CN106546290B - 半导体分立器件贮存寿命特征检测方法和系统 - Google Patents

半导体分立器件贮存寿命特征检测方法和系统 Download PDF

Info

Publication number
CN106546290B
CN106546290B CN201610957724.4A CN201610957724A CN106546290B CN 106546290 B CN106546290 B CN 106546290B CN 201610957724 A CN201610957724 A CN 201610957724A CN 106546290 B CN106546290 B CN 106546290B
Authority
CN
China
Prior art keywords
failure
test specimen
analysis
storage
sample sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610957724.4A
Other languages
English (en)
Other versions
CN106546290A (zh
Inventor
罗琴
李坤兰
姚珂
黄创绵
胡湘洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Product Reliability and Environmental Testing Research Institute
Original Assignee
China Electronic Product Reliability and Environmental Testing Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electronic Product Reliability and Environmental Testing Research Institute filed Critical China Electronic Product Reliability and Environmental Testing Research Institute
Priority to CN201610957724.4A priority Critical patent/CN106546290B/zh
Publication of CN106546290A publication Critical patent/CN106546290A/zh
Application granted granted Critical
Publication of CN106546290B publication Critical patent/CN106546290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种半导体分立器件贮存寿命特征检测方法和系统,包括以下步骤:获取试验样品,对试验样品进行失效检测并分类,得到合格样品集和失效样品集,对合格样品集进行贮存可靠性特征检测分析得到第一分析结果,对失效样品集进行失效分析得到第二分析结果,根据第一分析结果和第二分析结果得到试验样品的贮存寿命状态。通过对合格样品集进行贮存可靠性特征检测分析判断合格样品集中是否存在有贮存退化失效特征的试验样品,以及对失效样品集进行失效分析判断失效样品集中是否存在有贮存失效信息的试验样品,根据分析结果得到试验样品的贮存寿命状态,通过上述科学的贮存寿命考核方法,有效准确评估试验样品的贮存寿命状态。

Description

半导体分立器件贮存寿命特征检测方法和系统
技术领域
本发明涉及元器件检测领域,特别是涉及一种半导体分立器件贮存寿命特征检测方法和系统。
背景技术
电子元器件作为武器装备的基础组成部分,品种众多、用量巨大,半导体分立器件作为典型元器件,其贮存寿命的研究具有重大的意义。在整机中服役周期内,其贮存可靠性随时间呈现的变化规律以及贮存保证寿命是否满足应用要求是装备研制和使用单位重点关注的问题。
传统的电子元器件的贮存寿命通常是根据研制厂所的工程经验给出的初始规定寿命,另外,在研究在役的导弹武器装备在整个研制和使用过程中,也未系统开展贮存试验,因此无法验证使用方提出的贮存寿命要求。然而,在导弹长期贮存过程中,电子元器件出现了批量失效,严重的影响了导弹的贮存可靠性,对军事经济各方面会造成严重的后果。传统的电子元器件的贮存寿命只是根据研制厂所的工程经验给出的初始规定寿命,没有科学的贮存寿命考核方法,无法准确评估电子元器件的贮存寿命。
发明内容
基于此,有必要针对上述问题,提供一种准确评估半导体分立器件贮存寿命的半导体分立器件贮存寿命特征检测方法和系统。
一种半导体分立器件贮存寿命特征检测方法,包括以下步骤:
获取试验样品,对所述试验样品进行失效检测并分类,得到合格样品集和失效样品集;
对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果;
对所述失效样品集进行失效分析得到第二分析结果;
根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态。
一种半导体分立器件贮存寿命特征检测系统,包括:
失效检测模块,用于获取试验样品,对所述试验样品进行失效检测并分类,得到合格样品集和失效样品集;
第一分析模块,用于对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果;
第二分析模块,用于对所述失效样品集进行失效分析得到第二分析结果;
试验样品贮存寿命状态分析模块,用于根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态。
上述半导体分立器件贮存寿命特征检测方法和系统,获取试验样品,对所述试验样品进行失效检测并分类,得到合格样品集和失效样品集,对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果,对所述失效样品集进行失效分析得到第二分析结果,根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态。通过对合格样品集进行贮存可靠性特征检测分析判断合格样品集中是否存在有贮存退化失效特征的试验样品,以及对失效样品集进行失效分析判断失效样品集中是否存在有贮存失效信息的试验样品,根据分析结果得到试验样品的贮存寿命状态,通过上述科学的贮存寿命考核方法,有效准确评估试验样品的贮存寿命状态。
附图说明
图1为一实施例中半导体分立器件贮存寿命特征检测方法流程图;
图2为一实施例中半导体分立器件贮存寿命特征检测系统结构图。
具体实施方式
在一个实施例中,一种半导体分立器件贮存寿命特征检测方法,如图1所示,包括以下步骤:
步骤S110:获取试验样品,对试验样品进行失效检测并分类,得到合格样品集和失效样品集。
具体地,对试验样品进行失效检测的方法并不唯一,常规的失效检测方法均适用,具体可以为外观检测、电参数检测、压力测试等。
在一个实施例中,步骤S110包括:对试验样品进行电参数测量,判断试验样品是否电性失效;若否,则将对应试验样品分类到合格样品集;若是,则将对应试验样品分类到失效样品集。
具体地,结合试验样品器件手册,设置试验样品测试条件,利用半导体测试设备全面检测试验样品的功能和性能,了解试验样品经过长期贮存后的常态电性能状况。结合试验样品器件手册中的各参数合格判据,判断试验样品各性能参数是否合格。电参数测量包括集电极—基极击穿电压V(BR)CBO、集电极—发射极击穿电压V(BR)CEO、发射极—基极击穿电压V(BR)EBO、集电极—发射极饱和压降VCEsat、基极—发射极饱和压降VBEsat、集电极—基极截止电流ICBO、发射极—基极截止电流IEBO和放大倍数HFE等。其中,需要重点关注试验样品放大倍数HFE、集电极—基极截止电流ICBO两个参数。将电参数测量各项参数均合格的试验样品分类到合格样品集,对已发现不合格的试验样品仍应完成所有电参数的测量,即对初测不合格的试验样品,应进行复测,确认测试结果,并将对应的试验样品分类到失效样品集,提高合格样品集和失效样品集分类的准确性。
在一个实施例中,在对试验样品进行电参数测量,判断试验样品是否电性失效的步骤之前,还包括:对试验样品进行外观质量检测,判断试验样品是否物理失效;若是,则将对应试验样品分类到失效样品集;若否,则进行对试验样品进行电参数测量,判断试验样品是否电性失效的步骤。
具体地,外观质量检查包括检测试验样品的外壳、管脚腐蚀、断裂等影响可靠性的缺陷,可以人工进行检查,也可通过机器进行检查,判断试验样品是否物理失效,若是,则直接将对应试验样品分类到失效样品集,若否,则对应试验样品进一步进行电参数测量,有效提高了合格样品集和失效样品集分类的准确性。
步骤S120:对合格样品集进行贮存可靠性特征检测分析得到第一分析结果。
具体地,依据GJB128A(半导体分立器件试验方法)、GJB548A(微电子试验方法和程序)和GJB4027(军用电子元器件破坏性物理分析方法),进行试验样品贮存可靠性特征分析。试验样品贮存可靠性特征分析应遵循非破坏性分析到破坏性分析的原则,主要步骤包括X射线检查、粒子碰撞噪声检测PIND、密封(仅对密封型)、内部气体成分分析、内部目检、扫描电子显微镜检查SEM、键合强度、剪切强度分析等。在整个分析过程中,应重点关注试验样品经过长期贮存带来元器件氧化、污染、腐蚀、芯片退化等情况,通过试验对合格样品集中的试验样品进行贮存可靠性特征检测分析,能科学有效地得到第一分析结果。
具体地,破坏性物理分析(Destructive Physical Analysis,简称DPA):是指为验证电子元器件的设计、结构、材料、制造的质量和工艺情况是否满足预计用途或有关规范的要求,以及是否满足元器件规定的可靠性和保障性,对元器件样品进行解剖,以及在解剖前后进行一系列检验和分析的全过程。
在一个实施例中,在对合格样品集进行贮存可靠性特征检测分析得到第一分析结果的步骤,还包括:对合格样品集进行抽样获取抽样试验样品;对抽样试验样品进行贮存可靠性特征分析,得到第一分析结果。
具体地,对外观质量检查和电参数测量均合格的试验样品,即在合格样品集中,每型号的试验样品随机选取5只(当数量不足时,根据实际情况选取试验样品数量),在试验样品数量较大的情况下,通过对试验样品进行抽样获取抽样试验样品,并对抽样试验样品进行贮存可靠性特征分析,能快速得到第一分析结果,节约时间。
步骤S130:对失效样品集进行失效分析得到第二分析结果。
具体地,对外观质量检查和电参数测量中失效的试验样品即失效样品集进行失效分析,具体地,失效分析是指对电子元器件失效机理、原因的诊断过程。具体参照GJB128A(半导体分立器件试验方法)、GJB548A(微电子试验方法和程序)对失效样品集中的试验样品进行失效分析。
具体地,失效分析包括失效环境调查、失效样品保护、外观检查、电测、应力试验分析、故障模拟分析、非破坏性分析和破坏性分析等工作。失效环境调查是围绕失效详细了解批次认可、发现失效的地点和时间、产品记录、工作条件和失效详情。失效样品保护是对失效试验样品进行拍照保存其原始形貌。外观检查是首先用肉眼来检查失效试验样品与合格试验样品之间的差异,然后再光学显微镜下进一步观察,主要检查灰尘、沾污、管脚变色、由压力引起的引线断裂、机械引线损坏、封装裂缝、金属化迁移和晶须。电测是对试验样品进行通电测量,判断其在通电状态下各参数是否合格。应力分析是用实验分析方法确定物体在受力情况下的应力状态。故障模拟分析包括模拟应用分析、全温度参数测试、瞬时短路断路试验分析和高温电偏置试验。非破坏性分析用于检查试验样品内部状态而不打开或移动封装的技术,通常包括X射线检查、声学扫描检测、残留气体分析和密封性检查。破坏性分析包括开封、失效点定位、芯片钝化层的去除、物理分析、杂质和合成物分析。通过试验对失效样品集中的试验样品进行失效分析,能科学有效地得到第二分析结果。
步骤S140:根据第一分析结果和第二分析结果得到试验样品的贮存寿命状态。具体地,步骤S140包括步骤142和步骤144。
步骤142:根据第一分析结果判断合格样品集中是否存在有贮存退化失效特征的试验样品。
步骤144:根据第二分析结果判断失效样品集中是否存在有贮存失效信息的试验样品。
若合格样品集中存在有贮存退化失效特征的试验样品,失效样品集中存在有贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中存在有贮存退化失效特征的试验样品,失效样品集无贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中无贮存退化失效特征的试验样品,失效样品集存在有贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中无贮存退化失效特征的试验样品,失效样品集无贮存失效信息的试验样品,则试验样品的贮存寿命状态为无贮存退化失效特征。
上述半导体分立器件贮存寿命特征检测方法,通过获取试验样品,对试验样品进行失效检测并分类,得到合格样品集和失效样品集,对合格样品集进行贮存可靠性特征检测分析得到第一分析结果,对失效样品集进行失效分析得到第二分析结果,根据第一分析结果和第二分析结果得到试验样品的贮存寿命状态。通过对合格样品集进行贮存可靠性特征检测分析判断合格样品集中是否存在有贮存退化失效特征的试验样品,以及对失效样品集进行失效分析判断失效样品集中是否存在有贮存失效信息的试验样品,根据分析结果综合评价得到试验样品的贮存寿命状态,通过上述科学的贮存寿命考核方法,有效准确评估试验样品的贮存寿命状态,科学地延长装备上元器件的贮存寿命,使预期能服役的装备数量增加,从而提高装备群的使用可用度和作战效能,维持和增强国防力量,具有重大的军事意义,节约经济成本,缓解研制和生产压力,具有重大的经济和社会意义。
在一个实施例中,如图2所示,一种半导体分立器件贮存寿命特征检测系统,包括失效检测模块110、第一分析模块120、第二分析模块130和试验样品贮存寿命状态分析模块140。
具体地,失效检测模块110用于获取试验样品,对试验样品进行失效检测并分类,得到合格样品集和失效样品集。在本实施例中,失效检测模块110包括第一电性失效判断单元、合格样品集分类单元和第一失效样品集分类单元。
第一电性失效判断单元用于对试验样品进行电参数测量,判断试验样品是否电性失效;合格样品集分类单元,若否,则将对应试验样品分类到合格样品集;第一失效样品集分类单元,若是,则将对应试验样品分类到失效样品集。
具体地,对试验样品进行失效检测的方法并不唯一,常规的失效检测方法均适用,具体可以为外观检测、电参数检测、压力测试等。
具体地,结合试验样品器件手册,设置试验样品测试条件,利用半导体测试设备全面检测试验样品的功能和性能,了解试验样品经过长期贮存后的常态电性能状况。结合试验样品器件手册中的各参数合格判据,判断试验样品各性能参数是否合格。电参数测量包括集电极—基极击穿电压V(BR)CBO、集电极—发射极击穿电压V(BR)CEO、发射极—基极击穿电压V(BR)EBO、集电极—发射极饱和压降VCEsat、基极—发射极饱和压降VBEsat、集电极—基极截止电流ICBO、发射极—基极截止电流IEBO和放大倍数HFE等。其中,需要重点关注试验样品放大倍数HFE、集电极—基极截止电流ICBO两个参数。将电参数测量各项参数均合格的试验样品分类到合格样品集,对已发现不合格的试验样品仍应完成所有电参数的测量,即对初测不合格的试验样品,应进行复测,确认测试结果,并将对应的试验样品分类到失效样品集,提高合格样品集和失效样品集分类的准确性。
在一个实施例中,在第一电性失效判断单元之前,还包括物理失效判断单元、第二失效样品集分类单元和第二电性失效判断单元。
具体地,物理失效判断单元用于对试验样品进行外观质量检测,判断试验样品是否物理失效;第二失效样品集分类单元,若是,则将对应试验样品分类到失效样品集;第二电性失效判断单元,若否,则进行对所述试验样品进行电参数测量,判断试验样品是否电性失效的步骤。
具体地,外观质量检查包括检测试验样品的外壳、管脚腐蚀、断裂等影响可靠性的缺陷,可以人工进行检查,也可通过机器进行检查,判断试验样品是否物理失效,若是,则直接将对应试验样品分类到失效样品集,若是,则对应试验样品进一步进行电参数测量,有效提高了合格样品集和失效样品集分类的准确性。
在一个实施例中,第一分析模块120用于对合格样品集进行贮存可靠性特征检测分析得到第一分析结果。
具体地,依据GJB128A(半导体分立器件试验方法)、GJB548A(微电子试验方法和程序)和GJB4027(军用电子元器件破坏性物理分析方法),进行试验样品贮存可靠性特征分析。试验样品贮存可靠性特征分析应遵循非破坏性分析到破坏性分析的原则,主要步骤包括X射线检查、粒子碰撞噪声检测PIND、密封(仅对密封型)、内部气体成分分析、内部目检、扫描电子显微镜检查SEM、键合强度、剪切强度分析等。在整个分析过程中,应重点关注试验样品经过长期贮存带来元器件氧化、污染、腐蚀、芯片退化等情况,通过试验对合格样品集中的试验样品进行贮存可靠性特征检测分析,能科学有效地得到第一分析结果。
具体地,破坏性物理分析(Destructive Physical Analysis,简称DPA):是指为验证电子元器件的设计、结构、材料、制造的质量和工艺情况是否满足预计用途或有关规范的要求,以及是否满足元器件规定的可靠性和保障性,对元器件样品进行解剖,以及在解剖前后进行一系列检验和分析的全过程。
在一个实施例中,第一分析模块120还包括抽样单元和贮存可靠性特征分析单元。
具体地,抽样单元用于对合格样品集进行抽样获取抽样试验样品;
贮存可靠性特征分析单元用于对抽样试验样品进行贮存可靠性特征分析,得到第一分析结果。
具体地,对外观质量检查和电参数测量均合格的试验样品,即在合格样品集中,每型号的试验样品随机选取5只(当数量不足时,根据实际情况选取试验样品数量),在试验样品数量较大的情况下,通过对试验样品进行抽样获取抽样试验样品,并对抽样试验样品进行贮存可靠性特征分析,能快速得到第一分析结果,节约时间。
在一个实施例中,第二分析模块130用于对失效样品集进行失效分析得到第二分析结果。
具体地,对外观质量检查和电参数测量中失效的试验样品即失效样品集进行失效分析,具体地,失效分析是指对电子元器件失效机理、原因的诊断过程。具体参照GJB128A(半导体分立器件试验方法)、GJB548A(微电子试验方法和程序)对失效样品集中的试验样品进行失效分析。
具体地,失效分析包括失效环境调查、失效样品保护、外观检查、电测、应力试验分析、故障模拟分析、非破坏性分析和破坏性分析等工作。失效环境调查是围绕失效详细了解批次认可、发现失效的地点和时间、产品记录、工作条件和失效详情。失效样品保护是对失效试验样品进行拍照保存其原始形貌。外观检查是首先用肉眼来检查失效试验样品与合格试验样品之间的差异,然后再光学显微镜下进一步观察,主要检查灰尘、沾污、管脚变色、由压力引起的引线断裂、机械引线损坏、封装裂缝、金属化迁移和晶须。电测是对试验样品进行通电测量,判断其在通电状态下各参数是否合格。应力分析是用实验分析方法确定物体在受力情况下的应力状态。故障模拟分析包括模拟应用分析、全温度参数测试、瞬时短路断路试验分析和高温电偏置试验。非破坏性分析用于检查试验样品内部状态而不打开或移动封装的技术,通常包括X射线检查、声学扫描检测、残留气体分析和密封性检查。破坏性分析包括开封、失效点定位、芯片钝化层的去除、物理分析、杂质和合成物分析。通过试验对失效样品集中的试验样品进行失效分析,能科学有效地得到第二分析结果。
在一个实施例中,试验样品的贮存寿命状态分析模块140用于根据第一分析结果和第二分析结果得到试验样品的贮存寿命状态。具体地,试验样品的贮存寿命状态分析模块140包括第一判断单元和第二判断单元。
具体地,第一判断单元用于根据第一分析结果判断所述合格样品集中是否存在有贮存退化失效特征的试验样品;第二判断单元用于根据第二分析结果判断失效样品集是否存在有贮存失效信息的试验样品;若合格样品集中存在有贮存退化失效特征的试验样品,失效样品集中存在有贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中存在有贮存退化失效特征的试验样品,失效样品集无贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中无贮存退化失效特征的试验样品,失效样品集存在有贮存失效信息的试验样品,则试验样品的贮存寿命状态为有贮存退化失效特征;若合格样品集中无贮存退化失效特征的试验样品,失效样品集无贮存失效信息的试验样品,则试验样品的贮存寿命状态为无贮存退化失效特征。
上述半导体分立器件贮存寿命特征检测系统,通过获取试验样品,对试验样品进行失效检测并分类,得到合格样品集和失效样品集,对合格样品集进行贮存可靠性特征检测分析得到第一分析结果,对失效样品集进行失效分析得到第二分析结果,根据第一分析结果和第二分析结果得到试验样品的贮存寿命状态。通过对合格样品集进行贮存可靠性特征检测分析判断合格样品集中是否存在有贮存退化失效特征的试验样品,以及对失效样品集进行失效分析判断失效样品集中是否存在有贮存失效信息的试验样品,根据分析结果综合评价得到试验样品的贮存寿命状态,通过上述科学的贮存寿命考核方法,有效准确评估试验样品的贮存寿命状态,科学地延长装备上元器件的贮存寿命,使预期能服役的装备数量增加,从而提高装备群的使用可用度和作战效能,维持和增强国防力量,具有重大的军事意义,节约经济成本,缓解研制和生产压力,具有重大的经济和社会意义。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种半导体分立器件贮存寿命特征检测方法,其特征在于,包括以下步骤:
获取试验样品,对所述试验样品进行失效检测并分类,得到合格样品集和失效样品集,所述失效检测为外观检测、电参数检测或压力测试;
对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果,所述贮存可靠性特征分析遵循非破坏性分析到破坏性分析的原则,包括:X射线检查、粒子碰撞噪声检测、密封、内部气体成分分析、内部目检、扫描电子显微镜检查、键合强度和剪切强度分析;
对所述失效样品集进行失效分析得到第二分析结果,所述失效分析包括失效环境调查、失效样品保护、外观检查、电测、应力试验分析、故障模拟分析、非破坏性分析和破坏性分析;
根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态;
所述根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态的步骤,包括:
根据所述第一分析结果判断所述合格样品集中是否存在有贮存退化失效特征的试验样品;
根据所述第二分析结果判断所述失效样品集中是否存在有贮存失效信息的试验样品;
若所述合格样品集中存在有贮存退化失效特征的试验样品,所述失效样品集中存在有贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中存在有贮存退化失效特征的试验样品,所述失效样品集无贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中无贮存退化失效特征的试验样品,所述失效样品集存在有贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中无贮存退化失效特征的试验样品,所述失效样品集无贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为无贮存退化失效特征。
2.根据权利要求1所述的半导体分立器件贮存寿命特征检测方法,其特征在于,所述获取试验样品,对所述试验进行失效检测并分类,得到合格样品集和失效样品集的步骤,包括:
对所述试验样品进行电参数测量,判断所述试验样品是否电性失效;
若否,则将对应试验样品分类到合格样品集;
若是,则将对应试验样品分类到失效样品集。
3.根据权利要求2所述的半导体分立器件贮存寿命特征检测方法,其特征在于,所述对所述试验样品进行电参数测量,判断所述试验样品是否电性失效的步骤之前,还包括:
对所述试验样品进行外观质量检测,判断所述试验样品是否物理失效;
若是,则将对应试验样品分类到失效样品集;
若否,则进行所述对所述试验样品进行电参数测量,判断所述试验样品是否电性失效的步骤。
4.根据权利要求1所述的半导体分立器件贮存寿命特征检测方法,其特征在于,所述对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果的步骤,包括:
对所述合格样品集进行抽样获取抽样试验样品;
对所述抽样试验样品进行贮存可靠性特征分析,得到第一分析结果。
5.一种半导体分立器件贮存寿命特征检测系统,其特征在于,包括:
失效检测模块,用于获取试验样品,对所述试验样品进行失效检测并分类,得到合格样品集和失效样品集,所述失效检测为外观检测、电参数检测或压力测试;
第一分析模块,用于对所述合格样品集进行贮存可靠性特征检测分析得到第一分析结果,所述贮存可靠性特征分析遵循非破坏性分析到破坏性分析的原则,包括:X射线检查、粒子碰撞噪声检测、密封、内部气体成分分析、内部目检、扫描电子显微镜检查、键合强度和剪切强度分析;
第二分析模块,用于对所述失效样品集进行失效分析得到第二分析结果,所述失效分析包括失效环境调查、失效样品保护、外观检查、电测、应力试验分析、故障模拟分析、非破坏性分析和破坏性分析;
试验样品贮存寿命状态分析模块,用于根据所述第一分析结果和所述第二分析结果得到所述试验样品的贮存寿命状态;
所述试验样品贮存寿命状态分析模块包括:
第一判断单元,用于根据所述第一分析结果判断所述合格样品集中是否存在有贮存退化失效特征的试验样品;
第二判断单元,用于根据所述第二分析结果判断所述失效样品集是否存在有贮存失效信息的试验样品;
若所述合格样品集中存在有贮存退化失效特征的试验样品,所述失效样品集中存在有贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中存在有贮存退化失效特征的试验样品,所述失效样品集无贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中无贮存退化失效特征的试验样品,所述失效样品集存在有贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为有贮存退化失效特征;
若所述合格样品集中无贮存退化失效特征的试验样品,所述失效样品集无贮存失效信息的试验样品,则所述试验样品的贮存寿命状态为无贮存退化失效特征。
6.根据权利要求5所述的半导体分立器件贮存寿命特征检测系统,其特征在于,所述失效检测模块包括:
第一电性失效判断单元,用于对所述试验样品进行电参数测量,判断所述试验样品是否电性失效;
合格样品集分类单元,若否,则将对应试验样品分类到合格样品集;
第一失效样品集分类单元,若是,则将对应试验样品分类到失效样品集。
7.根据权利要求6所述的半导体分立器件贮存寿命特征检测系统,其特征在于,所述第一电性失效判断单元之前,还包括:
物理失效判断模块,用于对所述试验样品进行外观质量检测,判断所述试验样品是否物理失效;
第二失效样品集分类单元,若是,则将对应试验样品分类到失效样品集;
第二电性失效判断单元,若否,则进行所述对所述试验样品进行电参数测量,判断所述试验样品是否电性失效的步骤。
8.根据权利要求5所述的半导体分立器件贮存寿命特征检测系统,其特征在于,所述第一分析模块包括:
抽样单元,用于对所述合格样品集进行抽样获取抽样试验样品;
贮存可靠性特征分析单元,用于对所述抽样试验样品进行贮存可靠性特征分析,得到第一分析结果。
CN201610957724.4A 2016-11-02 2016-11-02 半导体分立器件贮存寿命特征检测方法和系统 Active CN106546290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610957724.4A CN106546290B (zh) 2016-11-02 2016-11-02 半导体分立器件贮存寿命特征检测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610957724.4A CN106546290B (zh) 2016-11-02 2016-11-02 半导体分立器件贮存寿命特征检测方法和系统

Publications (2)

Publication Number Publication Date
CN106546290A CN106546290A (zh) 2017-03-29
CN106546290B true CN106546290B (zh) 2019-08-06

Family

ID=58393299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610957724.4A Active CN106546290B (zh) 2016-11-02 2016-11-02 半导体分立器件贮存寿命特征检测方法和系统

Country Status (1)

Country Link
CN (1) CN106546290B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885904B (zh) * 2017-09-29 2021-04-09 中国电子产品可靠性与环境试验研究所 一种led灯具可控寿命的设计系统及方法
CN110196256B (zh) * 2019-06-06 2021-12-14 上海机器人产业技术研究院有限公司 一种半导体器件的机械力失效分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520274A (zh) * 2011-11-28 2012-06-27 北京航空航天大学 一种基于失效物理的中频对数放大器的寿命预测方法
CN102592052A (zh) * 2012-01-06 2012-07-18 北京航空航天大学 一种航空驱动电路模块贮存动态可靠度计算方法
CN103197226A (zh) * 2013-03-15 2013-07-10 中国电子科技集团公司第二十四研究所 评价引线键合气密性封装模拟集成电路贮存寿命的方法
CN105004367A (zh) * 2015-05-27 2015-10-28 工业和信息化部电子第五研究所 单片集成电路贮存寿命特征检测方法
CN105093028A (zh) * 2015-08-21 2015-11-25 北京航天长征飞行器研究所 一种电子类产品加速贮存的试验方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207139A (ja) * 1986-03-07 1987-09-11 株式会社日立製作所 電力設備の寿命度検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520274A (zh) * 2011-11-28 2012-06-27 北京航空航天大学 一种基于失效物理的中频对数放大器的寿命预测方法
CN102592052A (zh) * 2012-01-06 2012-07-18 北京航空航天大学 一种航空驱动电路模块贮存动态可靠度计算方法
CN103197226A (zh) * 2013-03-15 2013-07-10 中国电子科技集团公司第二十四研究所 评价引线键合气密性封装模拟集成电路贮存寿命的方法
CN105004367A (zh) * 2015-05-27 2015-10-28 工业和信息化部电子第五研究所 单片集成电路贮存寿命特征检测方法
CN105093028A (zh) * 2015-08-21 2015-11-25 北京航天长征飞行器研究所 一种电子类产品加速贮存的试验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
国产半导体器件长期贮存试验研究;高兆丰等;《半导体技术》;20100831;第35卷(第8期);第800-802页

Also Published As

Publication number Publication date
CN106546290A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106872575B (zh) 一种塑封器件分层缺陷的分级风险评价方法
CN106646195B (zh) 基于电学法的键合丝瞬时触碰的检测方法、装置和平台
Wu et al. Correlation of accelerometer and microphone data in the" coin tap test"
CN106546290B (zh) 半导体分立器件贮存寿命特征检测方法和系统
CN105118798B (zh) 电迁移测试结构及测试方法
CN109447187A (zh) 电机故障诊断方法及系统
CN103197226A (zh) 评价引线键合气密性封装模拟集成电路贮存寿命的方法
CN105004367B (zh) 单片集成电路贮存寿命特征检测方法
CN104898042B (zh) 产生特征化扫描样本的方法与装置
CN109142961A (zh) 一种电连接器间歇失效机理研究方法
CN103646888A (zh) 一种晶圆可接受性测试系统及方法
US20120029679A1 (en) Defect analysis method of semiconductor device
CN111459616B (zh) 一种测试方法、装置、设备及存储介质
CN102180272B (zh) 宇航用元器件热环境适应性评价方法
US10656204B2 (en) Failure detection for wire bonding in semiconductors
Wang et al. Machine learning-based volume diagnosis
JP3556509B2 (ja) 欠陥解析システムおよびその方法
CN108332623B (zh) 一种多功能复合引信智能检测仪
US20030158679A1 (en) Anomaly detection system
CN1651915A (zh) 一种采用不合格品作为破坏性物理分析质量评价的方法
US10460326B2 (en) Counterfeit integrated circuit detection by comparing integrated circuit signature to reference signature
Qiu et al. Study on the pin delamination of plastic encapsulated microcircuits using scanning acoustic microscope
CN103091625A (zh) 一种微小卫星用芯片的筛选方法
JP2000077495A (ja) 検査システム及びそれを用いた電子デバイスの製造方法
Wong et al. Detection Of Die Attach Defects Through Rapid Thermal Transient Tests

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant