CN106541064A - 一种超大规格铝合金铸锭的锻造开坯工艺方法 - Google Patents

一种超大规格铝合金铸锭的锻造开坯工艺方法 Download PDF

Info

Publication number
CN106541064A
CN106541064A CN201510607531.1A CN201510607531A CN106541064A CN 106541064 A CN106541064 A CN 106541064A CN 201510607531 A CN201510607531 A CN 201510607531A CN 106541064 A CN106541064 A CN 106541064A
Authority
CN
China
Prior art keywords
ingot casting
along
aluminium alloy
height
punching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510607531.1A
Other languages
English (en)
Other versions
CN106541064B (zh
Inventor
张文学
徐坤和
张国方
刘�东
王恒强
丁鹏飞
王国庆
周世杰
许文娟
阳代军
呼啸
徐鹤洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Capital Aerospace Machinery Co Ltd
Original Assignee
China Academy of Launch Vehicle Technology CALT
Capital Aerospace Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Capital Aerospace Machinery Co Ltd filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201510607531.1A priority Critical patent/CN106541064B/zh
Publication of CN106541064A publication Critical patent/CN106541064A/zh
Application granted granted Critical
Publication of CN106541064B publication Critical patent/CN106541064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting

Abstract

本发明属于锻造成形技术领域,具体涉及一种超大规格铝合金铸锭的锻造开坯工艺方法。本发明技术方案提供了一种超大规格铝合金铸锭的锻造开坯工艺方法,采用多向锻造技术,通过控制超大规格铝合金铸锭的锻造温度、单次锻造比、累积锻比、变形速率比及砧宽比等,控制2219铝合金铸锭的变形量,细化材料的晶粒,改善了材料的组织结构,实现了超大直径2219铝合金环轧坯的组织和性能的均匀性控制,提高了产品质量的一致性和产品合格率,可以满足航天产品的研制需求。

Description

一种超大规格铝合金铸锭的锻造开坯工艺方法
技术领域
本发明属于锻造成形技术领域,具体涉及一种超大规格铝合金铸锭的锻造开坯工艺方法。
背景技术
随着我国航天事业的飞速发展,对大直径、高性能2219铝合金铸锭的需求尤为迫切,特别是大直径2219铝合金铸锭,如此超大规格、超大重量的铝合金铸锭,冶炼和浇注过程中内部质量的稳定性和铸造缺陷难以控制,增加了铸锭锻造过程中不同部位变形的复杂性,且铸锭锻造开坯过程的操纵性更差,锻造成形难度成倍增加。因此,采用何种锻造变形方式,如何最大限度增加坯料的变形量,使之充分、均匀的细化铸造组织,关系到最终产品的力学性能。
多向锻造技术是制备高强铝合金大型整体自由锻件和模锻件所需坯料的主要技术之一。多向锻造技术以其简单的工艺流程、低廉的成本,可大幅改善材料的综合性能,满足工业实际生产的需要。多向锻造技术通过对锻件进行多道次反复压缩和拔长,并在锻造过程中,不断改变压缩和拔长的方向,以求达到细化晶粒的目的。但是在多向锻造变形过程中,由于工艺流程繁杂,工艺控制要素多,很难保证锻件成形的同时具有优良的组织和性能。因此,精确调控2219铝合金大直径整体锻件的成形工艺过程,获得均匀细小的显微组织,保证材料性能及其稳定性是航天事业发展的紧迫任务。
发明内容
本发明要解决的技术问题是实现超大直径铝合金整体环件用坯料性能与组织结构均匀性控制,从而满足大型2219铝合金整体过渡环的力学性能指标要求。
为了实现这一目的,本发明采取的技术方案是:
一种超大规格铝合金铸锭的锻造开坯工艺方法,包括如下步骤:
(1)铸锭和工具加热:对均匀化处理后的直径为1100~1300mm,高度为2500~3200mm的2219铝合金圆铸锭和在锻造过程中与铸锭接触的工具进行加热,工具包括上锤砧、下锤砧、镦粗板、冲头、芯棒、取料抱钳、操作机钳口;
其中铸锭的加热温度为450℃~470℃、保温时间为35~50h,下锤砧、镦粗板、冲头、芯棒与坯料同炉加热,上锤砧、取料抱钳、操作机钳口用假料预热;
(2)多向锻造:对铝合金圆铸锭加热后进行多向锻造,获得冲孔用圆形坯料;具体顺序包括:
定义铝合金圆铸锭的Z方向为铝合金圆铸锭的轴向高度方向;X方向与Y方向相互正交并与Z方向相互垂直;
(2.1)Z向镦粗:将铸锭沿Z向镦粗至高度为1200~1400mm,压下速率为5~10mm/s;
(2.2)X向打方:将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿Z向的高度为1200~1400mm;
(2.3)X向拔长:将铸锭沿X向拔长至长度为2500~3000mm的长方体结构,压下速率10~15mm/s;将铸锭滚圆成为垂直于X向的截面是圆形的圆柱体,圆柱体沿X向的高度为2500~3000mm;
(2.4)X向镦粗:将铸锭沿X向镦粗至高度为1200~1400mm,压下速率15~20mm/s;
(2.5)Y向打方:将铸锭打方成为垂直于X向的截面是长方形的长方体,长方体沿Z方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿X向的高度为1200~1400mm;
(2.6)Y向拔长:将铸锭沿Y向拔长至高度为2500~3000mm的长方体结构,压下速率10~15mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;
(2.7)Y向镦粗:将铸锭沿Y向镦粗至高度为1200~1400mm,压下速率15~20mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;
(2.8)Z向打方,将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿Z向的高度为2500~3000mm;
(2.9)Z向拔长:将铸锭沿Z向拔长至沿Z向高度为2500~3000mm,压下速率10~15mm/s;将铸锭滚圆;
(2.10)Z向镦粗:将铸锭沿Z向镦粗至高度为500~650mm,压下速率15~20mm/s,获得外径为2000~2500mm的冲孔用圆形坯料;
(3)冲孔与扩孔:对步骤(2)制得的冲孔用圆形坯料加热后进行冲孔、修伤、扩孔及平整加工,获得环形坯料;包括:
(3.1)加热:将冲孔用圆形坯料回炉加热,加热温度为430℃~450℃、加热时间为4~8h;
(3.2)冲孔:用Φ600mm冲头加工冲孔用圆形坯料的Φ600mm中心孔,将其平整;
(3.3)修伤:清除冲孔产生的连皮及翻边;
(3.4)平整:将冲孔用圆形坯料平整至高度为500~650mm;
(3.5)扩孔:用直径为600mm的芯棒扩孔至冲孔用圆形坯料外径为2500~3000mm;
(3.6)终扩:用直径为1200~2000mm的芯棒扩孔至冲孔用圆形坯料外径为3500~4500mm;
(3.7)精整:将冲孔用圆形坯料平整至高度500~650mm,获得环形坯料。
进一步的,如上所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,步骤(2.1)~(2.10)中,每一次铸锭的终锻变形温度不小于380℃。
进一步的,如上所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,步骤(3)之后进行步骤(4)加工与检测:对环形坯料进行车加工,然后进行超声波探伤检测、组织及性能检查,获得满足质量要求的超大直径铝合金整体环轧坯料。
进一步的,如上所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,步骤(4)中,车加工至尺寸参数为:外径为3500~4500mm,内径为3000~3500mm,高度为500~650mm。
本发明技术方案提供了一种超大规格铝合金铸锭的锻造开坯工艺方法,采用多向锻造技术,通过控制超大规格铝合金铸锭的锻造温度、单次锻造比、累积锻比、变形速率比及砧宽比等,控制2219铝合金铸锭的变形量,细化材料的晶粒,改善了材料的组织结构,实现了超大直径2219铝合金环轧坯的组织和性能的均匀性控制,提高了产品质量的一致性和产品合格率,可以满足航天产品的研制需求。
附图说明
图1是本发明铝合金铸锭锻造开坯成形的流程图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案进行详细说明:
铸锭的规格越大、质量越重,其内部缺陷和质量稳定性越难控制,对锻造开坯的要求就越高。如何最大限度增加坯料的变形量,使之充分、均匀变形关系到最终环件产品的力学性能,因此铸锭开坯技术是控制产品性能的一项关键技术。
本发明的设计思路是通过采用多向锻造技术,有效解决镦粗变形中的变形死区和小变形区的存在,提高变形量的同时增加了坯料的变形均匀性,有利于最终锻环产品三向性能的整体提高。变形过程中材料随外加载荷轴向旋转变化而不断被压缩和拉长,通过反复变形达到细化晶粒、破碎共晶化合物、改善材料综合性能的目的。多向锻造过程中,载荷随着道次的增加而改变,晶粒相互交错,容易在变形带交汇处位错塞积,并逐步通过动态回复形成亚晶组织,这时候新晶粒的形核不仅能在晶界处形成,而且在晶粒内也能观察到大量的新晶粒。同时采用反复镦粗和拔长变形工艺,能较好地破碎网状共晶化合物及改善共晶化合物在各个方向上的均匀性,使共晶化合物的分布均匀且颗粒细小。
下面通过实施例具体说明本发明提供的一种超大规格铝合金铸锭的锻造开坯工艺方法。
实施例1
铸锭和工具加热:对均匀化处理后的Φ1205×2590mm大直径2219铝合金圆铸锭及在锻造过程中与铸锭接触的工具进行加热。其中铸锭的加热温度为459℃,保温时间40h;下锤砧、镦粗板、冲头、芯棒与坯料同炉加热,上锤砧、取料抱钳、操作机钳口等其它工具用假料预热。
多向锻造:
对铝合金圆铸锭加热后进行多向锻造,获得冲孔用圆形坯料;具体顺序包括:
定义铝合金圆铸锭的Z方向为铝合金圆铸锭的轴向高度方向;X方向与Y方向相互正交并与Z方向相互垂直;
(2.1)Z向镦粗:将铸锭沿Z向镦粗至高度为1200mm,压下速率为9mm/s;终锻温度为386℃。
(2.2)X向打方:将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200mm,沿Y方向的长度为1200mm;长方体沿Z向的高度为1200~1400mm;终锻温度为386℃。
(2.3)X向拔长:将铸锭沿X向拔长至长度为2509mm的长方体结构,压下速率11mm/s;将铸锭滚圆成为垂直于X向的截面是圆形的圆柱体,圆柱体沿X向的高度为2500~3000mm;终锻温度为386℃。
(2.4)X向镦粗:将铸锭沿X向镦粗至高度为1200mm,压下速率19mm/s;终锻温度为386℃。
(2.5)Y向打方:将铸锭打方成为垂直于X向的截面是长方形的长方体,长方体沿Z方向的长度为1200mm,沿Y方向的长度为1200mm;长方体沿X向的高度为1200~1400mm;终锻温度为386℃。
(2.6)Y向拔长:将铸锭沿Y向拔长至高度为2590mm的长方体结构,压下速率12mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;终锻温度为386℃。
(2.7)Y向镦粗:将铸锭沿Y向镦粗至高度为1200mm,压下速率19mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;终锻温度为386℃。
(2.8)Z向打方,将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200mm,沿Y方向的长度为1200mm;长方体沿Z向的高度为2500~3000mm;终锻温度为386℃。
(2.9)Z向拔长:将铸锭沿Z向拔长至沿Z向高度为2590mm,压下速率12mm/s;将铸锭滚圆;终锻温度为386℃。
(2.10)Z向镦粗:将铸锭沿Z向镦粗至高度为650mm,压下速率18.5mm/s,获得外径为2395mm的冲孔用圆形坯料;终锻温度为386℃。
(3)冲孔与扩孔:对步骤(2)制得的冲孔用圆形坯料加热后进行冲孔、修伤、扩孔及平整加工,获得环形坯料;包括:
(3.1)加热:将冲孔用圆形坯料回炉加热,加热温度为445℃、加热时间为6h;
(3.2)冲孔:用Φ600mm冲头加工冲孔用圆形坯料的Φ600mm中心孔,将其平整;
(3.3)修伤:清除冲孔产生的连皮及翻边;
(3.4)平整:将冲孔用圆形坯料平整至高度为620mm;
(3.5)扩孔:用直径为600mm的芯棒扩孔至冲孔用圆形坯料外径为2800mm;
(3.6)终扩:用直径为1200mm的芯棒扩孔至冲孔用圆形坯料外径为3980mm;
(3.7)精整:将冲孔用圆形坯料平整至高度620mm,获得环形坯料。
(4)加工与检测:对环形坯料进行车加工,然后进行超声波探伤检测、组织及性能检查,获得满足质量要求的超大直径铝合金整体环轧坯料。
步骤(4)中,车加工至尺寸参数为:外径为3960mm,内径为3220mm,高度为570mm。超声探伤符合GJB2057-1994中A级标准。
本体切取试样经535℃固溶处理、3%冷压缩变形和175℃时效19h,测得三个方向力学性能如表1所示。可以看出环坯三个方向力学性能的一致性较好,说明铸锭在多向锻造开坯过程中各个方向的变形较为均匀。
表1 环坯不同方向力学性能
实施例2
铸锭和工具加热:对均匀化处理后的Φ1260×2890mm大直径2219铝合金圆铸锭及在锻造过程中与铸锭接触的工具进行加热。其中铸锭的加热温度为462℃,保温时间41h;下锤砧、镦粗板、冲头、芯棒与坯料同炉加热,上锤砧、取料抱钳、操作机钳口等其它工具用假料预热。
多向锻造:
对铝合金圆铸锭加热后进行多向锻造,获得冲孔用圆形坯料;具体顺序包括:
定义铝合金圆铸锭的Z方向为铝合金圆铸锭的轴向高度方向;X方向与Y方向相互正交并与Z方向相互垂直;
(2.1)Z向镦粗:将铸锭沿Z向镦粗至高度为1400mm,压下速率为9.5mm/s;终锻温度为385℃。
(2.2)X向打方:将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1400mm,沿Y方向的长度为1400mm;长方体沿Z向的高度为1200~1400mm;终锻温度为385℃。
(2.3)X向拔长:将铸锭沿X向拔长至长度为2890mm的长方体结构,压下速率12mm/s;将铸锭滚圆成为垂直于X向的截面是圆形的圆柱体,圆柱体沿X向的高度为2500~3000mm;终锻温度为385℃。
(2.4)X向镦粗:将铸锭沿X向镦粗至高度为1400mm,压下速率19.5mm/s;终锻温度为385℃。
(2.5)Y向打方:将铸锭打方成为垂直于X向的截面是长方形的长方体,长方体沿Z方向的长度为1400mm,沿Y方向的长度为1400mm;长方体沿X向的高度为1200~1400mm;终锻温度为385℃。
(2.6)Y向拔长:将铸锭沿Y向拔长至高度为2890mm的长方体结构,压下速率11mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;终锻温度为385℃。
(2.7)Y向镦粗:将铸锭沿Y向镦粗至高度为1400mm,压下速率19.5mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;终锻温度为385℃。
(2.8)Z向打方,将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1400mm,沿Y方向的长度为1400mm;长方体沿Z向的高度为2500~3000mm;终锻温度为385℃。
(2.9)Z向拔长:将铸锭沿Z向拔长至沿Z向高度为2890mm,压下速率11mm/s;将铸锭滚圆;终锻温度为385℃。
(2.10)Z向镦粗:将铸锭沿Z向镦粗至高度为650mm,压下速率17.8mm/s,获得外径为2656mm的冲孔用圆形坯料;终锻温度为385℃。
(3)冲孔与扩孔:对步骤(2)制得的冲孔用圆形坯料加热后进行冲孔、修伤、扩孔及平整加工,获得环形坯料;包括:
(3.1)加热:将冲孔用圆形坯料回炉加热,加热温度为450℃、加热时间为7h;
(3.2)冲孔:用Φ600mm冲头加工冲孔用圆形坯料的Φ600mm中心孔,将其平整;
(3.3)修伤:清除冲孔产生的连皮及翻边;
(3.4)平整:将冲孔用圆形坯料平整至高度为620mm;
(3.5)扩孔:用直径为600mm的芯棒扩孔至冲孔用圆形坯料外径为2800mm;
(3.6)终扩:用直径为1200mm的芯棒扩孔至冲孔用圆形坯料外径为4130mm;
(3.7)精整:将冲孔用圆形坯料平整至高度620mm,获得环形坯料。
(4)加工与检测:对环形坯料进行车加工,然后进行超声波探伤检测、组织及性能检查,获得满足质量要求的超大直径铝合金整体环轧坯料。
步骤(4)中,车加工至尺寸参数为:外径为4100mm,内径为3380mm,高度为580mm。超声探伤符合GJB2057-1994中A级标准。
本体切取试样经535℃固溶处理、3%冷压缩变形和175℃时效19h,测得三个方向力学性能如表1所示。可以看出环坯三个方向力学性能的一致性较好,说明铸锭在多向锻造开坯过程中各个方向的变形较为均匀,实现了高质量环轧坯料的制备。
表2 环坯不同方向力学性能

Claims (4)

1.一种超大规格铝合金铸锭的锻造开坯工艺方法,其特征在于:包括如下步骤:
(1)铸锭和工具加热:对均匀化处理后的直径为1100~1300mm,高度为2500~3200mm的2219铝合金圆铸锭和在锻造过程中与铸锭接触的工具进行加热,工具包括上锤砧、下锤砧、镦粗板、冲头、芯棒、取料抱钳、操作机钳口;
其中铸锭的加热温度为450℃~470℃、保温时间为35~50h,下锤砧、镦粗板、冲头、芯棒与坯料同炉加热,上锤砧、取料抱钳、操作机钳口用假料预热;
(2)多向锻造:对铝合金圆铸锭加热后进行多向锻造,获得冲孔用圆形坯料;具体顺序包括:
定义铝合金圆铸锭的Z方向为铝合金圆铸锭的轴向高度方向;X方向与Y方向相互正交并与Z方向相互垂直;
(2.1)Z向镦粗:将铸锭沿Z向镦粗至高度为1200~1400mm,压下速率为5~10mm/s;
(2.2)X向打方:将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿Z向的高度为1200~1400mm;
(2.3)X向拔长:将铸锭沿X向拔长至长度为2500~3000mm的长方体结构,压下速率10~15mm/s;将铸锭滚圆成为垂直于X向的截面是圆形的圆柱体,圆柱体沿X向的高度为2500~3000mm;
(2.4)X向镦粗:将铸锭沿X向镦粗至高度为1200~1400mm,压下速率15~20mm/s;
(2.5)Y向打方:将铸锭打方成为垂直于X向的截面是长方形的长方体,长方体沿Z方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿X向的高度为1200~1400mm;
(2.6)Y向拔长:将铸锭沿Y向拔长至高度为2500~3000mm的长方体结构,压下速率10~15mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;
(2.7)Y向镦粗:将铸锭沿Y向镦粗至高度为1200~1400mm,压下速率15~20mm/s;将铸锭滚圆成为垂直于Y向的截面是圆形的圆柱体,圆柱体沿Y向的高度为2500~3000mm;
(2.8)Z向打方,将铸锭打方成为垂直于Z向的截面是长方形的长方体,长方体沿X方向的长度为1200~1400mm,沿Y方向的长度为1200~1400mm;长方体沿Z向的高度为2500~3000mm;
(2.9)Z向拔长:将铸锭沿Z向拔长至沿Z向高度为2500~3000mm,压下速率10~15mm/s;将铸锭滚圆;
(2.10)Z向镦粗:将铸锭沿Z向镦粗至高度为500~650mm,压下速率15~20mm/s,获得外径为2000~2500mm的冲孔用圆形坯料;
(3)冲孔与扩孔:对步骤(2)制得的冲孔用圆形坯料加热后进行冲孔、修伤、扩孔及平整加工,获得环形坯料;包括:
(3.1)加热:将冲孔用圆形坯料回炉加热,加热温度为430℃~450℃、加热时间为4~8h;
(3.2)冲孔:用Φ600mm冲头加工冲孔用圆形坯料的Φ600mm中心孔,将其平整;
(3.3)修伤:清除冲孔产生的连皮及翻边;
(3.4)平整:将冲孔用圆形坯料平整至高度为500~650mm;
(3.5)扩孔:用直径为600mm的芯棒扩孔至冲孔用圆形坯料外径为2500~3000mm;
(3.6)终扩:用直径为1200~2000mm的芯棒扩孔至冲孔用圆形坯料外径为3500~4500mm;
(3.7)精整:将冲孔用圆形坯料平整至高度500~650mm,获得环形坯料。
2.如权利要求1所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,其特征在于:步骤(2.1)~(2.10)中,每一次铸锭的终锻变形温度不小于380℃。
3.如权利要求1所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,其特征在于:步骤(3)之后进行步骤(4)加工与检测:对环形坯料进行车加工,然后进行超声波探伤检测、组织及性能检查,获得满足质量要求的超大直径铝合金整体环轧坯料。
4.如权利要求3所述的一种超大规格铝合金铸锭的锻造开坯工艺方法,其特征在于:步骤(4)中,车加工至尺寸参数为:外径为3500~4500mm,内径为3000~3500mm,高度为500~650mm。
CN201510607531.1A 2015-09-22 2015-09-22 一种超大规格铝合金铸锭的锻造开坯工艺方法 Active CN106541064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510607531.1A CN106541064B (zh) 2015-09-22 2015-09-22 一种超大规格铝合金铸锭的锻造开坯工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510607531.1A CN106541064B (zh) 2015-09-22 2015-09-22 一种超大规格铝合金铸锭的锻造开坯工艺方法

Publications (2)

Publication Number Publication Date
CN106541064A true CN106541064A (zh) 2017-03-29
CN106541064B CN106541064B (zh) 2018-08-21

Family

ID=58365472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510607531.1A Active CN106541064B (zh) 2015-09-22 2015-09-22 一种超大规格铝合金铸锭的锻造开坯工艺方法

Country Status (1)

Country Link
CN (1) CN106541064B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138538A (zh) * 2017-06-16 2017-09-08 奥科宁克航空机件(苏州)有限公司 一种细化高温合金环形锻件晶粒度的锻造方法
CN108044019A (zh) * 2017-11-30 2018-05-18 枣庄远东实业开发总公司 一种基于空气锤预坯的汽车转向节立式锻造装置及工艺
CN108994248A (zh) * 2018-09-17 2018-12-14 杭州金越晟重型机械有限公司 一种齿轮锻造工艺
CN109226621A (zh) * 2018-10-24 2019-01-18 湖南金天钛业科技有限公司 一种大高径比钛合金铸锭的锻造方法
CN109500330A (zh) * 2017-09-14 2019-03-22 宝钢特钢有限公司 一种镍基合金大规格铸锭的开坯方法
CN110449544A (zh) * 2019-08-16 2019-11-15 建龙北满特殊钢有限责任公司 一种扁方开坯提高锻材内部的质量控制方法
CN110484874A (zh) * 2019-08-16 2019-11-22 韶关市欧莱高新材料有限公司 一种高纯铝管溅射靶材的制备方法
CN110653328A (zh) * 2019-06-03 2020-01-07 遵义航天新力精密铸锻有限公司 一种内吊耳异形罩的加工工艺
CN110773690A (zh) * 2019-11-04 2020-02-11 伊莱特能源装备股份有限公司 一种弧形内台环形锻件仿形环轧成形工艺
CN111014538A (zh) * 2019-12-17 2020-04-17 西南铝业(集团)有限责任公司 一种航天用5米级直径铝锂合金环的制备方法
CN111790864A (zh) * 2020-07-07 2020-10-20 福建祥鑫股份有限公司 一种提高6系合金抗氧化及电击穿性能的锻造方法
CN111996426A (zh) * 2020-08-30 2020-11-27 中南大学 一种高强Al-Cu-Mg-Mn铝合金及其制备方法
CN112275984A (zh) * 2020-12-25 2021-01-29 北京钢研高纳科技股份有限公司 大规格Ti2AlNb棒材及其锻造方法和应用
CN112439857A (zh) * 2020-10-29 2021-03-05 陕西长羽航空装备有限公司 一种提高铝合金三向性能的成型方法
CN112792272A (zh) * 2020-12-22 2021-05-14 西南铝业(集团)有限责任公司 一种7085合金高筒环件成型工艺
CN112792271A (zh) * 2020-12-22 2021-05-14 西南铝业(集团)有限责任公司 一种7050合金锻件生产工艺
CN114273585A (zh) * 2021-12-30 2022-04-05 无锡派克新材料科技股份有限公司 一种2219铝合金环形锻件的加工工艺
CN114309443A (zh) * 2021-12-29 2022-04-12 西南铝业(集团)有限责任公司 一种6061t6锻环的制备方法
CN114433758A (zh) * 2021-11-30 2022-05-06 中南大学 一种高银铝合金的锻造加工方法以及高银铝合金锻件
CN115740313A (zh) * 2022-11-21 2023-03-07 湖南中创空天新材料股份有限公司 一种锥形锻件的加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1503960A1 (ru) * 1987-07-20 1989-08-30 Научно-производственное объединение по технологии машиностроения Устройство дл изготовлени поковок
RU2041761C1 (ru) * 1993-02-03 1995-08-20 Акционерное общество "Уральский машиностроительный завод" Способ изготовления стержневых изделий с фланцем на торце и буртом в средней части и устройство для его осуществления
CN1339343A (zh) * 2000-08-25 2002-03-13 哈尔滨工业大学 大型阀体类零件剪切挤压成形法
CN103909382A (zh) * 2014-01-18 2014-07-09 中南大学 一种大直径中强耐热镁合金厚壁筒形件成形工艺
CN104259762A (zh) * 2014-08-18 2015-01-07 贵州航宇科技发展股份有限公司 一种f22合金非等截面法兰环件锻造成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1503960A1 (ru) * 1987-07-20 1989-08-30 Научно-производственное объединение по технологии машиностроения Устройство дл изготовлени поковок
RU2041761C1 (ru) * 1993-02-03 1995-08-20 Акционерное общество "Уральский машиностроительный завод" Способ изготовления стержневых изделий с фланцем на торце и буртом в средней части и устройство для его осуществления
CN1339343A (zh) * 2000-08-25 2002-03-13 哈尔滨工业大学 大型阀体类零件剪切挤压成形法
CN103909382A (zh) * 2014-01-18 2014-07-09 中南大学 一种大直径中强耐热镁合金厚壁筒形件成形工艺
CN104259762A (zh) * 2014-08-18 2015-01-07 贵州航宇科技发展股份有限公司 一种f22合金非等截面法兰环件锻造成形方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138538A (zh) * 2017-06-16 2017-09-08 奥科宁克航空机件(苏州)有限公司 一种细化高温合金环形锻件晶粒度的锻造方法
CN107138538B (zh) * 2017-06-16 2019-06-07 奥科宁克航空机件(苏州)有限公司 一种细化高温合金环形锻件晶粒度的锻造方法
CN109500330A (zh) * 2017-09-14 2019-03-22 宝钢特钢有限公司 一种镍基合金大规格铸锭的开坯方法
CN108044019A (zh) * 2017-11-30 2018-05-18 枣庄远东实业开发总公司 一种基于空气锤预坯的汽车转向节立式锻造装置及工艺
CN108994248A (zh) * 2018-09-17 2018-12-14 杭州金越晟重型机械有限公司 一种齿轮锻造工艺
CN109226621A (zh) * 2018-10-24 2019-01-18 湖南金天钛业科技有限公司 一种大高径比钛合金铸锭的锻造方法
CN110653328A (zh) * 2019-06-03 2020-01-07 遵义航天新力精密铸锻有限公司 一种内吊耳异形罩的加工工艺
CN110449544A (zh) * 2019-08-16 2019-11-15 建龙北满特殊钢有限责任公司 一种扁方开坯提高锻材内部的质量控制方法
CN110484874A (zh) * 2019-08-16 2019-11-22 韶关市欧莱高新材料有限公司 一种高纯铝管溅射靶材的制备方法
CN110773690A (zh) * 2019-11-04 2020-02-11 伊莱特能源装备股份有限公司 一种弧形内台环形锻件仿形环轧成形工艺
CN111014538B (zh) * 2019-12-17 2021-08-24 西南铝业(集团)有限责任公司 一种航天用5米级直径铝锂合金环的制备方法
CN111014538A (zh) * 2019-12-17 2020-04-17 西南铝业(集团)有限责任公司 一种航天用5米级直径铝锂合金环的制备方法
CN111790864A (zh) * 2020-07-07 2020-10-20 福建祥鑫股份有限公司 一种提高6系合金抗氧化及电击穿性能的锻造方法
CN111996426A (zh) * 2020-08-30 2020-11-27 中南大学 一种高强Al-Cu-Mg-Mn铝合金及其制备方法
CN111996426B (zh) * 2020-08-30 2021-11-23 中南大学 一种高强Al-Cu-Mg-Mn铝合金及其制备方法
CN112439857A (zh) * 2020-10-29 2021-03-05 陕西长羽航空装备有限公司 一种提高铝合金三向性能的成型方法
CN112792271A (zh) * 2020-12-22 2021-05-14 西南铝业(集团)有限责任公司 一种7050合金锻件生产工艺
CN112792272A (zh) * 2020-12-22 2021-05-14 西南铝业(集团)有限责任公司 一种7085合金高筒环件成型工艺
CN112275984B (zh) * 2020-12-25 2021-03-16 北京钢研高纳科技股份有限公司 大规格Ti2AlNb棒材及其锻造方法和应用
CN112275984A (zh) * 2020-12-25 2021-01-29 北京钢研高纳科技股份有限公司 大规格Ti2AlNb棒材及其锻造方法和应用
CN114433758A (zh) * 2021-11-30 2022-05-06 中南大学 一种高银铝合金的锻造加工方法以及高银铝合金锻件
CN114433758B (zh) * 2021-11-30 2022-11-29 中南大学 一种高银铝合金的锻造加工方法
CN114309443A (zh) * 2021-12-29 2022-04-12 西南铝业(集团)有限责任公司 一种6061t6锻环的制备方法
CN114273585A (zh) * 2021-12-30 2022-04-05 无锡派克新材料科技股份有限公司 一种2219铝合金环形锻件的加工工艺
CN115740313A (zh) * 2022-11-21 2023-03-07 湖南中创空天新材料股份有限公司 一种锥形锻件的加工工艺

Also Published As

Publication number Publication date
CN106541064B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
CN106541064B (zh) 一种超大规格铝合金铸锭的锻造开坯工艺方法
CN104759850B (zh) 一种铝合金高筒件加工工艺
CN103862228B (zh) 一种铝基复合材料大型薄壁壳体的制备加工方法
CN103469136B (zh) 一种疲劳强度高的tc11钛合金饼材的制备方法
CN103320734B (zh) 医用细晶钛/钛合金棒材的生产方法
CN106890865B (zh) 大直径aq80m镁合金饼材挤锻集成成形工艺
CN103521670A (zh) 一种改善钛合金拔长锻造组织均匀性的方法
CN103526144A (zh) Tc17钛合金大规格棒材自由锻造方法
CN103785700A (zh) 一种制备超细晶块体材料的模具及方法
CN106166590A (zh) 磁体支撑工字形锻件的碾轧成型制造方法
EP2762247A1 (en) Forging method for high-efficiency closing of porous defects in steel ingots or billets
CN103273272A (zh) 一种综合提升宽厚板坯内外质量的锻、轧复合成形方法
CN203751019U (zh) 一种制备超细晶块体材料的模具
CN107127282A (zh) 一种镁合金高筋薄腹板类零件的等温锻造方法
CN104368621B (zh) 一种金属板材的制造方法
CN106734795A (zh) 一种高铌gh4169合金棒材的制备方法
CN102029299A (zh) 多向复合式循环镦压装置及镦压方法
CN108237197B (zh) 一种改善结构钢大型环形件探伤的锻造方法
CN105397000A (zh) 钛合金板形锻件的轧制方法
CN200988058Y (zh) 用于等径角挤压可变形金属材料的模具
CN103273274A (zh) 一种镁合金板材成形方法
CN102304685A (zh) 一种细晶镁合金的制备方法
CN108746440B (zh) 一种大型高温合金高筒形锻件分段轧制方法
CN103469131B (zh) 一种分析镁合金组织性能不均匀性的中间坯制备方法
CN109576616A (zh) 一种铝合金管材尺寸回弹控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant