CN106544736A - 一种手性杂多钼酸盐、制备方法及非线性光学应用 - Google Patents
一种手性杂多钼酸盐、制备方法及非线性光学应用 Download PDFInfo
- Publication number
- CN106544736A CN106544736A CN201610921718.3A CN201610921718A CN106544736A CN 106544736 A CN106544736 A CN 106544736A CN 201610921718 A CN201610921718 A CN 201610921718A CN 106544736 A CN106544736 A CN 106544736A
- Authority
- CN
- China
- Prior art keywords
- chiral
- heteropolymolybdate
- preparation
- glycine
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/32—Titanates; Germanates; Molybdates; Tungstates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3551—Crystals
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明属于多酸化学新材料技术领域,一种手性杂多钼酸盐、制备方法及其非其线性光学应用。手性杂多钼酸盐为单斜晶系,空间群为P21;当X=Te时,晶胞参数为β=113.074(2)°;当X=Se时,晶胞参数为β=113.215(2)°;本发明采用钼酸钠、亚碲酸钠或二氧化亚硒和甘氨酸为原料,合成产率较高,具有较好的二阶非线性光学性能,粉末倍频信号为K2HPO4的3.5和3.7倍;制备工艺简单、产品纯度高,具有潜在的非线性光学应用前景。
Description
技术领域
本发明属于多酸化学新材料技术领域,具体涉及一种手性杂多钼酸盐,该化合物的制备方法及其非其线性光学应用。
背景技术
多金属氧酸盐简称多酸是由前过渡金属离子(MoⅥ,WⅥ,VⅤ,NbⅤ及TaⅤ等)与氧原子按照一定的结构配位形成的多核配合物。因其具有较高的热稳定性、氧化还原性、溶解性和酸碱性等,这使得人们投入大量精力研究其在催化、光学、药学等的应用(K.Kamata,K.Yonehara,Y.Sumida,K.Yamaguchi,S.Hikichi,N.Mizuno.Science.,2003,300,964-966;J.T.Rhule,C.L.Hill.D.A.Judd.Chem.Rev.,1998,98,327–358)。迄今为止,多酸的合成研究已将近200年的历史,但是基于手性多酸的研究相对较少,主要原因是:1.大多数多酸阴离子具有较高的对称性,这与手性相悖;2.手性多酸在溶液中易消旋化或以外消旋的形式存在于晶体中。因此设计合成手性多金属氧酸盐成为多酸领域的一个最具挑战性的课题。
目前合成手性多金属氧酸盐的方法主要有两种:1.引入手性有机配体或配合物为手性诱导剂,这种方法虽然易得到结构新颖的手性多酸化合物,但是合成成本高。2.非手性原料通过自发拆分,结晶出手性多酸化合物,这种方法优点是原料价格低廉,合成成本低,是一种更加经济和理想的合成手性多化合物的策略,缺点是缺少可预测性。因此通过自发拆分法构筑手性多酸比手性诱导面临更多困难与机遇。(Kortz U,Savelieff M G,Ghali FY A,Khalil L M,Maalouf S A and Sinno D I.Angew.Chem.Int.Ed.2002,41,4070-4073;Du,D.Y.;Yan,L.K.;Su,Z.M.;Li,S.L.;Lan,Y.Q.;Wang,E.B.Coord.Chem.Rev.2013,257,702;Xiao F P,Hao J,Zhang J,Lv C L,Yin P C,Wang L S and Wei YG.J.Am.Chem.Soc.,2010,132,5956–5957)。
手性多金属氧酸盐作为一类集多酸与手性于一身的化合物,其在不对称催化和光学的领域具有重要的实用意义和价值。在非线性光学方面的应用追溯到上世纪90年代南京大学游效曾课题组报道了手性多酸化合物α-H4SiW12O40·4HMPA·2H2O的二阶和三阶非线性光学应用;2007年Manos课题组报道手性多酸化合物{(H2bipy)2[Mo5S2O21]·H2O}的二阶非线性光学效应为I2ω=0.04I2ω ura=0.12I2ωKDP。这些为手性多酸化合物在非线性光学方面领域的研究提供了理论依据。随后几年人们相继报道几例具非线性光学性质的手型多酸,如:[(H3O)(C12H10N3)2(PW12O40)],Cs4Mo5P2O22等等(Niu J Y,You X Z,Duan CY.Inorg.Chem.1996,35:4211-4217;Kapakoglou N I,Panagiotis B I,Kazianis S E,etal.Inorg.Chem.2007,46:6002-6010;Xie Y M,Zhang Q S,Zhao Z G,Wu X Y,Chen S C,and Lu C Z.Inorg.Chem.,2008,47,8086-8090;Wang Y,Pan S L,Yu H W,M X Su,Zhang FF and Han J.Chem.Commun.,2013,49,306--308)。目前的研究主要集中于合成手性杂多钨酸盐化合物,对手性杂多钼酸盐非线性性质研究较少,且效率不是很好,最高时I2ω=2KDP,主要是杂多钼酸盐的高对称性与手性多酸相悖,不易打破。因此通过自发拆分手段合成手性杂多钼酸盐化合物且具较好的非线性光学效应是一项挑战但具实际应用价值的课题。
发明内容
本发明的目的在于合成一种手性杂多钼酸盐,同时提供该化合物的制备方法和非线性光学应用。
本发明的技术方案:
一种手性杂多钼酸盐的化学式为
[Na(H2O)2][Na(H2O)3][XMo6O21(O2CCH2NH3)3]·2.5H2O,X=Te或Se;该手性杂多钼酸盐化合物为单斜晶系,空间群为P21;当X=Te时,晶胞参数为β=113.074(2)°;当X=Se时,晶胞参数为β=113.215(2)°。
手性杂多钼酸盐的结构:在不对称单元中存在一个晶体学独立的[XMo6O21]2-多酸阴离子、三个质子化的甘氨酸和两个钠离子;两个钠离子具有不同构型,一个采用六配位形成八面体构型,另一个采用七配位形成单冒八面体构型;首先[XMo6O21(O2CCH2NH3)3]2-单元通过Na-O-Mo形成1D链状结构,1D链间通过Na-O-Mo形成2D网状结构,2D网状结构又通过氢键作用连接成3D超分子结构。
一种手性杂多钼酸盐的制备方法,采用常规水溶液的制备方法,步骤如下:
将钼酸钠、甘氨酸和亚碲酸钠混合,待溶解,用HCl调节PH=3.5,再加入NaCl,其中,Na2MoO4、Na2TeO3(SeO2)、甘氨酸和NaCl的物质的量之比为6:1:3:6-5;室温搅拌,然后在80℃条件下水浴搅拌1h,溶液冷却后过滤,放置至晶体生成,晶体经洗涤和干燥,即得手性杂多钼酸盐。
所述的亚碲酸钠由二氧化亚硒替换。
所述的HCl的浓度为4mol/L。
一种手性杂多钼酸盐在二阶非线性光学中的应用,利用Kurtz-Perry法测定化合物的二阶非线性光学粉末倍频效应,光源为Nd:YAG脉冲激光器,激发波长为1064nm,输出波长为532nm,以KDP为参比。结果表明本发明所述的手性杂多钼酸盐在粒径为70-100μm处有较强的二阶非线性光学效应,是KDP的3.5和3.7倍。因此本发明手性杂多钼酸盐可以作为非线性光学材料的应用。
本发明是通过引入Na+阳离子来实现非手性组分自发拆分形成手性结构,并且利用Na-O-Mo共价键形成2D手性结构。实验过程中我们也尝试使用其他阳离子替换Na+,如NH4+和Co2+、Ni2+等过渡金属离子,结果均未得到手性多金属氧酸盐,通过与文献中非手性多酸对比发现手性的产生主要源于阳离子Na+的配位方式,其打破了多酸本身高的对称性,从而形成手性结构。
本发明通过自发拆分得到手性化合物,通过8次单晶测试表明为非外消旋化合物,证明手性杂多钼酸盐对映体过量(ee=100×(A-B)/(A+B))=75%)。
用偏光显微镜挑出对映体并测CD光谱显示本发明的手性结构在紫外区有两个明显的科顿效应并且成镜面对称,进一步测化合物的CD光谱显示本发明为对映体过量。
本发明的有益效果:
(1)本发明提供的手性杂多钼酸盐结构明确,所显示的二阶非线性光学效应是杂多钼酸盐中最强的,为KDP的3.5和3.7倍,因此在非线性光学方面有潜在的应用前景。
(2)本发明提供的手性杂多钼酸盐是通过非手性原料自发拆分得到的,该手性物种是对映体过量,化合物1(X=Te)通过从不同烧杯测5次CD光谱和同一烧杯测8次随机的单晶测试显示该手性物种为对映体过量,是首次通过自发拆分得到的对映体过量。
(3)本发明提供的手性杂多钼酸盐的方法策略为常规水溶液法,操作安全简单,原料成本较低,收率为60%。
附图说明
图1为本发明手性杂多钼酸盐不对称单元的镜面对称图。
图2为本发明手性杂多钼酸盐2D手性结构的镜面对称图。
图3为本发明实施例1所得的手性杂多钼酸盐的红外光谱图,图3(a)是当X=Te时的红外光谱图,图3(b)是当X=Se时的红外光谱图。
图4为本发明实施例1所得的手性杂多钼酸盐的固体紫外,当X=Te为化合物1,当X=Se为化合物2。
图5为本发明实施例1所得的手性杂多钼酸盐的固体CD光谱图,图5(a)为化合物1的一对对映体的CD光谱图,化合物1a是手性化合物1一对对映体的一个,化合物1b为另一个;图5(b)为化合物1对映体过量的CD光谱图。
图6为本发明实施例1所得的手性杂多钼酸盐的X射线粉末衍射谱图,图6(a)为X=Te时的XRD谱图;图6(b)是X=Se时的XRD谱图。
图7为本发明实施例1所得的手性杂多钼酸盐的二阶非线性光学粉末倍频效应,KDP为参比磷酸二氢钾,当X=Te为化合物1,当X=Se为化合物2。
具体实施方式
以下将通过具体实施例对本发明作进一步的详细说明,但此处只为解释本发明而非用于限定本发明。
实施例1手性杂多钼酸盐的制备包括以下步骤:
将1.235g钼酸钠、0.110g Na2TeO3和0.113g甘氨酸溶于20ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.176g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
将1.235g钼酸钠、0.055g SeO2和0.113g甘氨酸溶于20ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.176g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
实施例2手性杂多钼酸盐的制备包括以下步骤:
将1.235g钼酸钠、0.110g Na2TeO3和0.113g甘氨酸溶于20ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.147g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
将1.235g钼酸钠、0.055g SeO2和0.113g甘氨酸溶于20ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.147g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
实施例3手性杂多钼酸盐的制备包括以下步骤:
将1.235g钼酸钠、0.110g Na2TeO3和0.113g甘氨酸溶于15ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.176g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
将1.235g钼酸钠、0.055g SeO2和0.113g甘氨酸溶于15ml水中搅拌,并用4mol/LHCl调节PH=3.5,然后再加入0.176g氯化钠,继续在室温下搅拌一个小时后80℃水浴一个小时,冷却后过滤,放置一个月即得所需化合物。
对上述实施例中的产物进行检测,得到化合物的化学式为[Na(H2O)2][Na(H2O)3][XMo6O21(O2CCH2NH3)3]·2.5H2O,本发明手性杂多钼酸盐的晶体结构如图1和2。
利用红外光谱对实施例1中的产物进行检测,图3即为本发明手性杂多钼酸盐的红外光谱图,显示出Mo-Ot、Mo-Ob和Mo-Oc及水分子的特征振动吸收峰。
利用固体紫外对实施例1中的产物进行检测,图4即为本发明手性杂多钼酸盐的固体紫外光谱图,表明在紫外区250和310nm出有吸收峰归属于O→Mo的电荷转移。
利用固体CD光谱对实施例1中的产品进行检测,图5a即为本发明手性杂多钼酸盐的CD光谱,化合物1的一对对映体成镜面对称,且分别在254nm和312nm处有明显的科顿效应,这归属于多酸阴离子的O→Mo的电荷转移跃迁,与紫外光谱一致;图5b为随机挑选化合物1单晶进行的固体CD光谱,在254nm显示为负科顿效应,312nm为正科顿效应,证实化合物的对映体过量。
利用XRD对实施例1中的化合物进行检测,图6即为本发明手性杂多钼酸盐的实验与拟合XRD对比,表明实施例1中的产物为纯相。
利用Kurtz-Perry法对实施例1中的产物进行二阶非线性光学粉末倍频效应检测,图7显示,本发明手性杂多钼酸盐具有较强的二阶非线性光学效应,为KDP的3.5和3.7倍,说明其可作为潜在的非线性光学材料。
Claims (5)
1.一种手性杂多钼酸盐,其特征在于,该手性杂多钼酸盐的化学式为[Na(H2O)2][Na(H2O)3][XMo6O21(O2CCH2NH3)3]·2.5H2O,X=Te或Se;手性杂多钼酸盐为单斜晶系,空间群为P21;当X=Te时,晶胞参数为 β=113.074(2)°;当X=Se时,晶胞参数为β=113.215(2)°;
手性杂多钼酸盐的结构:在不对称单元中存在一个晶体学独立的[XMo6O21]2-多酸阴离子、三个氨基质子化的甘氨酸和两个钠离子;两个钠离子具有不同构型,一个采用六配位形成八面体构型,另一个采用七配位形成单冒八面体构型;首先[XMo6O21(O2CCH2NH3)3]2-单元通过Na-O-Mo形成1D链状结构,1D链间通过Na-O-Mo形成2D网状结构,2D网状结构又通过氢键作用连接成3D超分子结构。
2.一种手性杂多钼酸盐的制备方法,其特征在于,
采用常规水溶液的制备方法,步骤如下:
将钼酸钠、甘氨酸和亚碲酸钠混合,待溶解,用HCl调节PH=3.5,再加入NaCl,其中,Na2MoO4、Na2TeO3(SeO2)、甘氨酸和NaCl的物质的量之比为6:1:3:6-5;室温搅拌,然后在80℃条件下水浴搅拌1h,溶液冷却后过滤,放置至晶体生成,晶体经洗涤和干燥,即得手性杂多钼酸盐。
3.根据权利要求2所述的制备方法,其特征在于,所述的亚碲酸钠由二氧化亚硒替换。
4.根据权利要求2或3所述的制备方法,其特征在于,所述的HCl的浓度为4mol/L。
5.一种权利要求1所述的手性杂多钼酸盐在二阶非线性光学中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610921718.3A CN106544736B (zh) | 2016-10-21 | 2016-10-21 | 一种手性杂多钼酸盐、制备方法及非线性光学应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610921718.3A CN106544736B (zh) | 2016-10-21 | 2016-10-21 | 一种手性杂多钼酸盐、制备方法及非线性光学应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106544736A true CN106544736A (zh) | 2017-03-29 |
CN106544736B CN106544736B (zh) | 2018-11-09 |
Family
ID=58392249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610921718.3A Active CN106544736B (zh) | 2016-10-21 | 2016-10-21 | 一种手性杂多钼酸盐、制备方法及非线性光学应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106544736B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109796050A (zh) * | 2019-01-25 | 2019-05-24 | 昆明学院 | 一种杂多砷钼酸盐化合物及其制备方法与应用 |
CN113136572A (zh) * | 2020-01-17 | 2021-07-20 | 同济大学 | 手性钼酸盐介观结构膜的制备方法 |
CN113138184A (zh) * | 2020-01-17 | 2021-07-20 | 同济大学 | 用于对内消旋多手性中心化合物进行检测的基底材料 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130251609A1 (en) * | 2012-03-23 | 2013-09-26 | Kennecott Utah Copper Llc | Process for the Conversion of Molybdenite to Molydenum Oxide |
CN103382210A (zh) * | 2013-07-03 | 2013-11-06 | 吉林化工学院 | 一种同多钒酸盐杂化化合物的结构及制备方法 |
CN105732409A (zh) * | 2016-04-14 | 2016-07-06 | 吉林大学 | 氨基酸修饰的杂多酸盐化合物及其制备方法和应用 |
-
2016
- 2016-10-21 CN CN201610921718.3A patent/CN106544736B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130251609A1 (en) * | 2012-03-23 | 2013-09-26 | Kennecott Utah Copper Llc | Process for the Conversion of Molybdenite to Molydenum Oxide |
CN103382210A (zh) * | 2013-07-03 | 2013-11-06 | 吉林化工学院 | 一种同多钒酸盐杂化化合物的结构及制备方法 |
CN105732409A (zh) * | 2016-04-14 | 2016-07-06 | 吉林大学 | 氨基酸修饰的杂多酸盐化合物及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
侯玉姣等: "Anderson多酸基功能杂化化合物的合成与性质", 《中国化学会第六届全国多酸化学学术研讨会论文摘要集》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109796050A (zh) * | 2019-01-25 | 2019-05-24 | 昆明学院 | 一种杂多砷钼酸盐化合物及其制备方法与应用 |
CN109796050B (zh) * | 2019-01-25 | 2021-04-20 | 昆明学院 | 一种杂多砷钼酸盐化合物及其制备方法与应用 |
CN113136572A (zh) * | 2020-01-17 | 2021-07-20 | 同济大学 | 手性钼酸盐介观结构膜的制备方法 |
CN113138184A (zh) * | 2020-01-17 | 2021-07-20 | 同济大学 | 用于对内消旋多手性中心化合物进行检测的基底材料 |
CN113138184B (zh) * | 2020-01-17 | 2022-04-19 | 同济大学 | 用于对内消旋多手性中心化合物进行检测的基底材料 |
Also Published As
Publication number | Publication date |
---|---|
CN106544736B (zh) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission | |
Zhu et al. | Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals | |
Zhang et al. | Polymorphism of BaTeMo2O9: a new polar polymorph and the phase transformation | |
Feng et al. | Cd3 (MoO4)(TeO3) 2: a polar 3D compound containing d10–d0 SCALP-effect cations | |
Zhang et al. | Functional materials design via structural regulation originated from ions introduction: A study case in cesium iodate system | |
Li et al. | Highly uniform and monodisperse β-NaYF4: Ln3+ (Ln= Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties | |
CN106544736B (zh) | 一种手性杂多钼酸盐、制备方法及非线性光学应用 | |
Li et al. | Trigonal pyramidal {AsO2 (OH)} bridging tetranuclear rare-earth encapsulated polyoxotungstate aggregates | |
Yu et al. | A new congruent-melting oxyborate, Pb 4 O (BO 3) 2 with optimally aligned BO 3 triangles adopting layered-type arrangement | |
An et al. | Three-dimensional architectures based on lanthanide-substituted double-Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes | |
Shehee et al. | Hydrothermal preparation, structures, and NLO properties of the rare earth molybdenyl iodates, RE (MoO2)(IO3) 4 (OH)[RE= Nd, Sm, Eu] | |
An et al. | Spontaneous resolution of Evans–Showell-type polyoxometalates in constructing chiral inorganic–organic hybrid architectures | |
Moovendaran et al. | Structural, vibrational and thermal studies of a new nonlinear optical material: l-Asparagine-l-tartaric acid | |
Wang et al. | Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligands | |
Zhang et al. | Low-temperature vaterite-type LuBO3, a vacancy-stabilized phase synthesized at high temperature | |
Deng et al. | Homochiral Cu (I) coordination polymers based on a double-stranded helical building block from achiral ligands: symmetry-breaking crystallization, photophysical and photocatalytic properties | |
CN103696006B (zh) | 水合羟基硼酸锶和水合羟基硼酸锶非线性光学晶体及制备方法和用途 | |
Tello et al. | Microwave-driven hexagonal-to-monoclinic transition in BiPO4: an in-depth experimental investigation and first-principles study | |
Thuéry et al. | Uranyl–Organic Coordination Polymers with trans-1, 2-, trans-1, 4-, and cis-1, 4-Cyclohexanedicarboxylates: Effects of Bulky PPh4+ and PPh3Me+ Counterions | |
Xiao et al. | Chemical and Structural Evolution in the Th–SeO32–/SeO42–System: from Simple Selenites to Cluster-Based Selenate Compounds | |
Jo et al. | Order and disorder: Toward the thermodynamically stable α-BaMoO2F4 from the metastable polymorph | |
An et al. | The racemate-to-homochiral approach to crystal engineering via chiral symmetry breaking | |
Qin et al. | Two chiral metal complex templated aluminoborates constructed from three types of oxoboron clusters | |
Dong et al. | Three novel polyoxoanion-supported compounds: confinement of polyoxoanions in Ni-containing rigid concave surfaces with enhanced NLO properties | |
Chi et al. | Symmetry Breaking of α-[H2W12O40] 6–Depends on the Transformation of Isopolyoxotungstates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |