CN106544630A - 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法 - Google Patents

一种高饱和磁化强度锰铋永磁合金薄膜的制备方法 Download PDF

Info

Publication number
CN106544630A
CN106544630A CN201610937774.6A CN201610937774A CN106544630A CN 106544630 A CN106544630 A CN 106544630A CN 201610937774 A CN201610937774 A CN 201610937774A CN 106544630 A CN106544630 A CN 106544630A
Authority
CN
China
Prior art keywords
heat treatment
ingot casting
alloy
melting
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610937774.6A
Other languages
English (en)
Other versions
CN106544630B (zh
Inventor
吴琼
葛洪良
张朋越
杨洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610937774.6A priority Critical patent/CN106544630B/zh
Publication of CN106544630A publication Critical patent/CN106544630A/zh
Application granted granted Critical
Publication of CN106544630B publication Critical patent/CN106544630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高饱和磁化强度锰铋永磁合金薄膜的制备方法,包括如下步骤:1)配料:按照名义成分MnyBi100‑y,摩尔分数y=45,50,55,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到MnyBi100‑y合金铸锭;3)铸锭热处理;将该铸锭放入真空退火炉中进行真空退火热处理;4)镀膜:采用电子束蒸发沉积方法,以热处理后的铸锭为靶材,以硅片为基片,以钽为缓冲层和防氧化层,制备MnyBi100‑y合金薄膜。

Description

一种高饱和磁化强度锰铋永磁合金薄膜的制备方法
技术领域
本发明属于永磁薄膜技术领域,尤其涉及一种高饱和磁化强度锰铋合金薄膜的制备方法,在磁性微电子机械系统(Mag-MEMS)中具有良好的应用前景。
背景技术
永磁材料作为最重要功能的材料,在国民经济和科技领域具有广泛的应用。随着电子、机械、机电等设备微型化和集成化的发展,磁性材料的薄膜化是发展趋势。永磁薄膜在磁性微电子机械系统(MEMS)和磁记录等方面具有重要而广泛的应用前景。而其中磁性MEMS 是永磁薄膜最重要的应用领域。MEMS 是利用微电子技术和精密机械加工技术,集微电子与机械为一体的系统。它是新近发展起来的多学科交叉的、全新的研究领域,在航空、航天、汽车工业、医药、军事、通讯等高新技术领域具有非常广阔的应用前景。基于电磁相互作用的磁性MEMS 开始并不被人们看好,但近几年的研究表明,因为尺寸的降低,与基于压电、静电相互作用的MEMS 相比具有很大的优越性,如磁性MEMS 作用力大,稳定性好,可实现远程控制,对使用环境要求低,能量转换效率高等优点。所以,对磁性MEMS 的研究近年来受到人们很大的重视。制备磁性MEMS 的关键材料是永磁薄膜。
MnBi永磁材料,具有价格低、耐腐蚀性好、机械强度高等优点,特别是这类合金在一定温度范围内矫顽力呈正温度系数,备受磁学研究者的关注。Heusler 最早报道了MnBi合金的铁磁性能。Guilaud 和Thielman 系统地报道了关于MnBi 合金的磁性特征,证实MnBi合金中每个Mn 原子的磁矩为磁矩为3.9(±0.5)μB,居里温度可达720K,在室温下MnBi低 温相(LTP) 的磁晶各向异性能为11.6×102kJ/m3。第一性原理计算预测完全致密、单轴各向异性MnBi 永磁体的磁能积可达144kJ/m3(18MGOe),矫顽力在280℃仍高达25.8kOe 。MnBi 金属间化合物由于其优异的性能在很多方面有潜在的应用价值。但是由于MnBi合金在719K 发生包晶反应时Mn 原子很容易从MnBi 液相偏析,很难得到纯的单相MnBi,直接影响了其饱和磁化强度。
发明内容
本发明所要解决的技术问题是针对上述技术现状,提供一种高饱和磁化强度锰铋永磁合金薄膜及其制备方法,该锰铋永磁合金薄膜的饱和磁化强度可达50emu/g以上。
本发明的高饱和磁化强度锰铋永磁合金薄膜的制备方法, 包括如下步骤:
1)配料:按照名义成分MnyBi100-y(摩尔分数y=45, 50, 55),采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到MnyBi100-y合金铸锭;
3)铸锭热处理;将该铸锭放入真空退火炉中进行真空退火热处理;
4)镀膜:采用电子束蒸发沉积方法,以热处理后的铸锭为靶材,以硅片为基片,以钽为缓冲层和防氧化层,制备MnyBi100-y(摩尔分数y=45, 50, 55)合金薄膜;
进一步的,铸锭热处理工艺条件如下:作为优选,真空度优于10-3Pa,退火温度为340℃~360℃,退火时间为12h~24h。
进一步的,电子束蒸发沉积工艺条件如下:作为优选,镀膜前真空度10-3Pa,沉积过程中真空室压强为4×10-2 Pa,电子枪的束流为100mA,基底的温度维持在一定的数值下(介于100~200℃之间)。先沉积5min的钽缓冲层,合金靶材的沉积时间为10~20min,最后再沉积5min的钽防氧化层,膜厚仪测得薄膜膜厚300~700nm,沉积结束后,薄膜自然冷却至室温。
实验证实,铸锭未做热处理直接蒸发沉积镀膜,薄膜的饱和磁化强度仅14.5emu/g,尝试对薄膜进行热处理后薄膜饱和磁化强度降低。而本发明中,对铸锭进行热处理后再进行蒸发沉积,薄膜的饱和磁化强度可以达到50 emu/g以上。因此,本发明提供的高饱和磁化强度锰铋永磁合金薄膜具有更加广阔的应用前景,有效解决了锰铋永磁合金薄膜饱和磁化强度低的问题。
附图说明
图1 是比较例1 中制备得到的铸锭未热处理Mn45Bi55合金薄膜的磁滞回线图;
图2 是实施例1 中制备得到的铸锭热处理后Mn45Bi55合金薄膜的磁滞回线图;
图3 是实施例2 中制备得到的铸锭热处理后Mn55Bi45合金薄膜的磁滞回线图。
具体实施方式
以下将结合实施例对本发明做进一步详细说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
比较例1
1)配料:按照名义成分Mn45Bi55,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn45Bi55合金铸锭;
3)镀膜:采用电子束蒸发沉积方法,以铸锭为靶材,以硅片为基片,依次沉积5min的钽缓冲层,10min的锰铋合金层,5min的钽防氧化层;
4)测量:采用超导量子干涉仪(SQUID)测量该薄膜样品的磁滞回线。
实施例1
1)配料:按照名义成分Mn45Bi55,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn45Bi55合金铸锭;
3)铸锭热处理;对铸锭进行真空退火处理,退火温度340℃,退火时间24h;
4)镀膜:采用电子束蒸发沉积方法,以热处理后的铸锭为靶材,以硅片为基片,依次沉积5min的钽缓冲层,10min的锰铋合金层,5min的钽防氧化层;
5)测量:采用超导量子干涉仪(SQUID)测量该薄膜样品的磁滞回线。
实施例2
1)配料:按照名义成分Mn55Bi45,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到Mn55Bi45合金铸锭;
3)铸锭热处理;对铸锭进行真空退火处理,退火温度360℃,退火时间12h;
4)镀膜:采用电子束蒸发沉积方法,以热处理后的铸锭为靶材,以硅片为基片,依次沉积5min的钽缓冲层,20min的锰铋合金层,5min的钽防氧化层;
5)测量:采用超导量子干涉仪(SQUID)测量该薄膜样品的磁滞回线。

Claims (3)

1.一种高饱和磁化强度锰铋永磁合金薄膜的制备方法,包括如下步骤:
1)配料:按照名义成分MnyBi100-y,摩尔分数y=45, 50, 55,采用纯度为99.99%以上 的Mn、Bi合金进行称重配料;
2)熔炼:采用电弧熔炼法将已配好的原料放入在氩气保护下的电弧熔炉中,熔炼得到MnyBi100-y合金铸锭;
3)铸锭热处理;将该铸锭放入真空退火炉中进行真空退火热处理;
4)镀膜:采用电子束蒸发沉积方法,以热处理后的铸锭为靶材,以硅片为基片,以钽为缓冲层和防氧化层,制备MnyBi100-y合金薄膜。
2.如权利要求1所述的高饱和磁化强度锰铋永磁合金薄膜的制备方法,其特征在于:
步骤(2)中铸锭热处理工艺条件如下:作为优选,真空度优于10-3Pa,退火温度为340℃~360℃,退火时间为12h~24h。
3.如权利要求1所述的高饱和磁化强度锰铋永磁合金薄膜的制备方法,其特征在于:
步骤(4)中电子束蒸发沉积工艺条件如下:作为优选,镀膜前真空度10-3Pa,沉积过程中真空室压强为4×10-2 Pa,电子枪的束流为100mA,基底的温度维持在一定的数值下(介于100~200℃之间);先沉积5min的钽缓冲层,合金靶材的沉积时间为10~20min,最后再沉积5min的钽防氧化层,膜厚仪测得薄膜膜厚300~700nm,沉积结束后,薄膜自然冷却至室温。
CN201610937774.6A 2016-10-25 2016-10-25 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法 Active CN106544630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610937774.6A CN106544630B (zh) 2016-10-25 2016-10-25 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610937774.6A CN106544630B (zh) 2016-10-25 2016-10-25 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106544630A true CN106544630A (zh) 2017-03-29
CN106544630B CN106544630B (zh) 2019-04-09

Family

ID=58393024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610937774.6A Active CN106544630B (zh) 2016-10-25 2016-10-25 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106544630B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564660A (zh) * 2017-08-31 2018-01-09 任瀚洋 高性能Sm‑Co纳米永磁薄膜及其制备方法
CN108914080A (zh) * 2018-09-04 2018-11-30 山西师范大学 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN110136952A (zh) * 2019-06-06 2019-08-16 中国计量大学 一种重稀土配化合物扩散获得高饱和磁化强度锰铋快淬合金的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018888A (zh) * 2015-07-27 2015-11-04 大连大学 一种高平整度的Ni50Mn34In12Co4合金薄膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018888A (zh) * 2015-07-27 2015-11-04 大连大学 一种高平整度的Ni50Mn34In12Co4合金薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. F. XIAO ETAL: "Magnetic properties of single-phase MnBi grown from MnBi49 melt", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564660A (zh) * 2017-08-31 2018-01-09 任瀚洋 高性能Sm‑Co纳米永磁薄膜及其制备方法
CN108914080A (zh) * 2018-09-04 2018-11-30 山西师范大学 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN108914080B (zh) * 2018-09-04 2020-10-09 山西师范大学 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN110136952A (zh) * 2019-06-06 2019-08-16 中国计量大学 一种重稀土配化合物扩散获得高饱和磁化强度锰铋快淬合金的方法

Also Published As

Publication number Publication date
CN106544630B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
Hirosawa et al. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials
Myung et al. Development of electroplated magnetic materials for MEMS
CN106544630B (zh) 一种高饱和磁化强度锰铋永磁合金薄膜的制备方法
Honda et al. Tunneling giant magnetoresistance in Fe-SiO2 multilayered and alloyed films
Crisan et al. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing
Padhy et al. Rapid multi-property assessment of compositionally modulated Fe-Co-Ni thin film material libraries
Zhao et al. Magnetic Anisotropy of $\tau $-MnAl Thin Films
Luciu et al. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target
Myagkov et al. Solid-state synthesis, dewetting, and magnetic and structural characterization of interfacial Fe x Sn 1− x layers in Sn/Fe (001) thin films
Goldsby et al. First‐Principle and Experimental Study of a Gadolinium‐Praseodymium‐Cobalt Pseudobinary Intermetallic Compound
Yang et al. Magnetic properties of sputtered anisotropic Pr–Fe–B thin films with different structures and antiferromagnetic materials
Dempsey Hard magnetic materials for MEMS applications
Dang et al. The fabrication and characterization of MnAl/FeCo composite thin films with enhanced maximum energy products
Liu et al. Magnetic field enhanced coercivity of Fe nanoparticles embedded in antiferromagnetic MnN films
WO2013158635A1 (en) Non-rare earth magnets having manganese (mn) and bismuth (bi) alloyed with cobalt (co)
Hu et al. Corrosion behavior of sintered NdFeB magnets coated with Ni coatings deposited by ion beam sputtering
Kim et al. Spontaneous Hall effect in amorphous Tb–Fe and Sm–Fe thin films
Sumiyama et al. Magnetic and electrical properties of nonequilibrium Fe-W alloys produced by sputter deposition
Han et al. Magnetic and structural properties of AlN-Co-Fe thin films prepared by two-facing-target type DC sputtering (TFTS) system
Ge et al. Fabrication and study of Ni/sub 75/Fe/sub 25/-SiO/sub 2/granular films for high frequency application
Liu et al. Modern Sm-Co permanent magnets
You et al. Coercivity Enhancement of Nd—Fe—B Thin Film Magnets through Dy Surface Diffusion Process
Zheng et al. Influence of thickness on current-induced magnetization switching in L10-FePt single layer
CN110735119B (zh) 一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法
Ryabtsev Structure and properties of ion-plasma-deposited films of Fe-(Ag, Bi) alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant