CN106549084B - 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用 - Google Patents

一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用 Download PDF

Info

Publication number
CN106549084B
CN106549084B CN201610612940.5A CN201610612940A CN106549084B CN 106549084 B CN106549084 B CN 106549084B CN 201610612940 A CN201610612940 A CN 201610612940A CN 106549084 B CN106549084 B CN 106549084B
Authority
CN
China
Prior art keywords
single crystal
layer
chip
high resistivity
crystal zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610612940.5A
Other languages
English (en)
Other versions
CN106549084A (zh
Inventor
黄丰
季旭
董美
严崐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201610612940.5A priority Critical patent/CN106549084B/zh
Priority to PCT/CN2016/095817 priority patent/WO2018018677A1/zh
Publication of CN106549084A publication Critical patent/CN106549084A/zh
Application granted granted Critical
Publication of CN106549084B publication Critical patent/CN106549084B/zh
Priority to US16/212,568 priority patent/US10672940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用。所述制备方法包括如下步骤:S1.制备高电阻率单晶ZnO晶片;S2.在高电阻率单晶ZnO晶片的双侧蒸镀金属电极层;S3.将步骤S2处理后的晶片结合到电路板上,并通过金线将晶片与电路板相连接。同时采用α源对器件性能进行测试,器件表现出了良好的辐射响应。本发明采用具有更强抗辐照能力、更宽带隙、更高的击穿电场强度等优异特性的高阻ZnO材料进行辐射探测器件的制造,所得器件结构简单、制造工艺简单、成本低,可重复性高,质量好,其具有强的抗辐射能力,具有较高的实用性,推广应用前景好。

Description

一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用
技术领域
本发明属于辐射探测器技术领域。更具体地,涉及一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用。
背景技术
在众多军事、国防、航天等领域,探测器需要同时具备高的灵敏度、小型化、抗辐照能力强等特性。与传统气体辐射探测器通过气体离化产生探测信号所需要的平均辐射能量(~30eV)相比,半导体材料产生一对电子空穴对所需的平均辐射能量<10eV,因此在同样的辐射能量下,特别是对于弱信号,半导体材料的灵敏度比气体要高;同时,由于半导体材料较之气体密度大,很薄的一层半导体材料(几微米)就可以有效地转换吸收的辐射能量,在器件小型化方面具有天然优势;另外半导体材料本身的机械强度可以很好地自支撑,方便集成化构建探测器阵列,从而实现探测目标位置信息的获得。
由于材料上的优势以及配套成熟发展的微电子加工技术,以IV族硅、锗为代表的元素半导体基X射线探测器件发展最早。与硅相比,锗的优势在于其相对大的原子数与低的电子空穴对产生能,这使得锗基探测器具有较高的效率和能量分辨率。
但是,无论硅还是锗都因其较窄的带隙而对环境温度敏感、抗辐射能力弱,因而将其装备到太空环境下工作的系统中受到较大的限制。另一方面,对于化合物半导体,如III-V族化合物GaAs、InGaAs、GaN,II-VI族化合物CdTe(能量分辨率0.3%@662keV伽玛射线,需要Peltire制冷)、CdZnTe,VII-B族二元卤族化合物HgI2、PbI2、TlBr以及它们的三元化合物HgCdTe等,这些材料大多数都存在熔点低、易分解、抗辐照能力弱的缺点,基于其所搭建器件性能的稳定性及可靠性难以保证,这些问题大大限制了相关探测器件在核电站、太空等苛刻环境中的应用。
发明内容
本发明要解决的技术问题是克服上述现有技术的缺陷和不足,提供一种基于高电阻率单晶氧化锌材料进行α粒子探测的半导体器件,制备方法包括以下步骤:高阻单晶ZnO晶片在电子束或热蒸镀方法下进行双侧金属电极的制备,然后将晶片制作到电路板上方便测试,同时采用α源对器件性能进行测试,器件表现出了良好的辐射响应。本发明采用具有更强抗辐照能力、更宽带隙、更高的击穿电场强度等优异特性的高阻ZnO材料进行辐射探测器件的制造。所得器件结构简单、成本低,可重复性高。
本发明的目的是提供一种高电阻率单晶ZnO基辐射探测器件。
本发明另一目的是所述高电阻率单晶ZnO基辐射探测器件的制备方法。
本发明的另一目的是提供所述高电阻率单晶ZnO基辐射探测器件的应用。
本发明上述目的通过以下技术方案实现:
一种高电阻率单晶ZnO基辐射探测器件的制备方法,包括如下步骤:
S1.制备高电阻率单晶ZnO晶片;
S2.在高电阻率单晶ZnO晶片的双侧蒸镀金属电极层;
S3.将步骤S2处理后的晶片结合到电路板上,并通过金线将晶片与电路板相连接。
其中,优选地,步骤S2所述蒸镀的方法为热蒸镀或电子束蒸镀方法。
优选地,步骤S2所述在高电阻率单晶ZnO晶片的双侧蒸镀金属电极层具体是:在高电阻率单晶ZnO晶片的一侧蒸镀内金属层和外金属层,所述内金属层为镍层或钛层,所述外金属层为金层;在高电阻率单晶ZnO晶片的另一侧蒸镀铟层,或者采用同样的镍层、钛层或铝层并结合金层或银层的电极结,即在高电阻率单晶ZnO晶片的另一侧同样蒸镀内金属层和外金属层,所述内金属层为镍层、钛层或铝层,所述外金属层为金层或银层。
优选地,所述镍层的厚度为4~6nm。
更优选地,所述镍层的厚度为5nm。
优选地,所述钛层的厚度为5~50nm。
更优选地,所述钛层的厚度为35nm。
优选地,所述金层的厚度为10~50nm。
更优选地,所述金层的厚度为20nm。
优选地,步骤S2所述金属的纯度为999~9999。
优选地,所述铟层的厚度为1μm~500μm。
优选地,步骤S3所述晶片结合到电路板上的具体方法是:通过加热使一侧的金属层熔融,利用熔融的金属将晶片结合到电路板上。
具体优选地,步骤S3所述晶片结合到电路板上的具体方法是:是通过加热使一侧的铟层熔融,利用熔融的铟将晶片结合到电路板上。
另外,优选地,步骤S1所述高电阻率单晶ZnO晶片的制备方法如下:将单晶ZnO晶片置于金属锂电化学装置中,恒流放电处理后,放于800~1000℃、10~30atm的氧气气氛中退火处理20~28小时,即可得到高电阻率ZnO单晶片。
该制备高电阻率单晶ZnO晶片的方法中,首先利用锂与ZnO天然化学位能的差异,采取可控的放电过程,实现锂在ZnO中的高效注入。
优选地,所述的单晶ZnO晶片为低阻高质量单晶ZnO晶片。
优选地,所述金属锂电化学装置内的电解液为0.5~1.5M LiPF6溶液分散于体积比为2~5:2~4:2~4的碳酸亚乙酯、碳酸甲乙酯和碳酸二乙酯混合溶液,采用Celgard2400聚乙烯多微孔膜做为电子隔膜。
