CN106547300A - 一种低功耗低温度系数的电压基准源电路 - Google Patents

一种低功耗低温度系数的电压基准源电路 Download PDF

Info

Publication number
CN106547300A
CN106547300A CN201710016488.0A CN201710016488A CN106547300A CN 106547300 A CN106547300 A CN 106547300A CN 201710016488 A CN201710016488 A CN 201710016488A CN 106547300 A CN106547300 A CN 106547300A
Authority
CN
China
Prior art keywords
drain electrode
grid
source
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710016488.0A
Other languages
English (en)
Other versions
CN106547300B (zh
Inventor
段志奎
陈建文
吴江旭
王兴波
谭海曙
朱珍
于昕梅
樊耘
杨发权
肖永豪
周月霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Guotai Bai an information technology Wood Co., Ltd.
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201710016488.0A priority Critical patent/CN106547300B/zh
Publication of CN106547300A publication Critical patent/CN106547300A/zh
Application granted granted Critical
Publication of CN106547300B publication Critical patent/CN106547300B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种低功耗低温度系数的电压基准源电路,其特征在于包括PTAT电流产生电路和负载电路;PTAT电流产生电路与负载电路一端相连,基准电压源由所述负载电路输出,所述PTAT电流产生电路由PM0、PM1、PM2、PM3、NM0、NM1、NM2、NM5和NM6组成,PM0、PM1、PM2、PM3为PMOS管,NM0、NM1、NM2、NM5和NM6为NMOS管。本发明与已有技术相比,具有即使是低电压,甚至是超低电压下,也能正常工作的优点。

Description

一种低功耗低温度系数的电压基准源电路
技术领域
本发明涉及芯片的电压基准源技术领域,尤其涉及一种低功耗低温度系数的电压基准源电路。
背景技术
基准电压源是集成电路中极为重要的模块,广泛应用于模拟、数字、模数混合电路中,特别是在数模转化器和模数转换器等系统中。对模拟系统而言,基准电压源的性能直接影响整个系统的精度,而基准电压源的性能主要受温度的影响,因此需要设计出一种输出与温度无关的基准电压源。
传统的基准电压源采用带隙基准技术设计,这些设计中,都是利用双极型晶体管的基极—发射极电压具有负温度特性,而工作在不同电流密度下的基极—发射极电压之差则具有正温度特性,两者相互补偿可得到与温度无关的输出电压。
采用带隙基准技术设计的基准电压源的输出电压大于1V,其典型值是1.25V,而当今由于移动电子设备的增多,要求模拟集成电路的电源电压能够降至1V左右,功耗在 uW量级上,降低功耗的一个重要方法就是降低电源电压,因此带隙基准难以达到低功耗要求。与此同时,随着CMOS工艺发展到深亚微米,一些标准CMOS工艺未提供三极管器件,带隙基准不再适用。
发明内容
本发明的目的在于克服现有技术的不足,本发明提供了一种输出的基准电压源低于1V,室温下功耗低于1uW的低功耗低温度系数的电压基准源电路。
为了解决上述技术问题,本发明的技术方案为:
一种低功耗低温度系数基准电压源电路,包括PTAT电流产生电路和负载电路;PTAT电流产生电路与负载电路一端相连,基准电压源由所述负载电路输出,所述PTAT电流产生电路由PM0、PM1、PM2、PM3、NM0、NM1、NM2、NM3、NM5和NM6组成,PM0、PM1、PM2、PM3为PMOS管,NM0、NM1、NM2、NM3、NM5和NM6为NMOS管,PM0漏极d与NM3漏极d连接,PM0栅极g与PM2栅极d连接,PM0源极s与电源VDD连接,PM0衬底与电源VDD相连;PM1漏极d与其栅极g连接,PM1源极s与电源VDD连接,PM1衬底接电源VDD;PM2漏极d与其栅极g连接,PM2源极s与电源VDD连接,PM2衬底与电源VDD连接;PM3漏极d与NM1漏极d连接,PM3栅极g与PM1栅极g连接,PM3源极s与电源VDD连接,PM3衬底与电源VDD连接;NM0漏极d与PM1漏极d连接,NM0栅极g与NM3栅极g连接,NM0源极s与NM6漏极d连接,NM0衬底接地GND;NM1漏极d与其栅极g连接,NM1源极s接地GND,NM1衬底接地GND;NM2漏极d与PM2漏极d连接,NM2栅极g与NM1栅极g连接,NM2源极s与NM5漏极d连接,NM2衬底接地GND;NM3漏极d与其栅极g连接,NM3源极s接地GND,衬底接地GND;NM5漏极d与NM2源极s连接,NM5栅极g与NM1栅极g连接,NM5源极s接地GND,接地GND衬底接地GND;NM6漏极d与NM2源极s连接,NM6栅极g与NM3栅极g连接,NM6源极s接地GND,NM6衬底与地GND连接,所述负载电路由PM4和NM4组成,PM4漏极d与NM4漏极d连接,PM4栅极g与PM3栅极g连接,PM4源极s与电源VDD连接,PM4衬底与电源VDD连接,NM4漏极d与其栅极g连接,NM4源极s接地GND,NM4衬底与地GND连接,所述基准电压由NM4漏极d输出,NM0、NM1、NM2、NM3的NMOS管的物理性能是这样的,NM3、NM1与NM2、NM0的Vth(阀值电压)均不相同,而且,Vth3-Vth0=Vth1-Vth2,NM0的漏极电流I0等于NM2的漏极电流I2,NM1的漏极电流I1等于NM3的漏极电流I3
在本发明实施例中, PM0、PM1、PM2、PM3、NM0、NM1、NM2、NM3、NM5和NM6构成PTAT电流产生电路,PTAT电流产生电路用来给负载电路中提供电流,这种电流与绝对温度成正比,且与电源VDD无关;负载电路由PM4、NM4构成,PM4与PTAT电流产生电路中的PM1组成电流镜,将PTAT电路中产生的电流复制到负载电路中,这样从NM4漏极得到的基准电压可以达到零温度系数。
与现有技术相比,本发明的有益效果为:避免了使用三极管带来的与标准CMOS工艺不兼容的问题,避免使用电阻,大大减小了芯片面积,本发明得到的基准电压源电压低于1V,符合当今电子设备低电源电压和低功耗的发展趋势。
附图说明
图1为本发明的电路图。
具体实施方式
现结合附图和实施例对本发明做进一步详细描述:
包括PTAT电流产生电路和负载电路;PTAT电流产生电路与负载电路一端相连,基准电压源由所述负载电路输出,所述PTAT电流产生电路由PM0、PM1、PM2、PM3、NM0、NM1、NM2、NM5和NM6组成,PM0、PM1、PM2、PM3为PMOS管,NM0、NM1、NM2、NM5和NM6为NMOS管,PM0漏极d与NM3漏极d连接,PM0栅极g与PM2栅极d连接,PM0源极s与电源VDD连接,PM0衬底与电源VDD相连;PM1漏极d与其栅极g连接,PM1源极s与电源VDD连接,PM1衬底接电源VDD;PM2漏极d与其栅极g连接,PM2源极s与电源VDD连接,PM2衬底与电源VDD连接;PM3漏极d与NM1漏极d连接,PM3栅极g与PM1栅极g连接,PM3源极s与电源VDD连接,PM3衬底与电源VDD连接;NM0漏极d与PM1漏极d连接,NM0栅极g与NM3栅极g连接,NM0源极s与NM6漏极d连接,NM0衬底接地GND;NM1漏极d与其栅极g连接,NM1源极s接地GND,NM1衬底接地GND;NM2漏极d与PM2漏极d连接,NM2栅极g与NM1栅极g连接,NM2源极s与NM5漏极d连接,NM2衬底接地GND;NM3漏极d与其栅极g连接,NM3源极s接地GND,衬底接地GND;NM5漏极d与NM2源极s连接,NM5栅极g与NM1栅极g连接,NM5源极s接地GND,接地GND衬底接地GND;NM6漏极d与NM2源极s连接,NM6栅极g与NM3栅极g连接,NM6源极s接地GND,NM6衬底与地GND连接,所述负载电路由PM4和NM4组成,PM4漏极d与NM4漏极d连接,PM4栅极g与PM3栅极g连接,PM4源极s与电源VDD连接,PM4衬底与电源VDD连接,NM4漏极d与其栅极g连接,NM4源极s接地GND,NM4衬底与地GND连接,所述基准电压由NM4漏极d输出,NM0、NM1、NM2、NM3的NMOS管的物理性能是这样的,NM3、NM1与NM2、NM0的Vth(阀值电压)均不相同,而且,Vth3-Vth0= Vth1-Vth2,NM0的漏极电流I0等于NM2的漏极电流I2,NM1的漏极电流I1等于NM3的漏极电流I3
本发明的电路原理是:
电路中由于NM1、NM3的NMOS管处于饱和区,而NM0、NM2的NMOS管处于亚阀值区,因此,NM0、NM1、NM2、NM3的NMOS管具有以下的特性:
上式中表示热电压,K、q是一常数,T是温度,表示特征电流,m>1是一非理想因子,VGS是栅极、源极间的电压差,Vth是阀值电压,μn表示MOS管的电子迁移率,Cox表示MOS管栅极氧化层电容,W表示MOS管栅极宽度,L表示MOS管栅极长度。将上下两式相减,得到两个等式:
因为NM5和NM6的漏极电位相等,所以式等于式,由于选择的NM3和NM1、NM0与NM2的阈值电压相同,所以有Vth3-Vth0= Vth1-Vth2,PM0和PM2组成电流镜,将NM3的漏极电流等比例复制给NM2,PM1和PM3组成电流镜,将NM1的漏极电流等比例复制给NM0,所以NM3与NM2的漏极电流相等,NM1与NM0的漏极电流相等,同时根据NMOS管的电流特性,通过设置MOS管的宽长比K,在K3不等于K1和K0不等于K2的情况下,也能使NM0的漏极电流I0等于NM2的漏极电流I2,NM1的漏极电流I1等于NM3的漏极电流I3,这样就得到:
由于,最终得到的表达式:
PM1、PM4组成电流镜,于是有,NM4是二极管连接形式,于是可以得到基准电压的表达式:
因为有,,调整系数就可以得到
在Hspice仿真器下本基准电压源在-15~150℃的温度范围内具有6.1ppm/℃的温度系数,输出基准电压在593.5mV~594.1mV之间,电源电压,室温下功耗为714.7nW。

Claims (1)

1.一种低功耗低温度系数的电压基准源电路,其特征在于包括PTAT电流产生电路和负载电路;PTAT电流产生电路与负载电路一端相连,基准电压源由所述负载电路输出,所述PTAT电流产生电路由PM0、PM1、PM2、PM3、NM0、NM1、NM2、NM3、NM5和NM6组成,PM0、PM1、PM2、PM3为PMOS管,NM0、NM1、NM2、NM3、NM5和NM6为NMOS管,PM0漏极d与NM3漏极d连接,PM0栅极g与PM2栅极d连接,PM0源极s与电源VDD连接,PM0衬底与电源VDD相连;PM1漏极d与其栅极g连接,PM1源极s与电源VDD连接,PM1衬底接电源VDD;PM2漏极d与其栅极g连接,PM2源极s与电源VDD连接,PM2衬底与电源VDD连接;PM3漏极d与NM1漏极d连接,PM3栅极g与PM1栅极g连接,PM3源极s与电源VDD连接,PM3衬底与电源VDD连接;NM0漏极d与PM1漏极d连接,NM0栅极g与NM3栅极g连接,NM0源极s与NM6漏极d连接,NM0衬底接地GND;NM1漏极d与其栅极g连接,NM1源极s接地GND,NM1衬底接地GND;NM2漏极d与PM2漏极d连接,NM2栅极g与NM1栅极g连接,NM2源极s与NM5漏极d连接,NM2衬底接地GND;NM3漏极d与其栅极g连接,NM3源极s接地GND,衬底接地GND;NM5漏极d与NM2源极s连接,NM5栅极g与NM1栅极g连接,NM5源极s接地GND,接地GND衬底接地GND;NM6漏极d与NM2源极s连接,NM6栅极g与NM3栅极g连接,NM6源极s接地GND,NM6衬底与地GND连接,所述负载电路由PM4和NM4组成,PM4漏极d与NM4漏极d连接,PM4栅极g与PM3栅极g连接,PM4源极s与电源VDD连接,PM4衬底与电源VDD连接,NM4漏极d与其栅极g连接,NM4源极s接地GND,NM4衬底与地GND连接,所述基准电压由NM4漏极d输出,NM0、NM1、NM2、NM3的NMOS管的物理性能是这样的,NM3、NM1与NM2、NM0的阀值电压Vth不相同,而且,Vth3-Vth0= Vth1-Vth2,NM0的漏极电流I0等于NM2的漏极电流I2,NM1的漏极电流I1等于NM3的漏极电流I3
CN201710016488.0A 2017-01-10 2017-01-10 一种低功耗低温度系数的电压基准源电路 Expired - Fee Related CN106547300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710016488.0A CN106547300B (zh) 2017-01-10 2017-01-10 一种低功耗低温度系数的电压基准源电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710016488.0A CN106547300B (zh) 2017-01-10 2017-01-10 一种低功耗低温度系数的电压基准源电路

Publications (2)

Publication Number Publication Date
CN106547300A true CN106547300A (zh) 2017-03-29
CN106547300B CN106547300B (zh) 2017-10-13

Family

ID=58396479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710016488.0A Expired - Fee Related CN106547300B (zh) 2017-01-10 2017-01-10 一种低功耗低温度系数的电压基准源电路

Country Status (1)

Country Link
CN (1) CN106547300B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292050B1 (en) * 1997-01-29 2001-09-18 Cardiac Pacemakers, Inc. Current and temperature compensated voltage reference having improved power supply rejection
US20080284493A1 (en) * 2007-05-18 2008-11-20 Samsung Electronics Co., Ltd. Proportional to absolute temperature current generation circuit having higher temperature coefficient, display device including the same, and method thereof
US20090039861A1 (en) * 2004-12-07 2009-02-12 Koninklijke Philips Electronics N.V. Reference voltage generator providing a temperature-compensated output voltage
CN102411392A (zh) * 2010-09-17 2012-04-11 泰勒斯公司 超低电流发生器和使用这样的发生器的电压调节器
CN103309392A (zh) * 2013-06-03 2013-09-18 电子科技大学 一种二阶温度补偿的无运放全cmos基准电压源
CN104166422A (zh) * 2014-08-27 2014-11-26 电子科技大学 一种输出可调的无电阻非带隙基准源
CN105242738A (zh) * 2015-11-25 2016-01-13 成都信息工程大学 一种无电阻基准电压源
CN205375264U (zh) * 2016-01-19 2016-07-06 桂林电子科技大学 一种无Bipolar晶体管的CMOS基准电压源
CN206331318U (zh) * 2017-01-10 2017-07-14 佛山科学技术学院 一种低功耗低温度系数的电压基准源电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292050B1 (en) * 1997-01-29 2001-09-18 Cardiac Pacemakers, Inc. Current and temperature compensated voltage reference having improved power supply rejection
US20090039861A1 (en) * 2004-12-07 2009-02-12 Koninklijke Philips Electronics N.V. Reference voltage generator providing a temperature-compensated output voltage
US20080284493A1 (en) * 2007-05-18 2008-11-20 Samsung Electronics Co., Ltd. Proportional to absolute temperature current generation circuit having higher temperature coefficient, display device including the same, and method thereof
CN102411392A (zh) * 2010-09-17 2012-04-11 泰勒斯公司 超低电流发生器和使用这样的发生器的电压调节器
CN103309392A (zh) * 2013-06-03 2013-09-18 电子科技大学 一种二阶温度补偿的无运放全cmos基准电压源
CN104166422A (zh) * 2014-08-27 2014-11-26 电子科技大学 一种输出可调的无电阻非带隙基准源
CN105242738A (zh) * 2015-11-25 2016-01-13 成都信息工程大学 一种无电阻基准电压源
CN205375264U (zh) * 2016-01-19 2016-07-06 桂林电子科技大学 一种无Bipolar晶体管的CMOS基准电压源
CN206331318U (zh) * 2017-01-10 2017-07-14 佛山科学技术学院 一种低功耗低温度系数的电压基准源电路

Also Published As

Publication number Publication date
CN106547300B (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
CN106843358B (zh) 一种高电源抑制比全cmos基准电压源
CN106527572B (zh) 一种低功耗低温漂cmos亚阈值基准电路
CN107272819B (zh) 一种低功耗低温漂cmos亚阈值基准电路
CN107861557B (zh) 一种mos管实现二极管的高阶温度补偿带隙基准电路
CN107390757B (zh) 一种低功耗低温漂cmos亚阈值基准电路
CN105468085B (zh) 一种无Bipolar晶体管的CMOS基准电压源
CN107992156B (zh) 一种亚阈值低功耗无电阻式基准电路
CN107066015B (zh) 一种全共栅共源基准电压源
CN105974989B (zh) 一种基于亚阈值的低功耗全cmos基准源电路
CN105320199B (zh) 一种具有高阶补偿的基准电压源
CN107340796A (zh) 一种无电阻式高精度低功耗基准源
CN205375264U (zh) 一种无Bipolar晶体管的CMOS基准电压源
CN105094207A (zh) 消除体效应的带隙基准源
CN108415503A (zh) 一种低压低功耗基准电路
CN101149628B (zh) 一种基准电压源电路
CN207352505U (zh) 一种无电阻式高精度低功耗基准源
CN107967022A (zh) 一种双输出低温漂基准电压源
CN109491432A (zh) 一种超低压超低功耗的电压基准电路
CN206696736U (zh) 一种全共栅共源基准电压源
CN206331318U (zh) 一种低功耗低温度系数的电压基准源电路
CN205620849U (zh) 一种全cmos基准电压源
CN106855732B (zh) 一种超低功耗基准电压源电路系统
CN208188713U (zh) 一种低压低功耗基准电路
CN206573970U (zh) 一种高电源抑制比全cmos基准电压源
CN106547300B (zh) 一种低功耗低温度系数的电压基准源电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180717

Address after: 510000 Guangdong Guangzhou Huangpu District Guangzhou new knowledge city nine Buddha 333 Jianshe Road 275 self compiled room

Patentee after: Guangdong Guotai Bai an information technology Wood Co., Ltd.

Address before: 528000 No. 18 Jiangwan Road, Chancheng District, Foshan, Guangdong.

Patentee before: Foshan Science &. Technology College

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171013

Termination date: 20190110