CN106549579A - 用于充电系统的双向dc/dc转换器 - Google Patents

用于充电系统的双向dc/dc转换器 Download PDF

Info

Publication number
CN106549579A
CN106549579A CN201511010833.7A CN201511010833A CN106549579A CN 106549579 A CN106549579 A CN 106549579A CN 201511010833 A CN201511010833 A CN 201511010833A CN 106549579 A CN106549579 A CN 106549579A
Authority
CN
China
Prior art keywords
bus
power
primary side
active switch
commutator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511010833.7A
Other languages
English (en)
Inventor
H.白
A.巴罗格
X.王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conduction Holding Co Ltd
Original Assignee
Conduction Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conduction Holding Co Ltd filed Critical Conduction Holding Co Ltd
Publication of CN106549579A publication Critical patent/CN106549579A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及用于充电系统的双向DC/DC转换器。在一个实施例中,双向DC/DC转换器包含具有有源开关(例如,MOSFET)的DC/AC逆变器以及具有执行DC偏置电流阻断的电容器和布置成桥式配置的有源开关(例如,MOSFET)的AC/DC整流器。微控制器耦合到所述DC/AC逆变器和AC/DC整流器的有源开关并且配置成根据如下的控制算法向其提供控制信号:当功率将以正向流动时,发送控制信号以用占空比操作所述DC/AC逆变器的有源开关并且禁止所述AC/DC整流器的有源开关;并且当功率将以反向流动时,发送控制信号以操作所述DC/AC逆变器的有源开关以禁止所述DC/AC逆变器的有源开关并且用占空比操作所述AC/DC整流器的有源开关。

Description

用于充电系统的双向DC/DC转换器
技术领域
本申请通常涉及可以用在电池充电器和其他类型的能量转移系统中的电路,并且更具体地涉及除了其他应用之外还可以用于电动车辆的双向电池充电器中的双向直流电/直流电(DC/DC)转换器。
背景技术
高度需求具有高效率的快速充电器用于对电池供电装置(诸如电动车辆)充电。对于电动车辆,典型的交流电(AC)慢速充电器包含接受120伏特(V)AC的等级1充电器和接受240V AC的等级2充电器。这样的慢速充电器典型地受限于在等级1充电器情况下的大约1.8千瓦(kW)以及在等级2充电器情况下的7.2 kW。进行了某些尝试以生成具有高效率的AC快速充电器。与大部分等级1和等级2 AC慢速充电器的小于91%相比,通过使用具有大于97%的效率的部件,一些AC快速充电器的总效率可以高于94%。
在图1中示出可以提供这些性质的AC快速充电器的一个示例。在这个设计100中,电网110耦合到初级侧交流电/直流电(AD/DC)整流器120。初级侧AD/DC整流器120给单向电感器-电感器-电容器(LLC)谐振DC/DC转换器140的直流电/交流电(DC/AC)逆变器130提供第一直流电(DC)母线电压VDC。DC/AC逆变器130耦合到变压器T的初级侧,所述变压器T将功率转移到耦合到次级侧AC/DC整流器150的次级侧。次级侧AC/DC整流器150包含布置成桥式配置的二极管D1、D2、D3和D4。次级侧AC/DC整流器150的输出是在第二DC母线上的电压Vb,所述第二DC母线可以被耦合到电动车辆的电池(具有电阻Rb)。
虽然这样的快速充电器设计是有用的,但是它具有某些限制。越来越多的应用要求双向功率转移,在所述双向功率转移中,除了供应DC功率(例如,以对电池充电)之外,AC功率也能够在另一方向流动回到电网。例如,愈发感兴趣的是车辆至电网(V2G)系统,在所述系统中,电网连接的电动车辆的电池用于将功率供应回去作为需求响应服务的部分。以上讨论的AC快速充电器设计至少部分由于在次级侧AC/DC整流器150中使用的二极管D1、D2、D3和D4而不能够将功率转移回到电网。
需要的是除了其他能量转移系统之外还可以用在双向AC快速充电器中的双向DC/DC转换器,所述双向DC/DC转换器可以保留某些单向DC/DC转换器设计的各种期望的性质(例如,高效率)。
发明内容
在示例实施例中,双向DC/DC转换器包含在次级侧AC/DC整流器中的执行DC偏置电流阻断的电容器和布置成桥式配置的有源开关(例如,金属氧化物半导体场效应晶体管(MOSFET))。由根据以50%占空比交替地禁止和操作有源开关同时保证有源开关在软开关下操作的控制算法提供控制信号的微控制器控制有源开关。
更具体地,在示例实施例中,双向DC/DC转换器是双向LLC谐振DC/DC转换器,所述双向LLC谐振DC/DC转换器是用于电动车辆的双向AC快速充电器的部分。双向LLC谐振DC/DC转换器包含耦合到电网和第一DC母线的初级侧AC/DC整流器。第一DC母线耦合到DC/AC逆变器,所述DC/AC逆变器包含耦合到电容器和电感性元件的网络、进而耦合到变压器的初级绕组的两个有源开关(例如,MOSFET)。次级侧AC/DC整流器耦合到变压器的次级绕组。次级侧AC/DC整流器可以包含执行DC偏置电流阻断的电容器和四个有源开关(例如,MOSFET)的桥式配置。次级侧AC/DC整流器耦合到了耦合到电动车辆的电池的第二DC母线。
微控制器耦合到DC/AC逆变器和次级侧AC/DC整流器的有源开关,并且配置为根据控制算法向其提供控制信号(例如,脉冲宽度调制(PWM)信号)。控制算法可以配置为:当功率将从第一DC母线流动到第二DC母线(称为“正向”)时发送控制信号以用50%占空比操作DC/AC逆变器的有源开关并且禁止次级侧AC/DC整流器的有源开关,并且当功率将从第二DC母线流动到第一DC母线(称为“反向”)时发送控制信号以禁止DC/AC逆变器的有源开关并且用50%占空比操作次级侧AC/DC整流器的有源开关。由控制信号控制的开关频率确定功率流动。控制算法可以配置为当功率将从第一DC母线流动到第二DC母线(正向)时设置初始开关频率、确定在第二DC母线处的功率是否基本上等于第一目标(例如,电池充电目标)并且增加开关频率以降低在第二DC母线处的功率或者降低开关频率以增加在第二DC母线处的功率直到在第二DC母线处的功率基本上等于第一目标。进一步地,控制算法可以配置为当功率将从第二DC母线流动到第一DC母线(反向)时设置初始开关频率、确定从第二DC母线供应的功率是否基本上等于第二目标(例如,电池放电目标)并且增加开关频率以降低从第二DC母线供应的功率或者降低开关频率以增加从第二DC母线供应的功率直到从第二DC母线供应的功率基本上等于第二目标。开关频率可以由控制算法限制到保证有源开关在软开关下操作的范围。
应该理解的是,根据本公开的教导的双向DC/DC转换器可以包含设置在各种附加的或替选的布置中的各种附加的或替选的部件。本发明内容仅仅旨在作为对读者的介绍并且不指示或暗示所述教导覆盖本发明的所有方面或者是本发明的必要的或实质的方面。
附图说明
以下具体描述涉及示例实施例的附图,所述附图的:
图1是现有的AC快速充电器设计的示意图;
图2是包含双向LLC谐振DC/DC转换器的示例双向AC快速充电器的高级框图;
图3是示出示例电路的细节的图2的示例双向AC快速充电器的示意图;以及
图4是可以由图2和3的示例双向AC快速充电器的微控制器实行的示例控制算法的某些步骤的流程图。
具体实施方式
定义
如在本文中使用的,术语“电动车辆”应该解释为指代从电源获得它的推进力的一些或全部的任何类型的车辆,包含诸如纯电池电动车辆(BOEV)和插电式混合电动车辆(PHEV)的插电式电动车辆。
进一步地,如在本文中使用的,术语“基本上”(在没有另一个特定标准的明确规定的情况下)应该认为指代在数量的±5%之内。
描述
图2是包含双向LLC谐振DC/DC转换器的示例双向AC快速充电器的高级框图200。电网210提供AC功率(例如,作为240V单相至480V三相),并且当功率流动的方向被颠倒(例如,作为V2G系统的部分)时吸引AC功率。电网210耦合到初级侧AC/DC整流器220。初级侧AC/DC整流器220经由第一DC母线222耦合到DC/AC逆变器230。DC/AC逆变器230可以包含耦合到电容器和电感性元件的网络、进而耦合到变压器的初级绕组240的两个有源开关(例如,MOSFET)。初级绕组240(例如,经由传导的无线功率转移)与变压器的次级绕组250交换功率。次级绕组250耦合到至少包含执行DC偏置电流阻断的电容器和四个有源开关(例如,MOSFET)的桥式配置的次级侧AC/DC整流器260。次级侧AC/DC整流器260经由第二DC母线262耦合到例如电动车辆(未示出)的电池270。在一个实施方式中,第二DC母线262可以以200V至450V基本上递送11千瓦(kW)的功率到电池270。
一个或多个电池电压和电流传感器280耦合到电池270并且用于监视供应到电池的功率(充电功率)以及从电池向电网返回的功率(放电功率)。在模拟到数字(ADC)转换之后,充电功率/放电功率的测量被供应到实行控制算法的微控制器290(例如,浮点数字信号处理器(DSP))。微控制器290根据控制算法提供控制信号(例如,脉冲宽度调制(PWM)信号)到DC/AC逆变器230和次级侧AC/DC整流器260的有源开关。
图3是示出示例电路的细节的图2的示例双向AC快速充电器的示意图300。为了简单起见,电压和电流传感器280、微控制器290以及将微控制器290耦合到有源开关的任何控制信号路径被省略。电网210将功率AC供应给初级侧AC/DC整流器220的电感性元件L以及二极管和有源开关(统称310)。二极管和有源开关310可以根据全桥PFC拓扑或者某一其他布置来布置,所述全桥PFC拓扑包含在空间矢量脉冲宽度调制(SVPWM)控制下的快速绝缘栅双极型晶体管(IGBT)。初级侧AC/DC整流器220耦合到具有电压VDC的第一DC母线222,所述第一DC母线222耦合到双向LLC谐振DC/DC转换器320的DC/AC逆变器230。DC/AC逆变器230可以包含耦合到电容器Cp1和Cp2和电感性元件Lm的网络的一对有源开关S3和S4。有源开关S3和S4可以是MOSFET。在以上讨论的示例11kW充电器实施方式中,它们可以是600V N沟道功率MOSFET。
DC/AC逆变器130耦合到变压器T的初级侧,所述变压器T例如支持到耦合到次级侧AC/DC整流器260的变压器T的次级侧的传导的无线功率转移。次级侧AC/DC整流器260可以包含执行DC偏置电流阻断的电容器CS以及布置成桥式配置的有源开关S5、S6、S7和S8。有源开关S5、S6、S7和S8可以是MOSFET。在以上讨论的示例11kW充电器实施方式中,它们可以是600VN沟道功率MOSFET。进一步地,在这样的实施方式中,电容器可以是不到1微法拉的空冷(mF)陶瓷电容器。次级侧AC/DC整流器260的输出是在第二DC母线262上的电压Vb,所述第二DC母线262可以耦合到例如电动车辆的电池270(具有电阻Rb)。
图4是可以由图2和3的示例双向AC快速充电器的微控制器实行的示例控制算法的某些步骤400的流程图。在步骤410处,控制算法确定功率例如将从第一DC母线222流动到第二DC母线262(“正向”)以对电池270充电,还是例如从第二DC 262母线流动到第一DC母线222(“反向”)从而对电池放电以将功率返回到电网210。当功率将以正向流动(例如以对电池270充电)时,实行进行到步骤420,在所述步骤420中,控制算法发送控制信号(例如,PWM信号)以用50%占空比来操作DC/AC逆变器230的有源开关S3和S4并且禁止次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。由控制信号(例如,通过它们的调制)控制的开关频率确定功率流动。作为步骤420的部分,控制信号可以设置成提供在开关频率范围之内的初始开关频率。在步骤430处,控制算法确定供应到第二DC母线262的功率(例如,充电功率)是否基本上等于第一目标(例如,电池充电目标)。如果不,实行进行到步骤440,在步骤440中,控制算法在开关频率范围之内增加开关频率以降低在第二DC母线262处的功率或者降低开关频率以增加在第二DC母线处的功率,直到在第二DC母线处的功率基本上等于第一目标(例如,充电功率基本上等于电池充电目标)。如果是,实行结束。
当功率将以反向流动(例如以对电池放电)时,实行进行到步骤450,控制算法发送控制信号(例如,PWM信号)以禁止DC/AC逆变器230的有源开关S3和S4并且用50%占空比来操作次级侧AC/DC整流器260的有源开关S5、S6、S7和S8。作为步骤450的部分,控制信号可以设置成提供在开关频率范围之内的初始开关频率。在步骤460处,控制算法确定从第二DC母线262供应的功率(例如,放电功率)是否基本上等于第二目标(例如,电池放电目标)。如果不,实行进行到步骤470,在步骤470中,控制算法在开关频率范围之内增加开关频率以降低从第二DC母线262供应的功率或者降低开关频率以增加从第二DC母线262供应的功率,直到从第二DC母线供应的功率基本上等于第二目标(例如,放电功率基本上等于电池放电目标)。如果是,实行结束。
可以选择频率范围以保证有源开关S3-S8在软开关下操作。例如,频率范围可以选择为在频率f1与fm之间,其中这些量由以下公式来定义:
其中,Cp是在DC/AC逆变器230中的电容器的电容,L是在初级侧AC/DC整流器220中的电感性元件的电感并且Lm是在次级侧AC/DC整流器260中的电感性元件的电感。
总之,虽然以上描述讨论改进的DC/DC转换器的示例实施例,但是应该理解的是,在不脱离本公开的预期的精神和范围的情况下可以进行修改和/或添加。例如,虽然以上描述讨论DC/DC转换器在(例如,用于电动车辆的)电池充电系统中的示例使用,但是应该理解的是,DC/DC转换器可以用在其他类型的系统(诸如DC电动机驱动、燃料电池能量系统、不间断电源(UPS)或支持双向能量转移的其他类型的能量转移系统)中。相似地,虽然以上讨论了各种特定的硬件部件,但是应该理解的是可以用一个或多个功能上相似的部件取代这样的部件中的每个以实现相似的效果。尤其是,应该理解的是意在仅仅以示例的方式理解以上描述。

Claims (20)

1.一种双向直流电/直流电(DC/DC)转换器,包括:
直流电/交流电(DC/AC)逆变器,所述直流电/交流电(DC/AC)逆变器耦合到第一直流电(DC)母线并且到变压器的初级绕组;
次级侧AC/DC整流器,所述次级侧AC/DC整流器耦合到所述变压器的次级绕组和第二DC母线,所述次级侧AC/DC整流器包含:
电容器,所述电容器执行DC偏置电流阻断,以及
有源开关的桥式配置,所述有源开关耦合到所述电容器和所述次级绕组并且耦合到第二DC母线;以及
微控制器,所述微控制器耦合到所述次级侧AC/DC整流器的有源开关并且配置成根据控制算法向其提供控制信号,所述控制算法配置成:
当功率将从第一DC母线流动到第二DC母线时,发送控制信号以禁止次级侧AC/DC整流器的有源开关,并且
当功率将从第二DC母线流动到第一DC母线时,发送控制信号以用占空比操作次级侧AC/DC整流器的有源开关。
2.根据权利要求1所述的双向DC/DC转换器,其中DC/AC逆变器包含有源开关并且控制算法进一步配置成:
当功率将从第一DC母线流动到第二DC母线时,发送控制信号以用所述占空比操作所述DC/AC逆变器的有源开关;
当功率将从第二DC母线流动到第一DC母线时,发送控制信号以禁止所述DC/AC逆变器的有源开关。
3.根据权利要求2所述的双向DC/DC转换器,其中控制信号是以确定功率流动的开关频率来操作所述DC/AC逆变器的有源开关和所述次级侧AC/DC整流器的有源开关的脉冲宽度调制(PWM)控制信号,并且所述控制算法配置成将开关频率限制在频率范围之内。
4.根据权利要求3所述的双向DC/DC转换器,其中所述频率范围是选择为保证所述DC/AC逆变器的有源开关和所述次级侧AC/DC整流器的有源开关在软开关下操作的范围。
5.根据权利要求3所述的双向DC/DC转换器,其中所述控制算法进一步配置成:
当功率将从第一DC母线流动到第二DC母线时,设置初始开关频率、确定在第二DC母线处的功率是否基本上等于第一目标、增加开关频率以降低在第二DC母线处的功率或者降低开关频率以增加在第二DC母线处的功率,直到在第二DC母线处的功率基本上等于第一目标,并且
当功率将从第二DC母线流动到第一DC母线时,设置初始开关频率、确定从第二DC母线供应的功率是否基本上等于第二目标、并且增加开关频率以降低从第二DC母线供应的功率或者降低开关频率以增加从第二DC母线供应的功率,直到从第二DC母线供应的功率基本上等于第二目标。
6.根据权利要求1所述的双向DC/DC转换器,其中所述次级侧AC/DC整流器的有源开关是金属氧化物半导体场效应晶体管(MOSFET)。
7.根据权利要求6所述的双向DC/DC转换器,其中在第二DC母线处的递送功率基本上等于11千瓦(kW),在第二DC母线处的递送电压范围是200V至450V,电容器大于1微法拉(mF)并且MOSFET是600V N沟道功率MOSFET。
8.根据权利要求1所述的双向DC/DC转换器,其中所述双向DC/DC转换器是包含耦合到电网和第一DC母线的初级侧AC/DC整流器的AC电池充电器的部分,并且其中电池耦合到第二DC母线。
9.根据权利要求8所述的双向DC/DC转换器,其中电池是电动车辆的电池,并且当功率将从第一DC母线流动到第二DC母线时,所述电动车辆的电池被充电,并且当功率将从第二DC母线流动到第一DC母线时,功率被供应回到所述电网。
10.一种用于电动车辆的电池充电器,所述电池充电器包含双向直流电/直流电(DC/DC)转换器,所述电池充电器包括:
初级侧交流电/直流电(AC/DC)整流器,所述初级侧交流电/直流电(AC/DC)整流器耦合到电网和第一直流电(DC)母线;
直流电/交流电(DC/AC)转换器,所述直流电/交流电(DC/AC)转换器耦合到第一DC母线和变压器的初级绕组,DC/AC逆变器包含有源开关;
次级侧AC/DC整流器,所述次级侧AC/DC整流器耦合到所述变压器的次级绕组和电动车辆的电池,所述次级侧AC/DC整流器包含:
电容器,所述电容器执行DC偏置电流阻断,以及
有源开关的桥式配置,所述有源开关耦合到所述电容器和次级绕组;以及
微控制器,所述微控制器耦合到所述DC/AC逆变器和所述次级侧AC/DC整流器的有源开关并且配置成根据控制算法向其提供控制信号,所述控制算法用于:
当功率将从所述电网流动到电池时,发送控制信号以用占空比操作所述DC/AC逆变器的有源开关并且禁止所述次级侧AC/DC整流器的有源开关;
当功率将从电池流动到所述电网时,发送控制信号以禁止所述DC/AC逆变器的有源开关并且用所述占空比操作所述次级侧AC/DC整流器的有源开关。
11.根据权利要求10所述的用于电动车辆的电池充电器,其中控制信号是以确定功率流动的开关频率来操作所述DC/AC逆变器的有源开关和所述次级侧AC/DC整流器的有源开关的脉冲宽度调制(PWM)控制信号,并且所述控制算法配置成将开关频率限制在频率范围之内。
12.根据权利要求10所述的用于电动车辆的电池充电器,其中所述频率范围是选择为保证所述DC/AC逆变器的有源开关和所述次级侧AC/DC整流器的有源开关在软开关下操作的范围。
13.根据权利要求10所述的用于电动车辆的电池充电器,其中所述控制算法进一步配置成:
当功率将从第一DC母线流动到第二DC母线时,设置初始开关频率、确定在第二DC母线处的功率是否基本上等于第一目标、增加开关频率以降低在第二DC母线处的功率或者降低开关频率以增加在第二DC母线处的功率,直到在第二DC母线处的功率基本上等于第一目标,
当功率将从第二DC母线流动到第一DC母线时,设置初始开关频率、确定从第二DC母线供应的功率是否基本上等于第二目标、并且增加开关频率以降低从第二DC母线供应的功率或者降低开关频率以增加从第二DC母线供应的功率,直到从第二DC母线供应的功率基本上等于第二目标。
14.根据权利要求10所述的用于电动车辆的电池充电器,其中所述次级侧AC/DC整流器的有源开关是金属氧化物半导体场效应晶体管(MOSFET)。
15.根据权利要求13所述的用于电动车辆的电池充电器,其中向电动车辆的电池递送的功率基本上等于11千瓦(kW),在电动车辆的电池处的递送的电压范围是200V至450V,电容器大于1微法拉(mF)并且MOSFET是600V N沟道功率MOSFET。
16.根据权利要求15所述的用于电动车辆的电池充电器,其中所述电池充电器包含一个或多个电池电压或电流传感器,并且响应于来自一个或多个电池电压或电流传感器的信号由微控制器设置递送的电压范围。
17.根据权利要求10所述的用于电动车辆的电池充电器,其中双向DC/DC转换器是双向电感器-电感器-电容器(LLC)谐振DC/DC转换器。
18.一种双向直流电/直流电(DC/DC)转换器,包括:
直流电/交流电(DC/AC)逆变器,所述直流电/交流电(DC/AC)逆变器包含耦合到变压器的初级绕组的金属氧化物半导体场效应晶体管(MOSFET);以及
耦合到所述变压器的次级绕组的次级侧交流电/直流电(AC/DC)整流器,所述次级侧交流电/直流电(AC/DC)整流器包含MOSFET的桥式配置;以及
用于控制所述DC/AC逆变器的MOSFET和所述次级侧AC/DC整流器的MOSFET的微控制器,所述微控制器实施如下的控制算法:
当功率将以正向流动时,使能所述DC/AC逆变器的MOSFET并且禁止所述次级侧AC/DC整流器的MOSFET;并且
当功率将以反向流动时,禁止所述DC/AC逆变器的MOSFET并且使能所述次级侧AC/DC整流器的MOSFET。
19.根据权利要求18所述的双向DC/DC转换器,其中控制信号是以开关频率来操作所述DC/AC逆变器的MOSFET和所述次级侧AC/DC整流器的MOSFET的脉冲宽度调制(PWM)信号,并且所述控制算法将开关频率限制在频率范围之内,所述频率范围使得所述DC/AC逆变器的MOSFET和所述次级侧AC/DC整流器的MOSFET在软开关下操作。
20.根据权利要求18所述的双向DC/DC转换器,其中所述双向DC/DC转换器是耦合到所述电网并且耦合到电动车辆的电池的电池充电器的部分,并且其中功率以正向流动以对电动车辆的电池充电并且功率以反向流动以将功率供应回所述电网。
CN201511010833.7A 2015-09-17 2015-12-30 用于充电系统的双向dc/dc转换器 Pending CN106549579A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/857,191 US10560024B2 (en) 2015-09-17 2015-09-17 Bidirectional DC/DC converter for a charging system
US14/857191 2015-09-17

Publications (1)

Publication Number Publication Date
CN106549579A true CN106549579A (zh) 2017-03-29

Family

ID=58276543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511010833.7A Pending CN106549579A (zh) 2015-09-17 2015-12-30 用于充电系统的双向dc/dc转换器

Country Status (2)

Country Link
US (1) US10560024B2 (zh)
CN (1) CN106549579A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808886A (zh) * 2018-01-10 2018-11-13 深圳市思坎普科技有限公司 无线供电系统的发射设备、无线供电系统和无线照明系统
CN113346631A (zh) * 2021-05-13 2021-09-03 北京交通大学 一种非接触式近场双向传能系统控制装置及控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604678B (zh) * 2016-09-07 2017-11-01 國立暨南國際大學 Radio transmission system
EP3503363A1 (en) 2017-12-19 2019-06-26 Koninklijke Philips N.V. Powering microcontrollers
FR3083929B1 (fr) * 2018-07-16 2020-06-19 Renault S.A.S Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
US11404872B2 (en) 2019-04-30 2022-08-02 JBT AeroTech Corporation Airport electric vehicle charging system
FR3096847B1 (fr) * 2019-05-29 2021-04-30 Renault Sas Procédé de commande d’un Convertisseur continu-continu pour un chargeur de batterie d’accumulateurs électriques bidirectionnel
CN110544989A (zh) * 2019-09-27 2019-12-06 国网山东省电力公司济南市历城区供电公司 一种无线传输网络补偿供电系统
US11932130B2 (en) 2021-11-29 2024-03-19 Command Consulting, Llc Mission-critical microgrid

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388040A (en) 1993-09-30 1995-02-07 Hughes Aircraft Company Series resonant converter having an actively controlled third element
US7889524B2 (en) 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
ES2423600T3 (es) * 2009-02-04 2013-09-23 Bayer Intellectual Property Gmbh Estructura en capas y láminas para documentos de identidad con mejores propiedades de grabación con láser
CN105006854A (zh) 2009-07-31 2015-10-28 热之王公司 双向电池电压转换器
US8811039B2 (en) * 2010-07-16 2014-08-19 Virginia Tech Intellectual Properties, Inc. Pulse width modulated resonant power conversion
US9762115B2 (en) 2011-02-03 2017-09-12 Viswa N. Sharma Bidirectional multimode power converter
EP2795781B1 (en) 2011-12-21 2017-02-01 Eaton Industries Company Llc bidirectional resonant converter and method of controlling
US9493088B2 (en) 2011-12-31 2016-11-15 Shenzhen Byd Auto R&D Company Limited Electric automobile and integrated control system thereof
KR20130138954A (ko) 2012-06-12 2013-12-20 현대모비스 주식회사 스마트 그리드용 전기자동차의 양방향 전력 공급장치 및 이를 이용한 양방향 전력 공급방법
US9001539B2 (en) 2012-11-19 2015-04-07 Apple Inc. AC-DC resonant converter that provides high efficiency and high power density
US9356523B2 (en) * 2012-12-28 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. DC-to-DC converter
US20150049515A1 (en) 2013-08-13 2015-02-19 Delphi Technologies, Inc. Resonant converter and method of operating the same
ITMO20130267A1 (it) 2013-09-26 2015-03-27 Meta System Spa Caricabatterie per veicoli elettrici
JP6511224B2 (ja) * 2014-04-23 2019-05-15 日立オートモティブシステムズ株式会社 電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808886A (zh) * 2018-01-10 2018-11-13 深圳市思坎普科技有限公司 无线供电系统的发射设备、无线供电系统和无线照明系统
CN113346631A (zh) * 2021-05-13 2021-09-03 北京交通大学 一种非接触式近场双向传能系统控制装置及控制方法

Also Published As

Publication number Publication date
US10560024B2 (en) 2020-02-11
US20170080808A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
CN106549579A (zh) 用于充电系统的双向dc/dc转换器
CA3060490C (en) Electric vehicle power-hub and operating modes thereof
CN105305406B (zh) 水上应用的dc电力系统
Hu et al. Split converter-fed SRM drive for flexible charging in EV/HEV applications
CN106451696B (zh) 具有固态开关控制的无变压器电流隔离车载充电器
US11097626B2 (en) Vehicle electrical systems, charging system, charging station, and method for transmitting electrical energy
US20170282747A1 (en) Charging system for vehicle battery
EP3776797B1 (en) Charging station for electric vehicles
RU2480348C2 (ru) Гибридное транспортное средство
US9787117B2 (en) Bidirectional battery charger integrated with renewable energy generation
JP2018529307A (ja) 1又は複数の誘導巻線を有する誘導負荷用のコントローラ
US20140265945A1 (en) Electric Drive System
BRPI0904082A2 (pt) circuito de acionamento de motor
CN102484424A (zh) 电力变换装置
US20140232332A1 (en) Charging circuit for an energy storage device, and method for charging an energy storage device
US11699957B2 (en) Energy conversion system, energy conversion method, and power system
Chen et al. Integrated driving/charging/discharging battery-powered four-phase switched reluctance motor drive with two current sensors
US20200016991A1 (en) Conversion device, associated control method and associated vehicle
Singh et al. Charging of electric vehicles battery using bidirectional converter
Surada et al. A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles
Kaźmierkowski et al. Power electronic architecture of supply systems for electric vehicle charging
CN106972752A (zh) 可宽范围调节输出的dc‑dc变换器
Shah et al. Comparative Analysis of Control Algorithms in Isolated Dual Active Bridge for Ultra Fast Charging of Electric Vehicles
Iwanaga et al. A novel type of wireless V2H with single switch dual-active seamless converter in a smart house
US20200122586A1 (en) Vehicle power system with configurable output converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information

Address after: Massachusetts, USA

Applicant after: Conduction Holding Co., Ltd.

Address before: ohio

Applicant before: Conduction Holding Co., Ltd.

CB02 Change of applicant information
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170329

WD01 Invention patent application deemed withdrawn after publication