更优选地,所述金属锂电化学装置内的电解液为1M LiPF6溶液分散于体积比为4:3:3的碳酸亚乙酯、碳酸甲乙酯和碳酸二乙酯混合溶液。
作为一种优选的可实施方案,所述金属锂电化学装置为锂电池壳。使用时,将ZnO晶片放于商用的锂电池结构中恒流放电处理。
优选地,所述将单晶ZnO晶片置于金属锂电化学装置中的方法具体是按照如下顺序将单晶ZnO晶片装配到锂电池壳中:正级壳、单晶ZnO晶片、聚乙烯多微孔膜、金属锂片、闪电极、弹簧电极、负极壳,外圈是绝缘套层。
另外,优选地,所述恒流放电处理是2~4uA恒流放电处理10~25小时。
优选地,所述恒流放电处理是3uA恒流放电处理15小时。
另外,优选地,所述的单晶ZnO晶片的大小为10厘米见方。
优选地,所述的单晶ZnO晶片的厚度为0.2~0.5毫米。
更优选地,是当单晶ZnO晶片的厚度为0.2毫米时,3uA恒流放电处理10小时;当单晶ZnO晶片的厚度为0.3毫米时,3uA恒流放电处理15小时;单晶ZnO晶片的厚度为0.5毫米时,3uA恒流放电处理25小时。
优选地,恒流放电处理后的ZnO单晶放于800~900℃、15~25atm的氧气气氛炉中退火处理22~26小时。
更优选地,恒流放电处理后的ZnO单晶放于800℃、20atm的高压氧气气氛炉中退火处理24小时。
另外,由上述方法制备得到的高电阻率单晶ZnO基辐射探测器件,以及所述高电阻率单晶ZnO基辐射探测器件在制备辐射探测器方面的应用,也都在本发明的保护范围之内。
本发明制备高电阻率单晶ZnO基辐射探测器件的研究包括以下几个关键点:
(1)高质量高电阻率单晶ZnO晶片做为辐射探测器件的核心功能组件。
(2)采用热蒸镀及电子束蒸镀方法在ZnO单晶片上进行电极的制备。
(3)采用α源对器件进行辐射,从而测试器件对辐射的响应。
本发明具有以下有益效果:
本发明提供了一种高电阻率单晶ZnO基辐射探测器的制造方法,并验证了其对低束流单能或双能α源的响应,表现出了良好的辐射响应。
本发明采用具有更强抗辐照能力、更宽带隙、更高的击穿电场强度等优异特性的高阻ZnO材料进行辐射探测器件的制造,所得器件结构简单、制造工艺简单,成本低,可重复性高,具有较高的实用性,具有很好的推广应用前景。
而且,本发明采用高质量高电阻率的ZnO单晶为功能材料,其具有强的抗辐射能力,决定了器件可以在核科学技术领域以及太空等较强辐射条件下的工作。
本发明采用较成熟的热蒸镀或电子束蒸镀的办法,其具有成膜厚度均匀可控的特点,保证了高质量的电极质量,而且可以实现大部分金属的电极蒸镀,为电极选择控制器件性能提供了广阔的制造空间。
本发明采用束流量较低的单能α源做为辐射源,可以较好地反应出器件对探测信号的灵敏度,可以较好地反应出器件对探测信号能量上的区分度。
附图说明
图1为制备高电阻率单晶ZnO时低阻氧化锌晶格置于金属锂电池壳的电化学池配置顺序图。
图2是实施例1的高电阻率ZnO器件的装配结构图。
图3是实施例1的α粒子测试响应数据。
图4是实施例2的高电阻率ZnO器件的装配结构图。
图5是实施例2的α粒子测试响应数据。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,本发明所用试剂和材料均为市购。
实施例1
1、制备高电阻率ZnO单晶
(1)室温下在氩气填充的手套箱中,将10厘米见方的高质量低阻氧化锌晶片按图1所示顺序装配到商用CR 2032电池壳中,其中所用到的电解液为1M LiPF6溶液分散于体积比为4:3:3的碳酸亚乙酯、碳酸甲乙酯和碳酸二乙酯混合溶液中,采用Celgard 2400聚乙烯多微孔膜做为电子隔膜。
通过LAND BT2013A多通道电池测试系统在室温下进行恒流放电处理,实现锂在ZnO单晶中的注入。
本实施例所用高质量低阻氧化锌晶片的厚度0.3毫米,恒流放电电流设定为3微安,放电时间设定为15小时。
(2)将上述步骤(1)处理过的进锂氧化锌晶片放置于高温高压退火炉中,进行晶格中锂的去除,得到高电阻率ZnO单晶片。
本实施例所用的锂去除装置,其可承受高温高压氧气气氛,按实验需求,氧压设为20标准大气压,温度设为800摄氏度,退火时间设为24小时。
上述制备得到的高电阻率ZnO单晶片的电阻率为1011Ωcm,比处理之前提高了1011
2、制备高电阻率单晶ZnO基辐射探测器件
采用热/电子束蒸镀方法,按照如图2所示的顺序,在高电阻率ZnO晶片一侧表面上蒸镀5nm镍、20nm金的双层金属电极,其中所用到的金属纯度为999~9999。
随后在ZnO晶片另一面上镀较厚(1μm~500μm)的金属铟电极。
双侧电极均为形成良好的电接触。
通过加热器件利用熔融的铟将晶片结合到电路板上。并通过金线将晶片与电路板相连接。
3、测试
将得到的高电阻率单晶ZnO基辐射探测器件置于真空中,从而减少α粒子在飞行过程中的能量损失。探测器件响应测试采用从241Am辐射源发出的5.486MeV的α射线照射探测器。由前段放大器进行计数,信号接着传送到主放大器并传送给多道分析器,最终通过微机采集信号,如图3所示。
以上结果表明了,基于高电阻率单晶ZnO探测器件在辐射探测领域具有明显的实用能力,特别其对于弱α源的有效响应更是体现了器件的灵敏性。
实施例2
1、制备高电阻率ZnO单晶,方法同实施例1。
2、制备高电阻率单晶ZnO基辐射探测器件
采用热/电子束蒸镀方法,按照如图4所示的顺序,在高电阻率ZnO晶片一侧表面上蒸镀的35nm钛、20nm金的双层金属电极。
随后在ZnO晶片另一面上镀较厚的金属铟电极。
双侧电极均为形成良好的电接触。
通过加热器件利用熔融的铟将晶片结合到电路板上。并通过金线将晶片与电路板相连接。
3、测试
将得到的高阻ZnO基探测器件置于真空中,从而减少α粒子在飞行过程中的能量损失。探测器响应测试采用从243Am-244Cm双能辐射α射线源照射探测器。由前段放大器进行计数,信号接着传送到主放大器并传送给多道分析器,最终通过微机采集信号,如图5所示。
以上结果表明了,基于高电阻率单晶ZnO探测器件在辐射探测领域具有明显的实用能力,特别其对于双α源的有效响应并区分体现了器件具有优良的能量分辨能力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种高电阻率单晶ZnO基辐射探测器件的制备方法,其特征在于,包括如下步骤:
S1.制备高电阻率单晶ZnO晶片:将单晶ZnO晶片置于金属锂电化学装置中,恒流放电处理后,放于800~1000℃、10~30atm的氧气气氛中退火处理20~28小时,即可得到高电阻率ZnO单晶片;
S2.在高电阻率单晶ZnO晶片的双侧蒸镀金属电极层;
S3.将步骤S2处理后的晶片结合到电路板上,并通过金线将晶片与电路板相连接。
2.根据权利要求1所述的制备方法,其特征在于,步骤S2所述蒸镀的方法为热蒸镀或电子束蒸镀方法。
3.根据权利要求1所述的制备方法,其特征在于,步骤S2所述在高电阻率单晶ZnO晶片的双侧蒸镀金属电极层具体是:在高电阻率单晶ZnO晶片的一侧蒸镀内金属层和外金属层,所述内金属层为镍层、钛层或铝层,所述外金属层为金层或银层;在高电阻率单晶ZnO晶片的另一侧蒸镀铟层,或者在高电阻率单晶ZnO晶片的另一侧同样蒸镀内金属层和外金属层,所述内金属层为镍层、钛层或铝层,所述外金属层为金层或银层。
4.根据权利要求1所述的制备方法,其特征在于,步骤S2所述金属的纯度为999~9999。
5.根据权利要求3所述的制备方法,其特征在于,所述镍层的厚度为4~6nm,所述钛层的厚度为5~50nm,所述金层的厚度为10~50nm。
6.根据权利要求3所述的制备方法,其特征在于,所述铟层的厚度为1µm~500µm。
7.根据权利要求1所述的制备方法,其特征在于,步骤S3所述晶片结合到电路板上的具体方法是:通过加热使一侧的金属层熔融,利用熔融的金属将晶片结合到电路板上。
8.根据权利要求1~7任一所述方法制备得到的高电阻率单晶ZnO基辐射探测器件。
9.权利要求8所述的高电阻率单晶ZnO基辐射探测器件在制备辐射探测器方面的应用。
CN201610612940.5A 2016-07-29 2016-07-29 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用 Active CN106549084B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610612940.5A CN106549084B (zh) 2016-07-29 2016-07-29 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用
PCT/CN2016/095817 WO2018018677A1 (zh) 2016-07-29 2016-08-18 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用
US16/212,568 US10672940B2 (en) 2016-07-29 2018-12-06 High-resistivity single crystal zinc oxide wafer based radiation detector and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610612940.5A CN106549084B (zh) 2016-07-29 2016-07-29 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106549084A CN106549084A (zh) 2017-03-29
CN106549084B true CN106549084B (zh) 2018-04-24

Family

ID=58367817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610612940.5A Active CN106549084B (zh) 2016-07-29 2016-07-29 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106549084B (zh)
WO (1) WO2018018677A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994118B (zh) * 2017-11-13 2019-10-01 华中科技大学鄂州工业技术研究院 钙钛矿太阳能电池、双层金属电极及其制备方法
CN110310966A (zh) * 2019-06-20 2019-10-08 中国电子科技集团公司第十一研究所 一种碲镉汞芯片及其加工方法
CN114883442B (zh) * 2022-05-12 2023-05-12 东华理工大学 一种CsPbBr3核辐射探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044415A (zh) * 2004-08-23 2007-09-26 纳米自旋电子学有限公司 电离辐射探测器
DE202009006620U1 (de) * 2009-05-07 2009-08-06 Tyntek Corporation Lichtsensor
CN103046133A (zh) * 2011-10-17 2013-04-17 中国科学院福建物质结构研究所 一种提高氧化锌单晶电阻率的退火方法
CN103794674A (zh) * 2014-01-13 2014-05-14 西安交通大学 基于高阻ZnO单晶的光电导型X射线探测器及其制备方法
CN105742393A (zh) * 2016-04-28 2016-07-06 西安交通大学 基于高阻ZnO薄膜的光电导型X射线探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858385B2 (ja) * 2012-08-07 2016-02-10 住友化学株式会社 圧電体素子、圧電体デバイス及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101044415A (zh) * 2004-08-23 2007-09-26 纳米自旋电子学有限公司 电离辐射探测器
DE202009006620U1 (de) * 2009-05-07 2009-08-06 Tyntek Corporation Lichtsensor
CN103046133A (zh) * 2011-10-17 2013-04-17 中国科学院福建物质结构研究所 一种提高氧化锌单晶电阻率的退火方法
CN103794674A (zh) * 2014-01-13 2014-05-14 西安交通大学 基于高阻ZnO单晶的光电导型X射线探测器及其制备方法
CN105742393A (zh) * 2016-04-28 2016-07-06 西安交通大学 基于高阻ZnO薄膜的光电导型X射线探测器及其制备方法

Also Published As

Publication number Publication date
WO2018018677A1 (zh) 2018-02-01
CN106549084A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
Kataoka et al. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application
Boukamp et al. Lithium ion conductivity in lithium nitride
EP2186150B1 (en) Method
US10115999B2 (en) All-solid-state lithium-ion secondary battery including a solid electrolyte and an intermediate layer
CN106549084B (zh) 一种高电阻率单晶ZnO基辐射探测器件及其制备方法和应用
US20110049379A1 (en) Neutron detectors made of inorganic materials and their method of fabrication
CN109742178B (zh) 一种透红外的高灵敏可见光探测器及其制备方法
JP2010245238A (ja) 光電変換装置およびその製造方法ならびに硫化物焼結体ターゲットの製造方法
Chory et al. Synthesis and characterization of Cu2ZnSnS4
US20190386302A1 (en) Lithium-ion rechargeable battery and positive electrode active material
Yersak et al. Derivation of an iron pyrite all-solid-state composite electrode with ferrophosphorus, sulfur, and lithium sulfide as precursors
CN105144400B (zh) 太阳能发电模块
US10672940B2 (en) High-resistivity single crystal zinc oxide wafer based radiation detector and preparation method and use thereof
JP2016027563A (ja) 固体電解質、リチウム電池及びリチウム空気電池
CN107968135A (zh) 非制冷型红外光探测器及其制备方法
CN109243659B (zh) 一种基于碳化硅材料的微型核电池及其制备方法
US20110232729A1 (en) Solar battery element and method for producing the solar battery element
GB2480676A (en) Radiation Detector
CN115566251A (zh) 可在低温工作的柔性全固态光热锂硫电池及其制备方法
Lin et al. NiCl2 cathode with the high load capacity for high specific power thermal battery
CN106065493B (zh) 一种高电阻率单晶氧化锌及其制备方法和应用
CN110024154A (zh) 半导体固体电池
JP6977929B2 (ja) 半導体固体電池
US10854913B2 (en) Solid electrolyte and all-solid battery
KR0134930B1 (ko) 이차전지용 리튬 망간 산화물 박막전극 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant