CN106540675B - 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料 - Google Patents

基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料 Download PDF

Info

Publication number
CN106540675B
CN106540675B CN201611128336.1A CN201611128336A CN106540675B CN 106540675 B CN106540675 B CN 106540675B CN 201611128336 A CN201611128336 A CN 201611128336A CN 106540675 B CN106540675 B CN 106540675B
Authority
CN
China
Prior art keywords
cnts
tin
redox
catalysis material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611128336.1A
Other languages
English (en)
Other versions
CN106540675A (zh
Inventor
田栋
侯恩啸
陈博文
周长利
黄太仲
夏方诠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201611128336.1A priority Critical patent/CN106540675B/zh
Publication of CN106540675A publication Critical patent/CN106540675A/zh
Application granted granted Critical
Publication of CN106540675B publication Critical patent/CN106540675B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

基于Cu+/Cu的氧化还原制备多孔氧化锡‑CNTs光催化材料,本发明涉及一种基于酸性介质中Cu+/Cu的氧化还原来制备用于光降解有机污染物的多孔氧化锡‑CNTs复合材料的方法。本发明是要解决目前薄膜光催化材料催化活性低的问题。基于Cu+/Cu的氧化还原制备多孔氧化锡‑CNTs光催化材料:(1)在导电玻璃表面电沉积仿金青铜‑CNTs;(2)仿金青铜‑CNTs的一价铜沥出;(3)多孔锡‑CNTs的氧化,制备出高效的多孔氧化锡‑CNTs光催化降解复合材料。基于Cu+/Cu的氧化还原制备出的多孔氧化锡‑CNTs光催化材料提高了催化材料的比表面积和吸附性能,并可防止光电子与空穴的复合,可以大幅度提高材料的催化性能。

Description

基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料
技术领域
本发明属于光催化材料制备领域,涉及一种基于酸性溶液中Cu+/Cu的氧化还原来制备多孔氧化锡-CNTs光催化材料的方法。
背景技术
经济发展给人类社会提供了进步的驱动力,同时也带来了诸多难以消除的影响,比如环境污染问题随着经济发展的加剧,而且环保问题在发展中国家尤为突出,各种污染物排放至水体及大气中,造成了人民生活环境的破坏。因此,必须对各种污染物的排放采取严格的控制,并对污染物的治理采取具有针对性的手段,开发能把污染物去除的技术,才能够改善生存环境。
对于水体污染的治理,采取光催化材料对污染物进行处理,可以将太阳能作为污染治理的能源,产生的光生电子和光生空穴具有还原和氧化的能力,从而使水体中的污染物被氧化或还原为无毒的物质。光催化降解有机污染物不仅节约能源而且适用性广,可以突破传统环境治理方法无法解决的瓶颈,因此受到了广泛的关注,也很有希望成为解决水体污染的绿色环境治理方式。所以,开发可以产生强氧化还原性光生空穴及光生电子的高效半导体光催化材料成为治理水体污染的重要任务。除了催化剂本身的半导体性质之外,诸多因素都可以对于半导体催化材料的催化活性产生重大影响,比如:半导体催化剂的晶粒大小、晶型、吸附性以及导电性等性质。一般来讲,催化剂的晶粒越小其催化表面就越大,吸附性能越好就能在单位时间内吸附更多的有机污染物,导电性能越好就能防止光生电子与光生空穴的复合,催化剂的催化效果就越好。然而,采用粉体催化剂虽然比表面积更大,但是催化剂不稳定易团聚,且不易回收造成二次污染,采用薄膜半导体催化剂则可以克服这些问题。
目前,人们已经研究了二氧化钛、氧化锌、硫化镉、氧化锡以及二硫化钼等半导体材料及其复合材料作为光催化材料用于分解有机污染物的可行性,而且在薄膜半导体催化剂的制备领域取得了一定的进展。在众多半导体光催化材料中,氧化锡的禁带宽度较宽,其产生的光生空穴的氧化性较强,可以氧化更稳定的有机污染物,产生更好的光催化降解效果。但是,氧化锡薄膜催化剂本身的比表面积较小、导电性较差,且对有机污染物的吸附性能不理想,这些因素都限制了氧化锡薄膜催化剂的催化活性以及在光催化降解有机污染物领域的应用。因此,制备具有巨大催化面积、良好吸附性能以及优良导电性的氧化锡复合薄膜,提高其催化降解有机污染物的能力,对于光催化材料在环境治理领域的实际应用具有重大意义。
发明内容
本发明是要解决目前薄膜光催化材料催化活性低的问题,而提供一种基于酸性介质中Cu+/Cu的氧化还原来制备用于光降解有机污染物的多孔氧化锡-CNTs复合材料的方法。
本发明的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料按照以下步骤进行:
(1) 在导电玻璃表面电沉积仿金青铜-CNTs:a. 量取8~80 mL盐酸溶于700 mL去离子水中,缓慢加入5~15 g的对苯二酚,然后加入5~12 g酒石酸氢钾,搅拌至全部溶解后加入1~6 g氯化亚锡并陈化24h,配得溶液A;b. 向溶液A中加入35~120 g硫脲,加热搅拌至完全溶解后加入5~35g氧化亚铜,在50~80 ℃条件下搅拌2 h后趁热进行常压过滤,配得溶液B;c. 将0.5~1.0 g CNTs加入到100 ml 65%硝酸中,采用超声波细胞粉碎机处理6~60 h,加入氨水至溶液pH值为5.5~8.5后采用去离子水对CNTs进行离心洗涤5~8次,将CNTs分散于200 mL去离子水中,配得溶液C;d. 混合溶液B与溶液C,定容至1 L,配得仿金青铜-CNTs复合电沉积溶液;e. 将经过丙酮除油的导电玻璃浸入步骤d配制的仿金青铜-CNTs复合电沉积溶液,在电流密度为1.0~5.0 A/dm2并且施加搅拌的条件下电沉积10~120 min,在导电玻璃表面制得仿金青铜-CNTs复合层;
(2) 仿金青铜-CNTs的一价铜沥出:f. 将2~35 mL的盐酸和50~100 g硫脲在55~85℃的温度下溶于600mL去离子水中,然后定容至1 L,配得铜沥出液;g. 将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在35~80 ℃条件下浸泡0.5~12 h,完成仿金青铜-CNTs的一价铜沥出,制得导电玻璃/多孔锡-CNTs;
(3) 多孔锡-CNTs的氧化:h. 将步骤g制备的导电玻璃/多孔锡-CNTs在80~150℃的条件下热处理8~60 h,完成多孔锡-CNTs的氧化,在导电玻璃表面获得多孔氧化锡-CNTs光催化材料。
本发明的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料通过在含有亚铜离子和亚锡离子的溶液中电沉积仿金青铜-CNTs,然后利用铜在含有硫脲的酸性溶液中极易溶解为亚铜离子的特性沥出仿金青铜中的铜元素,得到多孔锡-CNTs复合物,进而氧化生成多孔氧化锡-CNTs复合材料。由于铜的沥出,制备的光催化材料为具有很大比表面积的多孔材料;由于制备的光催化材料多孔且含有具有吸附性能的CNTs,因此光催化材料吸附有机污染物的能力优良,有助于提高其催化降解有机污染物的能力;由于制备的光催化材料含有导电性良好的CNTs,有助于防止光生电子和光生空穴的复合,提高催化材料的催化能力。因此,将本发明制备的多孔氧化锡-CNTs光催化材料用于光降解有机污染物时,可以表现出优良的催化活性,对于水体污染的治理具有重大意义。
附图说明
图1为试验一步骤(1)制备的仿金青铜-CNTs复合材料的SEM图像;
图2为试验一制备的氧化锡-CNTs复合材料的SEM图像;
图3为试验一制备的氧化锡-CNTs复合材料在350 W汞灯照射下对50 mL浓度为30mg/L的甲基橙溶液的光催化降解曲线。
具体实施方式
具体实施方式一:本实施方式的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料按以下步骤进行:
1、基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料按以下步骤进行:
(1) 在导电玻璃表面电沉积仿金青铜-CNTs:a. 量取8~80 mL盐酸溶于700 mL去离子水中,缓慢加入5~15 g的对苯二酚,然后加入5~12 g酒石酸氢钾,搅拌至全部溶解后加入1~6 g氯化亚锡并陈化24h,配得溶液A;b. 向溶液A中加入35~120 g硫脲,加热搅拌至完全溶解后加入5~35g氧化亚铜,在50~80 ℃条件下搅拌2 h后趁热进行常压过滤,配得溶液B;c. 将0.5~1.0 g CNTs加入到100 ml 65%硝酸中,采用超声波细胞粉碎机处理6~60 h,加入氨水至溶液pH值为5.5~8.5后采用去离子水对CNTs进行离心洗涤5~8次,将CNTs分散于200 mL去离子水中,配得溶液C;d. 混合溶液B与溶液C,定容至1 L,配得仿金青铜-CNTs复合电沉积溶液;e. 将经过丙酮除油的导电玻璃浸入步骤d配制的仿金青铜-CNTs复合电沉积溶液,在电流密度为1.0~5.0 A/dm2并且施加搅拌的条件下电沉积10~120 min,在导电玻璃表面制得仿金青铜-CNTs复合层;
(2) 仿金青铜-CNTs的一价铜沥出:f. 将2~35 mL的盐酸和50~100 g硫脲在55~85℃的温度下溶于600mL去离子水中,然后定容至1 L,配得铜沥出液;g. 将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在35~80 ℃条件下浸泡0.5~12 h,完成仿金青铜-CNTs的一价铜沥出,制得导电玻璃/多孔锡-CNTs;
(3) 多孔锡-CNTs的氧化:h. 将步骤g制备的导电玻璃/多孔锡-CNTs在80~150℃的条件下热处理8~60 h,完成多孔锡-CNTs的氧化,在导电玻璃表面获得多孔氧化锡-CNTs光催化材料。
本实施方式的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料通过在含有亚铜离子和亚锡离子的溶液中电沉积仿金青铜-CNTs,然后利用铜在含有硫脲的酸性溶液中极易溶解为亚铜离子的特性沥出仿金青铜中的铜元素,得到多孔锡-CNTs复合物,进而氧化生成多孔氧化锡-CNTs复合材料。由于铜的沥出,制备的光催化材料为具有很大比表面积的多孔材料;由于制备的光催化材料多孔且含有具有吸附性能的CNTs,因此光催化材料吸附有机污染物的能力优良,有助于提高其催化降解有机污染物的能力;由于制备的光催化材料含有导电性良好的CNTs,有助于防止光生电子和光生空穴的复合,提高催化材料的催化能力。因此,将本实施方式制备的多孔氧化锡-CNTs光催化材料用于光降解有机污染物时,可以表现出优良的催化活性。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤(1)的c中所述的采用超声波细胞粉碎机处理的时间为12~50 h。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤(1)的e中所述的电沉积时间为15~90 min。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤(2)的g中所述的将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在35~80 ℃条件下浸泡的时间为1~10 h。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤(3)的h中所述的将步骤g制备的导电玻璃/多孔锡-CNTs在80~150℃的条件下热处理的时间为10~50h。其它与具体实施方式一至四之一相同。
用以下试验验证本发明的有益效果:
试验一:本试验的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料按以下步骤进行:
(1) 在导电玻璃表面电沉积仿金青铜-CNTs:a. 量取30 mL盐酸溶于700 mL去离子水中,缓慢加入6 g的对苯二酚,然后加入10 g酒石酸氢钾,搅拌至全部溶解后加入3 g氯化亚锡并陈化24h,配得溶液A;b. 向溶液A中加入50 g硫脲,加热搅拌至完全溶解后加入16g氧化亚铜,在70 ℃条件下搅拌2 h后趁热进行常压过滤,配得溶液B;c. 将0.8 g CNTs加入到100 ml 65%硝酸中,采用超声波细胞粉碎机处理48 h,加入氨水至溶液pH值为7.5后采用去离子水对CNTs进行离心洗涤8次,将CNTs分散于200 mL去离子水中,配得溶液C;d. 混合溶液B与溶液C,定容至1 L,配得仿金青铜-CNTs复合电沉积溶液;e. 将经过丙酮除油的导电玻璃浸入步骤d配制的仿金青铜-CNTs复合电沉积溶液,在电流密度为1.5 A/dm2并且施加搅拌的条件下电沉积30 min,在导电玻璃表面制备仿金青铜-CNTs复合层;
(2) 仿金青铜-CNTs的一价铜沥出:f. 将8 mL的盐酸和80 g硫脲在65 ℃的温度下溶于600mL去离子水中,然后定容至1 L,配得铜沥出液;g. 将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在60 ℃条件下浸泡8 h,完成仿金青铜-CNTs的一价铜沥出,制得导电玻璃/多孔锡-CNTs;
(3) 多孔锡-CNTs的氧化:h. 将步骤g制备的导电玻璃/多孔锡-CNTs在120 ℃的条件下热处理20 h,完成多孔锡-CNTs的氧化,在导电玻璃表面获得多孔氧化锡-CNTs光催化材料。
本试验步骤(1)制备的仿金青铜-CNTs复合材料的SEM图像如图1所示。从图1可知仿金青铜与CNTs发生共沉积,得到复合镀层的生长模式为仿金青铜在CNTs的外延生长,产生具有巨大比表面积的三维材料。
本试验制备的氧化锡-CNTs复合材料的SEM图像如图2所示。从图2可知,在浸出铜之后多孔锡骨架附着于CNTs外延,比表面积进一步增加,后续热处理氧化之后生成具有很高比表面积的多孔氧化锡-CNTs复合材料,复合材料既具有巨大的比表面积,同时还兼具CNTs良好的导电性以及吸附性能。
本试验制备的氧化锡-CNTs复合材料在350 W汞灯照射下对50 mL浓度为30 mg/L的甲基橙溶液的光催化降解曲线如图3所示,由图3可知氧化锡-CNTs复合材料在60 min内即可基本将甲基橙降解完全,显示出良好的催化活性。

Claims (5)

1.基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料按以下步骤进行:
(1) 在导电玻璃表面电沉积仿金青铜-CNTs:a. 量取8~80 mL盐酸溶于700 mL去离子水中,缓慢加入5~15 g的对苯二酚,然后加入5~12 g酒石酸氢钾,搅拌至全部溶解后加入1~6 g氯化亚锡并陈化24h,配得溶液A;b. 向溶液A中加入35~120 g硫脲,加热搅拌至完全溶解后加入5~35g氧化亚铜,在50~80 ℃条件下搅拌2 h后趁热进行常压过滤,配得溶液B;c.将0.5~1.0 g CNTs加入到100 ml 65%硝酸中,采用超声波细胞粉碎机处理6~60 h,加入氨水至溶液pH值为5.5~8.5后采用去离子水对CNTs进行离心洗涤5~8次,将CNTs分散于200 mL去离子水中,配得溶液C;d. 混合溶液B与溶液C,定容至1 L,配得仿金青铜-CNTs复合电沉积溶液;e. 将经过丙酮除油的导电玻璃浸入步骤d配制的仿金青铜-CNTs复合电沉积溶液,在电流密度为1.0~5.0 A/dm2并且施加搅拌的条件下电沉积10~120 min,在导电玻璃表面制得仿金青铜-CNTs复合层;
(2) 仿金青铜-CNTs的一价铜沥出:f. 将2~35 mL的盐酸和50~100 g硫脲在55~85 ℃的温度下溶于600mL去离子水中,然后定容至1 L,配得铜沥出液;g. 将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在35~80 ℃条件下浸泡0.5~12 h,完成仿金青铜-CNTs的一价铜沥出,制得导电玻璃/多孔锡-CNTs;
(3) 多孔锡-CNTs的氧化:h. 将步骤g制备的导电玻璃/多孔锡-CNTs在80~150℃的条件下热处理8~60 h,完成多孔锡-CNTs的氧化,在导电玻璃表面获得多孔氧化锡-CNTs光催化材料。
2.根据权利要求1所述的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于步骤(1)的c中所述的采用超声波细胞粉碎机处理的时间为12~50 h。
3.根据权利要求1所述的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于步骤(1)的e中所述的电沉积时间为15~90 min。
4.根据权利要求1所述的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于步骤(2)的g中所述的将步骤e制备的沉积有仿金青铜-CNTs复合层的导电玻璃浸入到步骤f配制的铜沥出液中,在35~80 ℃条件下浸泡的时间为1~10 h。
5.根据权利要求1所述的基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料,其特征在于步骤(3)的h中所述的将步骤g制备的导电玻璃/多孔锡-CNTs在80~150℃的条件下热处理的时间为10~50 h。
CN201611128336.1A 2016-12-09 2016-12-09 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料 Expired - Fee Related CN106540675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611128336.1A CN106540675B (zh) 2016-12-09 2016-12-09 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611128336.1A CN106540675B (zh) 2016-12-09 2016-12-09 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料

Publications (2)

Publication Number Publication Date
CN106540675A CN106540675A (zh) 2017-03-29
CN106540675B true CN106540675B (zh) 2019-04-02

Family

ID=58397101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611128336.1A Expired - Fee Related CN106540675B (zh) 2016-12-09 2016-12-09 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料

Country Status (1)

Country Link
CN (1) CN106540675B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111137984B (zh) * 2019-12-30 2022-05-06 广东博源环保科技有限公司 一种薄层表面流废水处理载体、废水处理与菌体回收系统及方法
CN111450828B (zh) * 2020-03-20 2023-03-28 天津理工大学 一种八面体结构的铜/氧化亚铜光催化剂的快速制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439855A (zh) * 2008-12-24 2009-05-27 北京科技大学 一种纳米SnO2-MWCNTs的微波水热合成方法
CN101764213A (zh) * 2010-01-04 2010-06-30 北京航空航天大学 一种采用电沉积法在碳纳米管上制备二氧化锡电池正极材料的方法
WO2015167637A2 (en) * 2014-02-05 2015-11-05 North Carolina Agricultural And Technical State University Cnt sheet substrates and transition metals deposited on same
CN105712428A (zh) * 2016-02-01 2016-06-29 南京理工大学 一种掺锑二氧化锡-碳纳米管复合吸附性电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439855A (zh) * 2008-12-24 2009-05-27 北京科技大学 一种纳米SnO2-MWCNTs的微波水热合成方法
CN101764213A (zh) * 2010-01-04 2010-06-30 北京航空航天大学 一种采用电沉积法在碳纳米管上制备二氧化锡电池正极材料的方法
WO2015167637A2 (en) * 2014-02-05 2015-11-05 North Carolina Agricultural And Technical State University Cnt sheet substrates and transition metals deposited on same
CN105712428A (zh) * 2016-02-01 2016-06-29 南京理工大学 一种掺锑二氧化锡-碳纳米管复合吸附性电极及其制备方法

Also Published As

Publication number Publication date
CN106540675A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
Ali Water photo splitting for green hydrogen energy by green nanoparticles
Wang et al. Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater
Oliveira et al. Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes
Chai et al. Selective electrocatalytic degradation of odorous mercaptans derived from S–Au Bond recongnition on a dendritic gold/boron-doped diamond composite electrode
Chi et al. Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery
Deng et al. Fabrication of p-NiO/n-TiO2 nano-tube arrays photoelectrode and its enhanced photocatalytic performance for degradation of 4-chlorphenol
US10717120B2 (en) Sand/water remediation method with a photocatalytic fuel cell
CN103981537B (zh) 一种光电催化还原处理有机污染物的Pd/3DOM TiO2/BDD电极的制备方法及其应用
CN108499585A (zh) 含磷复合物及其制备与应用
CN106540675B (zh) 基于Cu+/Cu的氧化还原制备多孔氧化锡-CNTs光催化材料
CN102071449A (zh) 一种环境功能纳米材料—Cu-Fe/TiO2纳米管阵列及其制备和应用
Lu et al. Morphology controlled synthesis of Co (OH) 2/TiO2 pn heterojunction photoelectrodes for efficient photocathodic protection of 304 stainless steel
CN104841287B (zh) 一种多功能分等级油水分离复合膜材料的制备方法
CN105776441A (zh) 一种三维多孔钛基体二氧化铅电极及其制备方法和应用
Manzano et al. Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications
CN106622202A (zh) 石墨烯‑TiO2纳米管/FTO双层复合膜的制备方法
CN104258857A (zh) 一种铬酸银-氧化石墨烯复合光催化材料及其制备方法
Xiao et al. Flowerlike brochantite nanoplate superstructures for catalytic wet peroxide oxidation of congo red
CN108057451B (zh) 一维氧化锌/硫化镉/二硫化钼纳米阵列光催化复合材料及其制备方法与应用
CN106975499B (zh) 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用
CN108220991A (zh) 一种低共熔型离子液体中电沉积制备纳米多孔钴硒化物的方法
CN103103562B (zh) 一种Ni-Co-W-Cu-B多组分阴极材料及其制备方法和用途
CN110685004A (zh) 仿生免修饰超疏水Cu-Zn-CeO2层的制备方法及其应用
CN105642291A (zh) 一种带有双重助氧催化层的可见光催化薄膜及其制备方法和应用
Zou et al. Hydrogen Evolution from Water Coupled with the Oxidation of As (III) in a Photocatalytic System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190402

Termination date: 20191209