CN106975499B - 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用 - Google Patents

一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN106975499B
CN106975499B CN201710311155.0A CN201710311155A CN106975499B CN 106975499 B CN106975499 B CN 106975499B CN 201710311155 A CN201710311155 A CN 201710311155A CN 106975499 B CN106975499 B CN 106975499B
Authority
CN
China
Prior art keywords
agcl
graphene
rgo
composite material
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710311155.0A
Other languages
English (en)
Other versions
CN106975499A (zh
Inventor
董可轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Chujie New Material Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710311155.0A priority Critical patent/CN106975499B/zh
Publication of CN106975499A publication Critical patent/CN106975499A/zh
Application granted granted Critical
Publication of CN106975499B publication Critical patent/CN106975499B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法和作为等离子体增强型光催化剂的应用。本发明主要通过化学沉淀和光还原相结合的方法合成Ag@AgCl/rGO三明治纳米复合材料。本发明充分利用石墨烯的物理特性以及Ag@AgCl作为光催化剂的化学特殊属性,将两者的优良性能共同作用下,制备出具有阵列结构三维等离子体效应的Ag@AgCl/rGO三明治纳米复合材料,这种纳米复合材料有效地解决了石墨烯的聚集,提高了Ag@AgCl的耐久性,效率和活性。

Description

一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用
技术领域
本发明属于清洁可持续新型环境治理应用领域,特别涉及一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与其作为等离子体增强型光催化剂的应用。
背景技术
随着工业的发展,水污染极度严重,严重威胁了人类的健康。虽然现阶段处理废水的手段方法很多,比如:化学氧化法,生物方法等,虽然这些方法能够一定程度的处理污水,但是这些方法却有一定的缺陷。因此研制高效低廉的水处理技术迫在眉睫。光催化技术的一经发现就成为各领域的焦点,光催化是将光能转化为化学能的一种绿色化学反应。其中光催化剂有TiO2、ZnO等,这些光催化剂能够将大部分有机污染物转化为无害的CO2和水,然而也有一些缺陷以二氧化钛为例其只有在紫外光才能产生有效光响应,然而紫外光占太阳光的含量不足4%,因此开发新型的光催化材料具有重要的现实意义。
贵金属纳米颗粒由于其特殊的表面等离子体共振效应特殊性质。使其在光催化方面也得到了发展和应用特别是在Ag@AgCl核壳结构复合纳米颗粒中;作为新型光催化剂的Ag@AgCl光催化剂在可见光中表现出明显的等离子体共振效应从而显示有机污染物的可见光光催化降解的优异活性。同时石墨烯作为一种易合成的导电高分子材料,可以通过机械剥离法,化学气相沉淀法,氧化-还原法等制备。同时其拥有高比表面积,强机械以及导电性能在在太阳能电池,光催化,以及制氢储氢方面得到了广泛的应用,其中主要是从对环境的影响方面着手。
本发明的目的是针对现有技术的不足,提供一种Ag@AgCl/rGO三明治结构纳米复合材料及其光催化领域应用。这种纳米复合材料有效地解决了石墨烯的聚集,提高了Ag@AgCl的耐久性,效率和活性。
发明内容
本发明的目的在于针对现有技术的不足,提供一种Ag@AgCl/rGO三明治纳米复合材料及其化学催化应用。
本发明的目的是通过以下技术方案实现的:一种Ag@AgCl/rGO三明治纳米复合材料,包括石墨烯片层结构,所述石墨烯片之间通过摻杂在石墨烯片层之间的Ag@AgCl纳米颗粒进行粘结,Ag@AgCl纳米颗粒为核壳结构,石墨烯片与组成壳结构的Ag纳米颗粒之间通过Ag-C连接。
一种Ag@AgCl/rGO三明治纳米复合材料的制备方法,包括以下步骤:
(1)将氧化石墨烯醛基化,将醛基化后的氧化石墨烯分散到乙二醇中,获得浓度为1mg/ml的醛基化后的氧化石墨烯溶液。
(2)以乙二醇为溶剂,配制1*10-4mol/l的硝酸银溶液;
(3)将步骤1得到的氧化石墨烯溶液和步骤2得到的硝酸银溶液按照体积比3∶2混合,均匀搅拌并加入与Ag+等摩尔的NaCl溶液形成AgCl沉淀,得到AgCl/GO纳米复合材料溶液。
(4)将步骤3得到的溶液在500W紫外灯光照下进行还原10-30min,得到最终产物Ag@AgCl/rGO三明治结构纳米复合材料。
一种Ag@AgCl/rGO三明治纳米复合材料在光催化中的应用。
本发明的有益效果是:本发明Ag@AgCl/rGO三明治纳米复合材料由AgCl@rGO通过光还原和化学还原的相结合,其中紫外光的作用使AgCl部分还原成Ag颗粒,由于醛基的活性大,使Ag+首先与修饰醛基的氧化石墨烯上形成Ag晶种,乙二醇的加入使Ag晶种增大同时将氧化石墨烯还原为石墨烯,由于贵金属的其粘结性得到产物三明治Ag@rGO纳米复合结构。其中AgCl作为可以促进Ag颗粒的等离子体效应形成Ag@AgCl等离子体共振效应,银纳米颗粒作为一种粘结剂与石墨烯以Ag-C连接。Ag@AgCl特殊结构可以增强可见光等离子体共振性能,特别是AgCl包覆结构可以增强其等离子体共振性能。共振电子使得AgCl中的能级可以调控,增强光催化性能;三明治结构降低了Ag@AgCl与石墨烯的聚集,提高了催化材料的耐久性,效率和活性。同时还原氧化石墨烯作为良好的导体可以抑制电荷复合。作为非碳颗粒进入层中,石墨烯的层间距离将增加,导致层间范德华力减弱,导致层间范德华力减弱,从而降低团聚的可能性。同时,由于复合材料的三明治以及rGO高比面积大大提高对MO的还原活性。
附图说明
图1是实施例1制备的Ag@AgCl/rGO三明治纳米复合材料工艺示意图。
图2是实施例1制备Ag@AgCl/rGO三明治纳米复合材料的扫描电镜图SEM(a)和XRD图像(b)。
图3是实施例1制备Ag@AgCl/rGO纳米复合材料光催化降解亚甲基橙的光催化降解曲线(a)以及重复利用性能(b);
图4为Ag@AgCl核壳结构形成示意图。
具体实施方式
下面结合实施例对本发明作进一步说明本发明的技术解决方案,这些实施例不能理解为是对技术解决方案的限制。
实施例1:
本实施例制备Ag@AgCl/rGO三明治纳米复合材料,具体包括以下步骤:
(1)将氧化石墨烯醛基化,将醛基化后的氧化石墨烯分散到乙二醇中,获得浓度为1mg/ml的醛基化后的氧化石墨烯溶液。
(2)以乙二醇为溶剂,配制1*10-4mol/l的硝酸银溶液;
(3)将步骤1得到的氧化石墨烯溶液和步骤2得到的硝酸银溶液按照体积比3∶2混合,均匀搅拌并加入与Ag+等摩尔的NaCl溶液形成AgCl沉淀,得到AgCl/GO纳米复合材料溶液。
(4)将步骤3得到的溶液在500W紫外灯光照下进行还原10-30min,得到最终产物Ag@AgCl/rGO三明治结构纳米复合材料。其中表层的AgCl通过光还原还原成银,构成Ag@AgCl核壳材料,如图4所示;GO通过乙二醇的还原性还原成为rGO;在还原过程中由于贵金属银的粘结性使Ag@AgCl与rGO以Ag-C键复合形成三明治结构。
图1为本发明制备的Ag@AgCl/rGO三明治结构纳米复合材料工艺示意图,从图1中可以很清晰的可以看出Ag@AgCl/rGO三明治结构的合成路线。图2为本发明制备的Ag@AgCl/rGO三明治结构纳米复合材料的扫描电镜图SEM(a)和XRD图像(b),从图2a中可以看出,所述石墨烯片之间掺杂有纳米颗粒,结合2b和图4可知,该纳米颗粒为核壳结构的Ag@AgCl纳米颗粒;通过拉曼测试,图谱具有大量的1361cm-1的峰,表明材料中具有大量的Ag-C化学键,由此可以确定,石墨烯片与组成壳结构的Ag纳米颗粒之间通过Ag-C连接。
将上述制备的Ag@AgCl/rGO三明治结构纳米复合作为光催化剂进行光催化MO实验,具体为:量取50ml浓度20mg/L的甲基橙溶液,加入到150ml的玻璃反应器皿中,并均匀搅拌。称取30mg光催化剂加入到上述甲基橙溶液中,在黑暗下搅拌半个小时半个小时,目的是使光催化剂与染料分子达到吸附-解吸附平衡,同时验证其吸附能力大小。选取500w氙灯用于模拟紫外光可见光源,并放置在玻璃器皿的正上方10cm处,对混合溶液进行光照。记光照开始的时候t=0,每隔一定时间取样4ml,离心取上层溶液有UV-vis测量最高峰吸光度分析光催化活性。
图3为本发明制备的在最佳条件下制备Ag@AgCl/rGO纳米复合材料光催化降解亚甲基橙的光催化降解曲线以及重复利用性能。光催化剂评价其好坏也可以从两个方面入手:(1)光催化速率的快慢:Ag@AgCl结构增强了可见光等离子体共振性能,由于AgCl包覆,使其共振性能增强;共振电子使得AgCl中的能级可以调控,增强光催化性能,阵列Ag@AgCl增加了协同强化性能;(2)光催化剂的稳定性。三明治结构降低了Ag@AgCl与石墨烯的聚集,提高了催化材料的耐久性,效率和活性。如图3a所示,在紫外光的照射下6分钟将MO降解完全,如图3b所示,经过10此循环利用后,Ag@AgCl/rGO纳米复合材料仍然保持95%以上的催化性能,这主要是由于Ag@AgCl核壳结构作为一个稳定的体系,同时更是受到rGO的保护。
本发明方法制备的Ag@AgCl/rGO三明治结构纳米复合材料制备方法简单,重复性高,可操作性强。这种纳米复合材料作为一种新型的光催化剂,表现出了较强光催化性能,以及光催化稳定性。

Claims (2)

1.一种Ag@AgCl/rGO三明治纳米复合材料的制备方法,所述Ag@AgCl/rGO三明治纳米复合材料包括石墨烯片层结构,石墨烯片之间通过掺杂在石墨烯片层之间的Ag@AgCl纳米颗粒进行粘结,Ag@AgCl纳米颗粒为核壳结构,石墨烯片与组成壳结构的Ag纳米颗粒之间通过Ag-C连接,其特征在于,包括以下步骤:
(1)将氧化石墨烯醛基化,将醛基化后的氧化石墨烯分散到乙二醇中,获得浓度为1mg/ml的醛基化后的氧化石墨烯溶液;
(2)以乙二醇为溶剂,配制1×10-4mol/l的硝酸银溶液;
(3)将步骤(1)得到的氧化石墨烯溶液和步骤(2)得到的硝酸银溶液按照体积比3∶2混合,均匀搅拌并加入与Ag+等摩尔的NaCl溶液形成AgCl沉淀,得到AgCl/GO纳米复合材料溶液;
(4)将步骤(3)得到的溶液在500W紫外灯光照下进行还原10-30min,得到最终产物Ag@AgCl/rGO三明治纳米复合材料。
2.一种权利要求1所述方法制备得到的Ag@AgCl/rGO三明治纳米复合材料在光催化中的应用。
CN201710311155.0A 2017-05-05 2017-05-05 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用 Expired - Fee Related CN106975499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710311155.0A CN106975499B (zh) 2017-05-05 2017-05-05 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710311155.0A CN106975499B (zh) 2017-05-05 2017-05-05 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106975499A CN106975499A (zh) 2017-07-25
CN106975499B true CN106975499B (zh) 2020-10-16

Family

ID=59341914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710311155.0A Expired - Fee Related CN106975499B (zh) 2017-05-05 2017-05-05 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106975499B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519869A (zh) * 2017-08-21 2017-12-29 董可轶 一种Ag/rGO三明治结构纳米复合材料及其制备方法与应用
CN111604070B (zh) * 2020-06-28 2023-05-23 廊坊师范学院 复合膜光催化剂及其制备方法和用途
CN112982032B (zh) * 2021-02-18 2022-08-23 陕西科技大学 一种用于室内甲醛净化的壁纸复合材料制备方法
CN114950498B (zh) * 2022-05-16 2023-12-22 江苏农林职业技术学院 一种可循环利用的高效光催化材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169258A1 (en) * 2013-04-11 2014-10-16 Pacific Integrated Energy, Inc. Photocatalytic metamaterial based on plasmonic near perfect optical absorbers
CN106563473A (zh) * 2015-10-08 2017-04-19 南京理工大学 一种具有磁响应性的高效表面等离子体可见光催化剂复合材料(Ag@AgCl)-Ni/RGO
CN105921158B (zh) * 2016-04-20 2019-05-24 国家纳米科学中心 一种石墨烯-氯化银/银纳米复合材料及其制备方法与应用
CN106513022A (zh) * 2016-11-18 2017-03-22 中南大学 一种Ag@AgCl/Pt/rGO 复合纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
CN106975499A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
Gao et al. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation
Reddy et al. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications
Zhu et al. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Dai et al. Efficient visible-light-driven splitting of water into hydrogen over surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets/layered CdS–diethylenetriamine nanobelts
Mao et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution
Wang et al. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production
Liu et al. Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants
Wang et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
Tudu et al. Electronic integration and thin film aspects of Au–Pd/rGO/TiO2 for improved solar hydrogen generation
Wang et al. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion
Hou et al. Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets
Han et al. Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst
Zhang et al. A free-standing 3D nano-composite photo-electrode—Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine
Wu et al. Novel Bi2Sn2O7 quantum dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine
Wang et al. Ag NPs decorated C–TiO2/Cd0. 5Zn0. 5S Z-scheme heterojunction for simultaneous RhB degradation and Cr (VI) reduction
CN106975499B (zh) 一种Ag@AgCl/rGO三明治纳米复合材料及其制备方法与应用
Li et al. Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO2− x nanorods
He et al. One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis
Liu et al. Enhanced visible-light-driven photocatalytic hydrogen evolution and NO photo-oxidation capacity of ZnO/g-C3N4 with N dopant
Mohamed et al. Fabrication of mesoporous PtO–ZnO nanocomposites with promoted photocatalytic performance for degradation of tetracycline
Qiu et al. Co-implantation of oxygen vacancy and well-dispersed Cu cocatalyst into TiO2 nanoparticles for promoting solar-to-hydrogen evolution
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity
She et al. Enhanced performance of photocatalytic CO2 reduction via synergistic effect between chitosan and Cu: TiO2
Zhu et al. Nanoflower-like CdS and SnS2 loaded TiO2 nanotube arrays for photocatalytic wastewater treatment and hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200611

Address after: Room 402, building B, No.1 Factory building, no.6, Anmin Road, Huangdai Town, Xiangcheng District, Suzhou City, Jiangsu Province

Applicant after: Suzhou Chujie New Material Technology Co.,Ltd.

Address before: 100083 University of Science and Technology Beijing, Haidian District, Xueyuan Road, 30, Beijing

Applicant before: Dong Kedie

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201215

Address after: Room 402, building B, No.1 Factory building, No.6 Anmin Road, Huangdai Town, Xiangcheng District, Suzhou City, Jiangsu Province

Patentee after: Suzhou Chujie New Material Technology Co.,Ltd.

Address before: 100083 University of Science and Technology Beijing, Haidian District, Xueyuan Road, 30, Beijing

Patentee before: Dong Kedie

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201016