agttgggtta cccaaagtct 360
atcaaggaat tggctagatg tagaccaatg atcgacgttt ctaacgctga acacagattg 420
ttcagaagat tgatcacttc tccaatcgtt ggtcacaagg ctttggctat gtacttggaa 480
agattggaag aaatcgttat caactctttg gaagaattgt cttctatgaa gcacccagtt 540
gaattgttga aggaaatgaa gaaggtttct ttcaaggcta tcgttcacgt tttcatgggt 600
tcttctaacc aagacatcat caagaagatc ggttcttctt tcactgactt gtacaacggt 660
atgttctcta tcccaatcaa cgttccaggt ttcactttcc acaaggcttt ggaagctaga 720
aagaagttgg ctaagatcgt tcaaccagtt gttgacgaaa gaagattgat gatcgaaaac 780
ggtccacaag aaggttctca aagaaaggac ttgatcgaca tcttgttgga agttaaggac 840
gaaaacggta gaaagttgga agacgaagac atctctgact tgttgatcgg tttgttgttc 900
gctggtcacg aatctactgc tacttctttg atgtggtcta tcacttactt gactcaacac 960
ccacacatct tgaagaaggc taaggaagaa caagaagaaa tcactagaac tagattctct 1020
tctcaaaagc aattgtcttt gaaggaaatc aagcaaatgg tttacttgtc tcaagttatc 1080
gacgaaactt tgagatgtgc taacatcgct ttcgctactt tcagagaagc tactgctgac 1140
gttaacatca acggttacat catcccaaag ggttggagag ttttgatctg ggctagagct 1200
atccacatgg actctgaata ctacccaaac ccagaagaat tcaacccatc tagatgggac 1260
gactacaacg ctaaggctgg tactttcttg ccattcggtg ctggttctag attgtgtcca 1320
ggtgctgact tggctaagtt ggaaatctct atcttcttgc actacttctt gagaaactac 1380
agattggaaa gaatcaaccc agaatgtcac gttacttctt tgccagtttc taagccaact 1440
gacaactgtt tggctaaggt tatcaaggtt tcttgtgctt aa 1482
<210> 3
<211> 21
<212> DNA
<213>artificial sequence
<400> 3
atggaagtac attgggtttg c 21
<210> 4
<211> 25
<212> DNA
<213>artificial sequence
<400> 4
ctaagcacat gagaccttca tcacc 25
<210> 5
<211> 1482
<212> DNA
<213>Radix Glycyrrhizae (Glycyrrhiza uralensis)
<400> 5
atggaagtac attgggtttg catgtgcgct gccactttgt tggtatgcta catttttgga 60
agcaagtttg tgaggaattt gaatgggtgg tattatgatg taaaactaag aaggaaagaa 120
cacccactac ccccaggtga catgggatgg cctcttatgg gcaatctatt gtccttcatc 180
aaagatttct catcgggtca ccctgattca ttcatcaaca accttgttct caaatatgga 240
cgaagtggta tctacaagac tcacttgttt gggaatccaa gcatcattgt ttgcgagcct 300
cagatgtgta ggcgagttct cactgatgat gtgaacttta agcttggtta tccaaaatct 360
atcaaagagt tggcacgatg tagacccatg attgatgtct ctaatgcgga acataggctt 420
tttcgacgcc tcattacttc cccaatcgtg ggtcacaagg cgctagcaat gtacctagaa 480
cgtcttgagg aaattgtgat caattcgttg gaagaattgt ccagcatgaa gcaccccgtt 540
gagctcttga aagagatgaa gaaggtttcc tttaaagcca ttgtccacgt tttcatgggc 600
tcttccaatc aggacatcat taaaaaaatt ggaagttcgt ttactgattt gtacaatggc 660
atgttctcta tccccattaa cgtacctggt tttacattcc acaaagcact cgaggcacgt 720
aagaagctag ccaaaatagt tcaacccgtt gtggatgaaa ggcggttgat gatagaaaat 780
ggtcaacaag aaggggacca aagaaaagat cttattgata ttcttttgga agtcaaagat 840
gagaatggac gaaaattgga ggacgaggat attagcgatt tattaatagg gcttttgttt 900
gctggccatg aaagtacagc aaccagttta atgtggtcaa ttacatatct tacacagcat 960
ccccatatct tgaaaaaggc taaggaagag caggaagaaa taatgaggac aagattgtcc 1020
tcgcagaaac aattaagttt taaggaaatt aaacaaatgg tttatctttc tcaggtaatt 1080
gatgaaactt tacgatgtgc caatattgcc tttgcaactt ttcgagaggc aactgctgat 1140
gtgaacatca atggttatat cataccaaag ggatggagag tgctaatttg ggcaagagcc 1200
attcatatgg attctgaata ttacccaaat ccagaagaat ttaatccatc gagatgggat 1260
gattacaatg ccaaagcagg aaccttcctt ccttttggag caggaagtag actttgtcct 1320
ggagccgact tggcgaaact tgaaatttcc atatttcttc attatttcct ccttaattac 1380
aggttggagc gagtaaatcc agaatgtcat gttaccagct taccagtatc taagcccaca 1440
gacaattgcc tcgctaaggt gatgaaggtc tcatgtgctt ag 1482
<210> 6
<211> 493
<212> PRT
<213>artificial sequence
<400> 6
Met Glu Val His Trp Val Cys Met Cys Ala Ala Thr Leu Leu Val Cys
1 5 10 15
Tyr Ile Phe Gly Ser Lys Phe Val Arg Asn Leu Asn Gly Trp Tyr Tyr
20 25 30
Asp Val Lys Leu Arg Arg Lys Glu His Pro Leu Pro Pro Gly Asp Met
35 40 45
Gly Trp Pro Leu Met Gly Asn Leu Leu Ser Phe Ile Lys Asp Phe Ser
50 55 60
Ser Gly His Pro Asp Ser Phe Ile Asn Asn Leu Val Leu Lys Tyr Gly
65 70 75 80
Arg Ser Gly Ile Tyr Lys Thr His Leu Phe Gly Asn Pro Ser Ile Ile
85 90 95
Val Cys Glu Pro Gln Met Cys Arg Arg Val Leu Thr Asp Asp Val Asn
100 105 110
Phe Lys Leu Gly Tyr Pro Lys Ser Ile Lys Glu Leu Ala Arg Cys Arg
115 120 125
Pro Met Ile Asp Val Ser Asn Ala Glu His Arg Leu Phe Arg Arg Leu
130 135 140
Ile Thr Ser Pro Ile Val Gly His Lys Ala Leu Ala Met Tyr Leu Glu
145 150 155 160
Arg Leu Glu Glu Ile Val Ile Asn Ser Leu Glu Glu Leu Ser Ser Met
165 170 175
Lys His Pro Val Glu Leu Leu Lys Glu Met Lys Lys Val Ser Phe Lys
180 185 190
Ala Ile Val His Val Phe Met Gly Ser Ser Asn Gln Asp Ile Ile Lys
195 200 205
Lys Ile Gly Ser Ser Phe Thr Asp Leu Tyr Asn Gly Met Phe Ser Ile
210 215 220
Pro Ile Asn Val Pro Gly Phe Thr Phe His Lys Ala Leu Glu Ala Arg
225 230 235 240
Lys Lys Leu Ala Lys Ile Val Gln Pro Val Val Asp Glu Arg Arg Leu
245 250 255
Met Ile Glu Asn Gly Gln Gln Glu Gly Asp Gln Arg Lys Asp Leu Ile
260 265 270
Asp Ile Leu Leu Glu Val Lys Asp Glu Asn Gly Arg Lys Leu Glu Asp
275 280 285
Glu Asp Ile Ser Asp Leu Leu Ile Gly Leu Leu Phe Ala Gly His Glu
290 295 300
Ser Thr Ala Thr Ser Leu Met Trp Ser Ile Thr Tyr Leu Thr Gln His
305 310 315 320
Pro His Ile Leu Lys Lys Ala Lys Glu Glu Gln Glu Glu Ile Met Arg
325 330 335
Thr Arg Leu Ser Ser Gln Lys Gln Leu Ser Phe Lys Glu Ile Lys Gln
340 345 350
Met Val Tyr Leu Ser Gln Val Ile Asp Glu Thr Leu Arg Cys Ala Asn
355 360 365
Ile Ala Phe Ala Thr Phe Arg Glu Ala Thr Ala Asp Val Asn Ile Asn
370 375 380
Gly Tyr Ile Ile Pro Lys Gly Trp Arg Val Leu Ile Trp Ala Arg Ala
385 390 395 400
Ile His Met Asp Ser Glu Tyr Tyr Pro Asn Pro Glu Glu Phe Asn Pro
405 410 415
Ser Arg Trp Asp Asp Tyr Asn Ala Lys Ala Gly Thr Phe Leu Pro Phe
420 425 430
Gly Ala Gly Ser Arg Leu Cys Pro Gly Ala Asp Leu Ala Lys Leu Glu
435 440 445
Ile Ser Ile Phe Leu His Tyr Phe Leu Leu Asn Tyr Arg Leu Glu Arg
450 455 460
Val Asn Pro Glu Cys His Val Thr Ser Leu Pro Val Ser Lys Pro Thr
465 470 475 480
Asp Asn Cys Leu Ala Lys Val Met Lys Val Ser Cys Ala
485 490
<210> 7
<211> 1572
<212> DNA
<213>artificial sequence
<400> 7
atggacgctt cttctactcc aggtgctatc tgggttgttt tgactgttat cttggctgct 60
atcccaatct gggtttgtca catggttaac actttgtggt tgagaccaaa gagattggaa 120
agacacttga gagctcaagg tttgcacggt gacccataca agttgtcttt ggacaactct 180
aagcaaactt acatgttgaa gttgcaacaa gaagctcaat ctaagtctat cggtttgtct 240
aaggacgacg ctgctccaag aatcttctct ttggctcacc aaactgttca caagtacggt 300
aagaactctt tcgcttggga aggtactgct ccaaaggtta tcatcactga cccagaacaa 360
atcaaggaag ttttcaacaa gatccaagac ttcccaaagc caaagttgaa cccaatcgct 420
aagtacatct ctatcggttt ggttcaatac gaaggtgaca agtgggctaa gcacagaaag 480
atcatcaacc cagctttcca cttggaaaag ttgaagggta tgttgccagc tttctctcac 540
tcttgtcacg aaatgatctc taagtggaag ggtttgttgt cttctgacgg tacttgtgaa 600
gttgacgttt ggccattctt gcaaaacttg acttgtgacg ttatctctag aactgctttc 660
ggttcttctt acgctgaagg tgctaagatc ttcgaattgt tgaagagaca aggttacgct 720
ttgatgactg ctagatacgc tagaatccca ttgtggtggt tgttgccatc tactactaag 780
agaagaatga aggaaatcga aagaggtatc agagactctt tggaaggtat catcagaaag 840
agagaaaagg ctttgaagtc tggtaagtct actgacgacg acttgttggg tatcttgttg 900
caatctaacc acatcgaaaa caagggtgac gaaaactcta agtctgctgg tatgactact 960
caagaagtta tggaagaatg taagttgttc tacttggctg gtcaagaaac tactgctgct 1020
ttgttggctt ggactatggt tttgttgggt aagcacccag aatggcaagc tagagctaga 1080
caagaagttt tgcaagtttt cggtaaccaa aacccaaact tcgaaggttt gggtagattg 1140
aagatcgtta ctatgatctt gtacgaagtt ttgagattgt acccaccagg tatctacttg 1200
actagagctt tgagaaagga cttgaagttg ggtaacttgt tgttgccagc tggtgttcaa 1260
gtttctgttc caatcttgtt gatccaccac gacgaaggta tctggggtaa cgacgctaag 1320
gaattcaacc cagaaagatt cgctgaaggt atcgctaagg ctactaaggg tcaagtttgt 1380
tacttcccat tcggttgggg tccaagaatc tgtgttggtc aaaacttcgc tttgttggaa 1440
gctaagatcg ttttgtcttt gttgttgcaa aacttctctt tcgaattgtc tccaacttac 1500
gctcacgttc caactactgt tttgactttg caaccaaagc acggtgctcc aatcatcttg 1560
cacaagttgt aa 1572
<210> 8
<211> 1575
<212> DNA
<213>artificial sequence
<400> 8
atggaagttt tcatgttccc aactggtact actgttatca tctctgtttt gtctgttttg 60
ttggctgtta tcccatggta cttgttgaac aagttgtggt tgaagccaaa gagattcgaa 120
aagttgttga aggctcaagg tttccaaggt gaaccataca acttgtctgt tttgaaggac 180
aagtctaagc aaaactacat gttgaagttg caacaagaag acaagtctaa gtctatcggt 240
ttgtctaagg aagctgctcc atctatcttc actccagttc accaaactgt tagaaagtac 300
ggtaacaact ctttcttgtg ggaaggtact actccaagag ttatcatcac tgacccagac 360
caaatcaagg acgttttcaa caagatcgac gacttcccaa agccaaagtt gagatctatc 420
gctaagtact tgtctgttgg tatcttggac cacgaaggta agaagtgggc taagcacaga 480
aagatcgcta acccagcttt ccacttggaa aagttgaagg ttatgttgcc agctttctct 540
cactcttgta acgaaatgat ctctaagtgg aaggaattgt tgtcttctga cggtacttgt 600
gaaatcgacg tttggccatc tttgcaaaac ttcacttgtg acgttatctc tagaactgct 660
ttcggttctt cttacgctga aggtactaag ttgttccaat tgttgaagaa gcaaggtttc 720
ttgttgatga ctggtagaca cactaacaac ccattgtggg gtttgttggc tactactact 780
aagactaaga tgaaggaaat cgacagagaa atccacgact ctttggaagg tatcatcgaa 840
aagagagaaa aggctttgaa gaacggtgaa actactaacg acgacttgtt gggtatcttg 900
ttgcaatcta accacgctga aaagcaaggt caaggtaact ctaagaacat cggtatgact 960
actcaagacg ttatcgacga atgtaagttg ttctacttgg ctggtcaaga aactacttct 1020
tctttgttgg tttggactat ggttttgttg ggtagatacc cagaatggca agctagagct 1080
agagaagaag ttttgcaagt tttcggtaac caaaacccaa acaacgaagg tttgtctcaa 1140
ttgaagatcg ttactatgat cttgtacgaa gttttgagat tgttcccacc attgatctac 1200
ttcaacagag ctttgagaaa ggacttgaag ttgggtaact tgttgttgcc agaaggtact 1260
caaatctctt tgccaatctt gttgatccac caagaccacg acttgtgggg tgacgacgct 1320
aaggaattca agccagaaag attcgctgaa ggtatcgcta aggctactaa gggtcaagtt 1380
tcttacttcc cattcggttg gggtccaaga atctgtttgg gtcaaaactt cgctttgttg 1440
gaagctaaga tcgctgtttc tttgttgttg caaaacttct ctttcgaatt gtctccaaac 1500
tacgttcacg ttccaactac tgttttgact ttgcaaccaa agaacggtgc ttctatcatc 1560
ttgcacaagt tgtaa 1575
<210> 9
<211> 22
<212> DNA
<213>artificial sequence
<400> 9
atgacttcga attccgattt gg 22
<210> 10
<211> 24
<212> DNA
<213>artificial sequence
<400> 10
tcaccagaca tccctgaggt aacg 24
<210> 11
<211> 2076
<212> DNA
<213>Radix Glycyrrhizae (Glycyrrhiza uralensis)
<400> 11
atgacttcga attccgattt ggttcgcacc attgagtcgg tgctgggcgt ttcactcggc 60
gattcggtct ccgattcgct cgttctgata gcgactacct ccgtcgccgt cataattggg 120
ctccttgtgt tcctgtggaa gaaatcttcg gatcggagca gggaggtgag gccggtgatt 180
gtgccgaagt cgttggtgaa ggatgaagac gatgatgtcg acgttgcctc cgggaagact 240
aaggttactg ttttcttcgg tactcagact ggtactgctg agggcttcgc taaggcattg 300
gcggacgaga tcaaggcaag atatgaaaaa gcatatgtca aagttgttga tttggatgac 360
tatgcaatgg atgatgatca atatgaggag aagctgaaga aagaaactct tgcatttttc 420
atgctggcaa cttatggaga tggagagcca actgacaatg ctgcaagatt ctacaaatgg 480
tttactgagg gtaaagagga gaggggcacc tggcttcaac agctcacaca tggagttttt 540
ggcctaggta acaagcaata tgaacatttt aataagatag gtaaagttgt tgatgaagac 600
cttagtgaac aaggtgcaaa gcgtcttgtt ccacttggac taggtgatga tgatcaatcc 660
attgaggatg atttttctgc ctggaaagaa tctctgtggc ctgagttgga tcagttgctc 720
cgagatgagg atgatgtgaa tactgtttct actccctata ctgctgctat tcctgaatat 780
cgagtagtga ttcatgactc cactgtcaca ccatcctatg ataatcaatt cagcgcagca 840
aatgggggtg ctgtatttga tattcatcat ccttgcaggg taaatgttgc tgttaaaagg 900
gagcttcaca aacctcagtc tgaccgttcc tgcatacatt tggagtttga tatatcgggg 960
actggcataa catatgaaac tggagaccat gtgggtgttt atgctgagaa ctgtgatgaa 1020
actgttgaag aagctgggaa gttgttgggt caaaatttag atttgctgtt ttctcttcac 1080
actgataacg aggatggcac ttcccttgga ggctctctgc tacctccttt ccctggtcct 1140
tgcacactgc gtacggcgtt agcacgttat gcagatctct tgaaccctcc acgaaaggct 1200
gctttagttg tattagctgc tcatgcttct gaacctagtg aggcagaaag attgaagttc 1260
ctctcctctc ctcaggggaa ggatgagtac tccaaatggg tggttggaag ccagagaagt 1320
ctccttgagg tgatggctga gtttccatca gcaaaacctc cacttggtgt gtttttcgct 1380
gccatagccc ctcgtttaca gcctcgttat tattctattt catcctctcc taggtttgcc 1440
tcacaaaggg tacatgtaac ttgtgccctg gtgtatggtc caactcccac tggcagaatt 1500
cacaaaggag tatgctcaac ctggatgaag aatgctattc ccttagagga aagccgtgac 1560
tgtggctggg ctcccatttt tatcaggcca tcaaatttca agctaccagc cgatcattcg 1620
attcctatta ttatggttgg acctggtact ggtttggcac cttttagggg atttttacag 1680
gaaagatttg ccctcaaaga ggatggtgtt caacttggtc cttcattact cttctttgga 1740
tgcaggaacc gtcaaatgga ttttatttat gaggatgagc taaagaattt tgtggaacaa 1800
ggttctctgt cagagttgat agttgcattc tctagagagg ggcctgaaaa ggagtatgtt 1860
caacacaaga tgatggataa agcagcatac ctgtggagtc tgatttctca gggaggttat 1920
ctttatgtct gtggtgatgc caagggtatg gccagagatg ttcatcgaat tcttcatacc 1980
attgtccagc agcaggaaaa tgtggagtcg tcaaaggcgg aggctatagt gaaaaaactc 2040
cagatggatg gacgttacct cagggatgtc tggtga 2076
<210> 12
<211> 691
<212> PRT
<213>artificial sequence
<400> 12
Met Thr Ser Asn Ser Asp Leu Val Arg Thr Ile Glu Ser Val Leu Gly
1 5 10 15
Val Ser Leu Gly Asp Ser Val Ser Asp Ser Leu Val Leu Ile Ala Thr
20 25 30
Thr Ser Val Ala Val Ile Ile Gly Leu Leu Val Phe Leu Trp Lys Lys
35 40 45
Ser Ser Asp Arg Ser Arg Glu Val Arg Pro Val Ile Val Pro Lys Ser
50 55 60
Leu Val Lys Asp Glu Asp Asp Asp Val Asp Val Ala Ser Gly Lys Thr
65 70 75 80
Lys Val Thr Val Phe Phe Gly Thr Gln Thr Gly Thr Ala Glu Gly Phe
85 90 95
Ala Lys Ala Leu Ala Asp Glu Ile Lys Ala Arg Tyr Glu Lys Ala Tyr
100 105 110
Val Lys Val Val Asp Leu Asp Asp Tyr Ala Met Asp Asp Asp Gln Tyr
115 120 125
Glu Glu Lys Leu Lys Lys Glu Thr Leu Ala Phe Phe Met Leu Ala Thr
130 135 140
Tyr Gly Asp Gly Glu Pro Thr Asp Asn Ala Ala Arg Phe Tyr Lys Trp
145 150 155 160
Phe Thr Glu Gly Lys Glu Glu Arg Gly Thr Trp Leu Gln Gln Leu Thr
165 170 175
His Gly Val Phe Gly Leu Gly Asn Lys Gln Tyr Glu His Phe Asn Lys
180 185 190
Ile Gly Lys Val Val Asp Glu Asp Leu Ser Glu Gln Gly Ala Lys Arg
195 200 205
Leu Val Pro Leu Gly Leu Gly Asp Asp Asp Gln Ser Ile Glu Asp Asp
210 215 220
Phe Ser Ala Trp Lys Glu Ser Leu Trp Pro Glu Leu Asp Gln Leu Leu
225 230 235 240
Arg Asp Glu Asp Asp Val Asn Thr Val Ser Thr Pro Tyr Thr Ala Ala
245 250 255
Ile Pro Glu Tyr Arg Val Val Ile His Asp Ser Thr Val Thr Pro Ser
260 265 270
Tyr Asp Asn Gln Phe Ser Ala Ala Asn Gly Gly Ala Val Phe Asp Ile
275 280 285
His His Pro Cys Arg Val Asn Val Ala Val Lys Arg Glu Leu His Lys
290 295 300
Pro Gln Ser Asp Arg Ser Cys Ile His Leu Glu Phe Asp Ile Ser Gly
305 310 315 320
Thr Gly Ile Thr Tyr Glu Thr Gly Asp His Val Gly Val Tyr Ala Glu
325 330 335
Asn Cys Asp Glu Thr Val Glu Glu Ala Gly Lys Leu Leu Gly Gln Asn
340 345 350
Leu Asp Leu Leu Phe Ser Leu His Thr Asp Asn Glu Asp Gly Thr Ser
355 360 365
Leu Gly Gly Ser Leu Leu Pro Pro Phe Pro Gly Pro Cys Thr Leu Arg
370 375 380
Thr Ala Leu Ala Arg Tyr Ala Asp Leu Leu Asn Pro Pro Arg Lys Ala
385 390 395 400
Ala Leu Val Val Leu Ala Ala His Ala Ser Glu Pro Ser Glu Ala Glu
405 410 415
Arg Leu Lys Phe Leu Ser Ser Pro Gln Gly Lys Asp Glu Tyr Ser Lys
420 425 430
Trp Val Val Gly Ser Gln Arg Ser Leu Leu Glu Val Met Ala Glu Phe
435 440 445
Pro Ser Ala Lys Pro Pro Leu Gly Val Phe Phe Ala Ala Ile Ala Pro
450 455 460
Arg Leu Gln Pro Arg Tyr Tyr Ser Ile Ser Ser Ser Pro Arg Phe Ala
465 470 475 480
Ser Gln Arg Val His Val Thr Cys Ala Leu Val Tyr Gly Pro Thr Pro
485 490 495
Thr Gly Arg Ile His Lys Gly Val Cys Ser Thr Trp Met Lys Asn Ala
500 505 510
Ile Pro Leu Glu Glu Ser Arg Asp Cys Gly Trp Ala Pro Ile Phe Ile
515 520 525
Arg Pro Ser Asn Phe Lys Leu Pro Ala Asp His Ser Ile Pro Ile Ile
530 535 540
Met Val Gly Pro Gly Thr Gly Leu Ala Pro Phe Arg Gly Phe Leu Gln
545 550 555 560
Glu Arg Phe Ala Leu Lys Glu Asp Gly Val Gln Leu Gly Pro Ser Leu
565 570 575
Leu Phe Phe Gly Cys Arg Asn Arg Gln Met Asp Phe Ile Tyr Glu Asp
580 585 590
Glu Leu Lys Asn Phe Val Glu Gln Gly Ser Leu Ser Glu Leu Ile Val
595 600 605
Ala Phe Ser Arg Glu Gly Pro Glu Lys Glu Tyr Val Gln His Lys Met
610 615 620
Met Asp Lys Ala Ala Tyr Leu Trp Ser Leu Ile Ser Gln Gly Gly Tyr
625 630 635 640
Leu Tyr Val Cys Gly Asp Ala Lys Gly Met Ala Arg Asp Val His Arg
645 650 655
Ile Leu His Thr Ile Val Gln Gln Gln Glu Asn Val Glu Ser Ser Lys
660 665 670
Ala Glu Ala Ile Val Lys Lys Leu Gln Met Asp Gly Arg Tyr Leu Arg
675 680 685
Asp Val Trp
690
<210> 13
<211> 22
<212> DNA
<213>artificial sequence
<400> 13
gacatggagg cccagaatac cc 22
<210> 14
<211> 20
<212> DNA
<213>artificial sequence
<400> 14
tcgacactgg atggcggcgt 20
<210> 15
<211> 1394
<212> DNA
<213>artificial sequence
<400> 15
gacatggagg cccagaatac cctccttgac agtcttgacg tgcgcagctc aggggcatga 60
tgtgactgtc gcccgtacat ttagcccata catccccatg tataatcatt tgcatccata 120
cattttgatg gccgcacggc gcgaagcaaa aattacggct cctcgctgca gacctgcgag 180
cagggaaacg ctcccctcac agacgcgttg aattgtcccc acgccgcgcc cctgtagaga 240
aatataaaag gttaggattt gccactgagg ttcttctttc atatacttcc ttttaaaatc 300
ttgctaggat acagttctca catcacatcc gaacataaac aaccatgggt aaggaaaaga 360
ctcacgtttc gaggccgcga ttaaattcca acatggatgc tgatttatat gggtataaat 420
gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg 480
atgcgccaga gttgtttctg aaacatggca aaggtagcgt tgccaatgat gttacagatg 540
agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta 600
tccgtactcc tgatgatgca tggttactca ccactgcgat ccccggcaaa acagcattcc 660
aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc 720
tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc 780
gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg 840
acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat 900
tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg 960
aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg 1020
atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt 1080
ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg 1140
atgagttttt ctaatcagta ctgacaataa aaagattctt gttttcaaga acttgtcatt 1200
tgtatagttt ttttatattg tagttgttct attttaatca aatgttagcg tgatttatat 1260
tttttttcgc ctcgacatca tctgcccaga tgcgaagtta agtgcgcaga aagtaatatc 1320
atgcgtcaat cgtatgtgaa tgctggtcgc tatactgctg tcgattcgat actaacgccg 1380
ccatccagtg tcga 1394
<210> 16
<211> 906
<212> DNA
<213>saccharomyces cerevisiae (Saccharomyces cerevisiae)
<400> 16
aattatcctg ggcacgagtg aaacaaagct aaaaccttta tttagcatgg ccattgaatg 60
taacaattat atatatcgca agcacaaaaa atcaaggaga gagaactacc actttgttca 120
tgtgtacaat gttcattatc tccataagca aaaaaaaaaa atagaaaaca tatgctataa 180
ggttgatatt ctcacgagta agcggcactt gctacttatt gacattgcag atttttggct 240
acagaaatag tatattagag attataattg ctaatcaaat caaaatataa aattagtaaa 300
ccaaaccatt tatacccttc cttagtagtt atggattgtt ttttaatgat atttctgcaa 360
accaaagaaa gattgttatc cagatagaat ttagttttga tattcatttt tttgttgaag 420
attgaacgcc atatctgggc ctcataattc aaaagacggt gccattatcg gtagcgtttc 480
gcattgtact ggatttcaga aatttcacag ttgatgaatc gaaaagaatg gtctcattgc 540
aacacgtaag gttaagatgt ccctttttac cattataggc aataaatgaa tcataaaacg 600
accgtatact ggtgaaatag tagggagaac gagtacctgt agtaaaaagt ataaatcata 660
gttaatcggg caatgtccct cgatcaagga gtattgtgtc atgttcgaga caaacgccaa 720
catttttgtt tcttttggac aaatgttgtt tgcatttatg atccgttata ttttgatcta 780
atgtagagtt gcacgtagtt cttactggca aagaaatcga tgcataccaa aaaagaataa 840
aggtgatatt tgatctttac cgtttagttc caacgtaaaa ttgtgccttt ggacttaaaa 900
tggcgt 906
<210> 17
<211> 501
<212> DNA
<213>saccharomyces cerevisiae (Saccharomyces cerevisiae)
<400> 17
ctgggggaac aacttcacag aatgttttgt catattgtcg aagtggtcac aaaacaagag 60
aagttccgcc aattataaaa agggaacccg tatatttcag cttcacggat gatttccagg 120
gtgagagtac tgtatatggg cttacgatag aaggccataa aaatttcttg cttggcaaca 180
aaatagaagt gaaatcatgt cgaggctgct gtgtgggaga acagcttaaa atatcacaaa 240
aaaagaatct aaaacactgt gttgcttgtc ccagaaaggg aatcaagtat ttttataaag 300
attggagtgg taaaaatcga gtatgtgcta gatgctatgg aagatacaaa ttcagcggtc 360
atcactgtat aaattgcaag tatgtaccag aagcacgtga agtgaaaaag gcaaaagaca 420
aaggcgaaaa attgggcatt acgcccgaag gtttgccagt taaaggacca gagtgtataa 480
aatgtggcgg aatcttacag t 501
<210> 18
<211> 29
<212> DNA
<213>artificial sequence
<400> 18
aattatcctg ggcacgagtg aaacaaagc 29
<210> 19
<211> 32
<212> DNA
<213>artificial sequence
<400> 19
acgccatttt aagtccaaag gcacaatttt ac 32
<210> 20
<211> 20
<212> DNA
<213>artificial sequence
<400> 20
ctgggggaac aacttcacag 20
<210> 21
<211> 27
<212> DNA
<213>artificial sequence
<400> 21
actgtaagat tccgccacat tttatac 27

Claims (2)

1. a kind of construction method for the saccharomyces cerevisiae engineered yeast for producing enoxolone or its precursor substance, which is characterized in that utilize The β cloned from glycyrrhiza glabra-amyrin synthase (bAS) gene, the β-obtained from Glycyrrhiza Uralensis by clone Its gene order of 11, amyrin carbon oxidizing ferment UNI47 gene is as shown in SEQ IDNo.5, CYP450 oxidoreducing enzyme CPR base Because its gene order is as shown in SEQ ID No.11,11- oxygen-β -30, amyrin carbon oxidizing ferment for being cloned from clover Its gene order of CYP72A63 gene carries out codon optimization and chemical synthesis to it, then utilizes as shown in SEQ ID No.8 Saccharomyces cerevisiae constitutive promoter and terminator construct respectively, PFBA1-bAS-TCYC1,TADH1-PENO2-UNI47-TTYS1,TCYC1- PGPD-CYP72A63-TADH1,TTYS1-PPGK1-CPR-TPGK1Expression cassette, in a manner of genome conformity in saccharomyces cerevisiae body Enoxolone and its precursor route of synthesis are reconstructed, realizes saccharomyces cerevisiae synthesis enoxolone or its precursor.
2. application of the saccharomyces cerevisiae as described in claim 1 in synthesis enoxolone or its precursor, precursor includes 11- Hydroxy-beta-amyrin or 11- oxygen-β-amyrin or 30- hydroxy-beta-amyrin or 11,30- hydroxy-beta-botany bar gum Alcohol or 30- hydroxyl 11- oxygen-β-amyrin or 30- aldehyde radical -11- oxygen-β-amyrin.
CN201610965315.9A 2016-11-04 2016-11-04 A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor Active CN106566815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610965315.9A CN106566815B (en) 2016-11-04 2016-11-04 A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610965315.9A CN106566815B (en) 2016-11-04 2016-11-04 A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor

Publications (2)

Publication Number Publication Date
CN106566815A CN106566815A (en) 2017-04-19
CN106566815B true CN106566815B (en) 2019-11-08

Family

ID=58535884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610965315.9A Active CN106566815B (en) 2016-11-04 2016-11-04 A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor

Country Status (1)

Country Link
CN (1) CN106566815B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777157B (en) * 2019-10-10 2023-07-04 广州中医药大学(广州中医药研究院) CYP450 gene for catalyzing oxidation of amyrin C-28 site, coded product and application thereof
CN111411089A (en) * 2020-03-02 2020-07-14 北京理工大学 Method for efficiently synthesizing rare glycyrrhiza triterpenes by saccharomyces cerevisiae through controllable oxidation
CN112646834A (en) * 2021-01-06 2021-04-13 广州中医药大学(广州中医药研究院) Lupeol derivative and synthesis method and application thereof
CN113930348A (en) * 2021-09-22 2022-01-14 河北维达康生物科技有限公司 Yarrowia lipolytica engineering strain for biosynthesis of glycyrrhetinic acid by taking glucose as substrate, construction and application thereof
CN116218799A (en) * 2023-01-12 2023-06-06 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing beta-amyrin 16 alpha hydroxylation, coding gene and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509726A (en) * 2013-09-16 2014-01-15 北京理工大学 Method for producing beta-amyrin with saccharomyces cerevisiae engineering bacterium
EP2982752A4 (en) * 2013-04-04 2017-01-11 Riken Glucuronyl transferase, gene encoding same, and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982752A4 (en) * 2013-04-04 2017-01-11 Riken Glucuronyl transferase, gene encoding same, and use thereof
CN103509726A (en) * 2013-09-16 2014-01-15 北京理工大学 Method for producing beta-amyrin with saccharomyces cerevisiae engineering bacterium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《GenBank: AB433179.1》;Seki,H.等;《GenBank》;20080923;全文 *
《GenBank: XM_004501597.2》;无;《GenBank》;20150608;全文 *

Also Published As

Publication number Publication date
CN106566815A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106566815B (en) A kind of saccharomyces cerevisiae engineered yeast and construction method producing enoxolone or its precursor
CN110438099A (en) The application of glycosyl transferase and its associated materials in the engineering bacteria that building produces ginsenoside Rb1 and Rg1
CN110777157A (en) CYP450 gene for catalyzing C-28 oxidation of resinol, and coding product and application thereof
CN112280698B (en) Saccharomyces cerevisiae engineering bacteria for high-yield yacholanol type sesquiterpene and construction method and application thereof
CN106367361A (en) Saccharomyces cerevisiae engineering strain as well as construction method and application thereof
CN115197172B (en) Sesterterpene compound, synthetic gene cluster and synthetic method thereof
CN112175848B (en) Yeast strain for producing patchouli alcohol and construction method and application thereof
CN116590165B (en) Saccharomyces cerevisiae strain for producing geraniol by utilizing xylose and application thereof
CN112921049A (en) Gene fragment for producing vanillin, saccharomyces cerevisiae engineering bacteria and construction method thereof
WO2023202122A1 (en) Curcuma wenyujin y. h. chen &amp;amp; c. ling-derived curcumin synthetase, gene, vector, engineered bacterium, and use thereof
CN116396876A (en) Saccharomyces cerevisiae engineering bacteria for producing ginsenoside Rd and construction method thereof
CN115161208B (en) Saccharomyces cerevisiae genetically engineered bacterium and application thereof in production of cucurbitacin intermediate
CN113265391B (en) Linalool synthase CcLS and coding gene and application thereof
CN109609522B (en) Macleaya cordata dihydrobenzophenanthridine oxidase gene optimization sequence and application thereof
CN115873836A (en) Nerolidol synthetase and application thereof
CN114717124A (en) Saccharomyces cerevisiae engineering strain for high yield of ergosterol, construction method and application
CN113621633A (en) Mangifera indica terpene synthase gene TPS1 and application thereof
CN107903227B (en) Succinic anhydride compound, gene and protein related to succinic anhydride compound and preparation method of succinic anhydride compound
CN114774503B (en) Squalene epoxidase and coding gene and application thereof
CN111718948B (en) Gene and application thereof in production of mannich
CN109609521B (en) Optimized sequence of macleaya cordata protopine-6-hydroxylase gene and application thereof
CN117402763B (en) Saccharomyces cerevisiae engineering strain for producing squalene, construction method and application thereof
CN114806910B (en) Candida tropicalis engineering bacteria for producing L-limonene and construction method thereof
CN114806911B (en) Method for synthesizing alpha-bisabolene by utilizing yarrowia lipolytica mitochondrial pathway localization
CN115927280B (en) Horse chestnut 2, 3-oxidation squalene cyclase and encoding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant