CN106537862A - 一种预失真系统和方法 - Google Patents

一种预失真系统和方法 Download PDF

Info

Publication number
CN106537862A
CN106537862A CN201480078633.2A CN201480078633A CN106537862A CN 106537862 A CN106537862 A CN 106537862A CN 201480078633 A CN201480078633 A CN 201480078633A CN 106537862 A CN106537862 A CN 106537862A
Authority
CN
China
Prior art keywords
coefficient vector
interband
signal
predistortion
intermodulation distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480078633.2A
Other languages
English (en)
Inventor
田廷剑
赵延青
窦蕴甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN106537862A publication Critical patent/CN106537862A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例公开了一种预失真系统,包括预失真电路、传输电路、功率放大器、反馈电路和学习电路,预失真电路获取学习电路根据功率放大器的输出信号学习到的带内互调失真模型系数向量、带间交调失真模型系数向量和带间互调失真模型系数向量,对输入的数字中频信号进行预失真处理。相应的,本发明实施例还公开了一种预失真方法,可消除带间互调失真对功率放大器造成的影响。

Description

一种预失真系统和方法
技术领域
本发明涉及通信领域, 尤其涉及一种预失真装置和方法。 背景技术
目前的通信系统中,射频单元是重要的组成部分,而功率放大器 PA( Power Amplifier )是其中重要的射频器件, 作用是对输入的信号进行放大。 但是, PA 会引入非线性失真, 即输出信号与输入信号呈现非线性放大的关系, 此外, 如 果输入信号是宽带信号时, PA还会存在记忆效应, 即输出信号不仅与当前时 刻的输入信号有关,还与之前某些时刻的输入信号相关。 非线性失真和记忆效 应会对 PA输出的信号造成两方面的影响: 一是信号带内失真增加, 造成接收 端无法正确接收信号,二是信号带外功率泄露增加,对相邻频带的通信系统造 成干扰。
现有技术中一种减少 PA的非线性失真效应的方法是釆用数字预失真 DPD
( Digital Pre-Distortion ), DPD是一种非常有效的减小 PA输出信号非线性失 真的方法, 被业界广泛釆用。 具体来说, DPD模块位于 PA之前, 输入的数字 中频信号通过预失真模型, 产生出的非线性分量与 PA产生的非线性分量相互 抵消, 从而达到改善 PA输出线性度的目的。
但是在对多频带信号进行放大的场景下, 现有的 DPD技术无法有效地消 除带间互调失真。 发明内容
本发明实施例所要解决的技术问题在于,提供一种预失真系统和方法, 可 解决现有技术无法消除带间互调失真的不足。
为了解决上述技术问题, 本发明实施例第一方面提供了一种预失真系统, 包括:
预失真电路,用于根据不同频段的 N路数字中频信号、学习电路生成的 N 个预失真模型系数向量集合和预设的 N个数字变频系数向量集合生成 N路预 失真输出信号; 其中,每个预失真模型系数向量集合中包括 1个带内互调失真 模型系数向量、 1个带间交调失真模型系数向量和至少 1个带间互调失真模型 系数向量, N为大于 2的整数;
传输电路, 用于根据所述预失真电路生成的所述 N路预失真输出信号, 生成射频模拟信号;
功率放大器,用于根据所述传输电路生成的所述射频模拟信号进行放大处 理, 生成放大处理后的射频模拟信号;
反馈电路,用于根据所述功率放大器生成的所述放大处理后的射频模拟信 号, 生成 N路数字中频反馈信号;
所述学习电路, 用于根据所述预失真电路生成的所述 N路预失真输出信 号和所述反馈电路生成的所述 N路数字中频反馈信号, 生成新的 N个预失真 模型系数向量集合。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述预失真电路包括:
第一子电路, 用于根据所述 N路数字中频信号生成 N个预失真模型向量 集合 Bi 、 B2 Bs 、 … 、 BN ; 其 中 , 1 S N ,
D (in) ID (cross) D(out)i TD(out)2 x->(out)p
BS=(BS ,BS ,BS ,BS , -,Bs ), p 为 ^对应的带间互调失真成分的数
T3(in) T3( cross)
量, Bs 为^中带内互调失真模型向量, Bs 为^中带间交调失真模型向量,
Bs 为^中第 P个带间互调失真成分的带间互调失真模型向量;
第二子电路, 用于获取所述学习电路生成的 N个预失真模型系数向量集 合 ω2、 …、 ω8、 …、 ωΝ·, 其中, ί¾ =( η
为%中带内互调失真模型系数向量, CT°SS)为 ws中带间交调失真模型系数向 量, 为 ft¾中第 Ρ个带间互调失真成分对应的带间互调失真模型系数向量; 第三子电路,用于生成所述预设的 Ν个数字变频系数向量集合 、 F2、…、 Fs、 …、 FN; 其中, Fs=(Fs (in),Fs (cr ss),Fs ( ut)1,Fs ( ut)2,...,Fs ( ut)p), F 为 Fs中带内互 调失真数字变频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 ^in)中元 素的数量相等,且 Fs (in)中元素均为 1; FS (CT°SS)为 中带间交调失真数字变频系数
3 (cross)
向量, FS (CT°SS)中元素的数量、 Bs 中元素的数量及 Ws)中元素的数量相等, 且 8)中元素均为 1; (°^为 中第 P个带间互调失真成分的带间互调失真 数字变频系数向量, Fs (°ut)p中元素的数量、 B 中元素的数量及 中元素的 数量相等, 且 FS (CT 中元素均为 ej'2?mfs(°Ut)P/f , fs (°ut)p为第 S i? t字中频信号的 载频与第 P个带间互调失真成分的中心频点的差值, samPle为每一路数字中频 信号的釆样率;
第四子电路, 用于根据所述 N个预失真模型向量集合、 所述 N个预失真 模型系数向量集合与所述预设的 N个数字变频系数向量集合生成 N路预失真 输 出 信 号 yi 、 y2 、 … 、 ys 、 … 、 yN ; 其 中 , ys = B ) · ( a) · Fs (m) + W) · Fs S) + Β · ut)' · Fs ut)' +… + B )p · ω^ · Fs (out)p 结合第一方面的第一种或第二种可能的实现方式,在第二种可能的实现方 式中, 还包括:
预处理电路, 用于根据不同频段的 N路基带信号, 生成所述 N路数字中 频信号, 并将所述 N路数字中频信号输入至所述预失真电路。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中, 所 述学习电路具体釆用如下公式确定所述新的 N个预失真模型系数向量集合中 的第 S个预失真模型系数向量集合: Ys = [ys (n- Q+ 1) (n— Q+ 2),…, (n) u5 ,其中, Q为第 s路数字中频反馈信号的釆样点的数量,
为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。
本发明实施例第二方面提供了一种预失真方法, 包括:
根据不同频段的 N路数字中频信号、 N个预失真模型系数向量集合和预 设的 N个数字变频系数向量集合生成 N路预失真输出信号, 其中, 每个预失 真模型系数向量集合中包括 1个带内互调失真模型系数向量、 1个带间交调失 真模型系数向量和至少 1个带间互调失真模型系数向量, N为大于 2的整数; 根据所述 N路预失真输出信号, 生成射频模拟信号;
根据所述射频模拟信号进行放大处理, 生成放大处理后的射频模拟信号; 根据所述放大处理后的射频模拟信号, 生成 N路数字中频反馈信号; 根据所述 N路预失真输出信号和所述 N路数字中频反馈信号, 生成新的 N个 预失真模型系数向量集合。 结合第二方面, 在第一种可能的实现方式中, 所述根据不同频段的 N路 数字中频信号、 N个预失真模型系数向量集合和预设的 N个数字变频系数向 量集合生成 N路预失真输出信号的步骤包括:
根据所述 N路数字中频信号生成 N个预失真模型向量集合 Bi、 B2 BS、 …、 BN ; 其中, l , Β ) 为^中带内互调失真模型向量, Ρ 为^对应的带间互调失真成分的数量, (cross) (out)p
Bs 为^中带间交调失真模型向量, Bs 为^中第 P个带间互调失真成分 的带间互调失真模型向量;
获取 N个预失真模型系数向量集合 、 ω2、 …、 ω8、 …、 其中, ί¾ = Of ),6f。 ),^ ', ^,..., ^ ) , 为 ws中带内互调失真模型系数向量, ^" 为 中带间交调失真模型系数向量, 为%中第 Ρ个带间互调失真 成分对应的带间互调失真模型系数向量;
生成所述预设的 Ν个数字变频系数向量集合 S、 F2、 …、 Fs、 …、 FN ; 其中, Fs = (F ),Fs(CTss),Fs(。ut)1 ,Fs(。ut)2 ,...,Fs (out)p), F )为 Fs中带内互调失真数字变 频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 w )中元素的数量相等, 且 Fs (in)中元素均为 1 ; FS (CT°SS)为 中带间交调失真数字变频系数向量, FS (CT°SS)中 元素的数量、 ^ 中元素的数量及 4CT°SS)中元素的数量相等, 且 (" 中元素 均为 1 ; (°4为 中第 P个带间互调失真成分的带间互调失真数字变频系数 向量, Fs (°ut)p中元素的数量、 Bs 中元素的数量及 中元素的数量相等, 且 FS (CT 中元素均为 ej'2?mfs(°Ut)P /fs , fs (°ut)p为第 S路数字中频信号的载频与第 P个 带间互调失真成分的中心频点的差值, fsamPle为每一路数字中频信号的釆样率; 根据所述 N个预失真模型向量集合、 N个预失真模型系数向量集合与所 述预设的 N个数字变频系数向量集合生成 N路预失真输出信号 yi、 y2、 …、 ys … 、 yN ; 其 中 , ys = B ) · ( a) · Fs (m) + B 。ss) · wf。ss) · Fs (cross) + Β )' · 。ut)' · Fs(。ut)' +… + B )p · ω^ · Fs (out)p
结合第二方面或第一种可能的实现方式,在第二种可能的实现方式中, 所 述根据不同频段的 N路数字中频信号、 所述 N个预失真模型系数向量集合和 预设的 N个数字变频系数向量集合生成 N路预失真输出信号的步骤之前, 还 包括:
根据不同频段的 N路基带信号, 生成所述 N路数字中频信号。 结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中, 所 述根据所述 N路预失真输出信号和所述 N路数字中频反馈信号, 生成新的 N 个预失真模型系数向量集合的步骤包括:
釆用如下公式确定所述新的 N个预失真模型系数向量集合中的第 S个预 失真模型系数向量集合:
(v vsy v^Ys
us n— Q + \^
,其中, Q为第 S路数字中频反馈信号的釆样点的数量:
为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。
实施本发明, 具有如下有益效果:
预失真电路获取学习电路根据功率放大器的输出信号学习到的带内互调 失真模型系数向量、 带间交调失真模型系数向量和带间互调失真模型系数向 量,对输入的数字中频信号进行预失真处理, 消除通过功率放大器后的带间互 调失真性失真, 改善了功率放大器的输出线性度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例的一种预失真系统的结构示意图;
图 2是本发明第二实施例的一种预失真系统结构示意图;
图 3是图 2中预失真电路的结构示意图; 图 4是本发明实施例的一种预失真方法的流程示意图;
图 5是图 4中预失真输出信号的运算示意图;
图 6是图 4中预失真学习向量集合的运算示意图;
图 7是本发明第三实施例的一种预失真系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在本发明实施例中 , 某个频段的带内互调失真 (in-band intermodulation)指 的是该频段的信号互调产生的失真,带内互调失真的中心频点与该频段中心频 点位置相同; 某个频段的带间交调失真 (cross-band modulation)指的是其他频段 的信号包络与该频段的信号交调产生的失真,带间交调失真的中心频点与该频 段的中心频点位置相同;某个频段的带间互调失真 (out-of-band intermodulation) 指的是其他频段的信号与该频段的信号互调产生的失真,带间互调失真的中心 频点与该频段的中心频点位置不同。
参见图 1 , 为本发明第一实施例的一种预失真系统的结构示意图, 在本发 明实施例中, 所述预失真系统包括预失真电路 10、 传输电路 11、 功率放大器 12、 反馈电路 13、 学习电路 14和天线 15。
预失真电路 10, 用于根据不同频段的 N路数字中频信号、 学习电路 14生 成的 N个预失真模型系数向量集合和预设的 N个数字变频系数向量集合生成 N路预失真输出信号; 其中,每个预失真模型系数向量集合包括 1个带内互调 失真模型系数向量、 1个带间交调失真模型系数向量和至少 1个带间互调失真 模型系数向量, N为大于 2的整数。
具体的, 预失真电路 10对输入的不同频段的 N路数字中频信号进行预失 真处理, 具体为: 利用每一路数字中频信号产生对应的预失真模型向量, 再分 别乘以对应的学习电路 14生成的预失真模型系数向量和对应的数字变频系数 向量, 得到每一路的预失真输出信号。 每个预失真模型系数向量集合包括 1 个带内互调失真模型系数向量、 1个带间交调失真模型系数向量和至少 1个带 间互调失真模型系数向量,带间互调失真模型系数向量的数量等于数字中频信 号对应的载频附近的带间互调失真成分的数量,该数量可根据载频、载频的数 量、 频率间隔及信号阶数等约束条件来确定, 例如, 假设 N=3 , 3路数字中频 信号对应的载频分别为 1900MHz、 2350MHz和 2590MHz, 规定选取信号阶数 小于 7阶且与载频的频率间隔小于 100MHz的带间互调失真成分,则很容易计 算得到载频 1900MHz附近的带间互调失真成分的数量为 3 , 相应的, 带间互 调失真模型系数向量的数量也为 3。 同样地, 根据上述相同的约束条件很容易 计算得到载频 2350MHz和 2590MHz附近的带间互调失真成分的数量也等于 3。
传输电路 11 ,用于根据所述预失真电路生成的所述 N路预失真输出信号, 生成射频模拟信号。
具体的, 传输电路 11将预失真电路 10输入的 N路预失真输出信号进行 数字上变频处理以提高每一路预失真输出信号的釆样率。 由于在预失真电路 10 中没有对数字中频信号进行变频处理, 生成的每一路预失真输出信号的釆 样率等于对应的数字中频信号的釆样率, 例如,假设每一路预失真输出信号的 釆样率均为 153.6MHz, 进行数字上变频处理后, 其釆样率提升为 3.072GHz。 数字上变频的过程可釆用插值和滤波的方法来实现, 其中, 若器件处理能力存 在限制, 插值和滤波可分为多级来实现, 当然也可只分为一级来实现, 本发明 不作限制。可以理解的,在滤波处理环节中滤波器的通带需要满足的约束条件 是: 保留预失真电路产生的频带带外成分。
然后, 传输电路 11将经过数字上变频的信号 N路预失真输出信号分别调 制到对应的 N个载频上, 每个载频均不相同, 且将调制后的 N路信号进行合 并和数模转换处理后生成一路射频模拟信号。
功率放大器 12, 用于根据所述传输电路生成的所述射频模拟信号进行放 大处理, 生成放大处理后的射频模拟信号。
具体的, 功率放大器 12将经过放大处理的射频模拟信号分为两路进行传 输, 一路通过天线 15发射出去, 另一路通过耦合器传输至反馈电路 13。
反馈电路 13 , 用于根据所述功率放大器生成的所述放大处理后的射频模 拟信号, 生成 N路数字中频反馈信号。
具体的,反馈电路 13的处理过程可视为传输电路 11的逆过程。反馈电路 13将射频模拟信号进行抗混叠滤波处理后分别得到 N个不同频段的射频模拟 信号, 然后分别将得到的 N个不同频段的射频模拟信号进行模数转换和解调 处理后生成 N个数字信号, 将 N个数字信号进行数字下变频处理生成具有更 低釆样率的 N 个数字中频反馈信号, 例如, 假设 N 个数字信号的釆样率为 3.072GHz, 数字下变频处理后釆样率为 153.6MHz。 数字下变频的处理过程可 以通过抽取和滤波的方法来实现, 本发明不作限制。 需要注意的是, 在滤波环 节中滤波器需要设置的约束条件为: 保留功率放大器 12的非线性失真成分。
学习电路 14, 用于根据所述预失真电路生成的所述 N路预失真输出信号 和所述反馈电路生成的所述 N路数字中频反馈信号, 生成新的 N个预失真模 型系数向量集合。
具体的,学习电路 14首先对反馈电路 13输入的数字中频反馈信号和预失 真电路 10输出的预失真输出信号估计出数字中频反馈信号和预失真输出信号 的时延、 相位和幅度, 并对数字中频反馈信号进行调整, 使 N路数字中频反 馈信号中的每一路数字中频反馈信号与 N路预失真输出信号中的每一路预失 真输出信号分别对齐。 然后, 学习电路 14根据预失真电路 10输入的 N路预 失真输出信号和反馈电路 13输入的 N路数字中频反馈信号, 生成所述新的 N 个预失真模型系数向量集合。 具体的计算方法可以是: 通过对 N路预失真输 出信号和 N路数字中频反馈信号进行拟合运算, 以分别得到每一路预失真输 出信号和每一路数字中频反馈信号之间的函数关系,具体拟合运算的算法可以 是最小二乘法等现有技术中任何已知的拟合算法, 本发明不作限制。 学习电路 14生成的 N个预失真模型系数向量集合的方法和上述描述的方法一样, 此处 不再赘述。
可以理解的是,在非理想的预失真系统,预失真系统的输入和输出是存在 一定的时间延迟, 因此, 预失真电路 10根据不同频段的 N路数字中频信号、 N个预失真模型系数向量集合和预设的 N个数字变频系数向量集合生成 N路 预失真输出信号时, 当前从学习电路 14获得预失真模型系数向量集合并不是 根据当前的数字中频信号经过传输、放大、 反馈和学习生成的, 这样在预失真 电路首次进行预失真处理时,无法实时获取到学习电路生成的预失真模型系数 向量集合, 因此规定预失真电路为首次预失真处理时,预失真电路利用预设的 预失真模型系数向量集合生成预失真输出信号。
实施本发明 ,预失真电路获取学习电路根据功率放大器的输出信号学习到 的带内互调失真模型系数向量、带间交调失真模型系数向量和带间互调失真模 型系数向量,对输入的数字中频信号进行预失真处理, 消除通过功率放大器后 的带间互调失真性失真, 改善了功率放大器的输出线性度。
参见图 2 , 为本发明第二实施例的一种预失真系统的结构示意图, 在本实 施例中, 所述预失真系统包括预处理电路 16、 预失真电路 10、 传输电路 11、 功率放大器 12、 反馈电路 13、 学习电路 14和天线 15。
预处理电路 16, 用于将不同频段的 N路基带信号进行数字上变频和削波 处理生成所述 N路数字中频信号, 并将所述 N路数字中频信号输入至所述预 失真电路。
具体的, 预处理电路 16输入为不同频段的 N路基带信号进行数字上变频 处理和削波处理后生成 N路数字中频信号, 削波处理可抑制功率放大器输入 信号的峰均功率比(PAPR, Peak Average Power Ratio )„ 例如, 假设预处理电 路 16输入 3路基带信号,每一路基带信号的釆样率均为 30.72MHz,预处理电 路 16分别对每一路基带信号进行 5倍插值和滤波处理, 将每一路基带信号的 釆样率提升为 153.6MHz,然后将经过数字上变频处理后的信号进行削波处理。
预失真电路 10的功能已在图 1对应的实施例中介绍过, 此处不再详述。 本实施例中的预失真电路 10还可以包括第一子电路 101、第二子电路 102、 第三子电路 103和第四子电路 104。
第一子电路 101 , 用于根据所述 N路数字中频信号生成 N个预失真模型 向量集合 、 Bs 、 … 、 BN ; 其 中 , 1 S N , Bs = (B ^Β^,Β^ ,Β^ ,.,.,Β^ ) , Ρ 为 ^对应的带间互调失真成分的数 (in) cross)
量, Bs 为^中带内互调失真模型向量, Bs 为^中带间交调失真模型向量,
Bs 为^中第 P个带间互调失真成分的带间互调失真模型向量。
第二子电路 102 ,用于获取所述学习电路生成的 N个预失真模型系数向量 集合 β¾、 ω2、…、 ws、…、 ωΉ ·, 其中, iys Of),^ ,^ 1 ,^ 2 ,...,^ 1" ) , ^ 为 β¾中带内互调失真模型系数向量, 4CT°SS)为%中带间交调失真模型系数向 量, 为 β¾中第 Ρ个带间互调失真成分对应的带间互调失真模型系数向量。
第三子电路 103, 用于生成所述预设的 Ν个数字变频系数向量集合 F2 …、 Fs、 …、 FN; 其中, Fs F )为 Fs中 带内互调失真数字变频系数向 素的数量及 n)中元素的数量相等, 且 Fs (in)中元素均为 1; 8)为 中带间交调失真数字 变频系数向量, FS (CT°SS)中元素的数量、 ^ 中元素的数量及 中元素的数 量相等, 且 FS (CTSS)中元素均为 1; (。^为 中第 P个带间互调失真成分的带间 互调失真数字变频系数向量, Fs (°ut)p中元素的数量、 ^ 中元素的数量及 中元素的数量相等, 且 FS (CTSS)中元素均为 ej'2?mfs(°Ut)P/f , fs (°ut)p为第 S路数字中 频信号的载频与第 P个带间互调失真成分的中心频点的差值, fsamPk为每一路 数字中频信号的釆样率。
第四子电路 104, 用于根据所述 N个预失真模型向量集合、 所述 N个预 失真模型系数向量集合与所述的预设 N个数字变频系数向量集合生成 N路预 失 真 输 出 信 号 yi 、 y2 … ys … yN ; 其 中 , ys = B ) · ( a) · Fs (m) + W) · Fs S) + Β · ut)' · Fs ut)' +… + B )p · ω^ · Fs (out)p 如图 5所示,以下以具体的参数对上述处理方法进行说明,假设 N=3, S=l, P=3, 第 1路数字中频信号 x 载频为 1900MHz, 第 2路数字中频信号 x2的 载频为 2350MHz, 第 3路数字中频信号 x3的载频为 2590MHz, 忽略 7阶以上 的带间互调失真成分,根据上述 3个的载频计算得到表 1所示的带间互调失真 成分的中心频点。例如, -3*1900MHz+ l*2350MHz + 2*2590MHz= 1830MHz, 说明中心频率为 1830的带间互调频段是由 3个载频调制产生的, 非线性阶数 为 6阶。
表 1 不失一般的, 以生成数字中频信号 1的预失真输出信号为例进行说明, 带 内互调失真模型向量乘以对应的带内互调失真模型系数向量和对应的数字变 频系数向量具体可用如下公式表示:
(") = ") · · =∑∑ 其中, 数字中频信号 l对应的数字变频系数向量中的元素均为 l , Xl表示 数字中频信号 1 , cff表示数字中频信号 1对应的带内互调预失真模型系数向 量, M表示记忆深度, K表示非线性阶数。 带间交调失真模型向量乘以相应的带间交调失真模型系数向量和对应的 数字变频系数向量具体可用公式表示为:
其中, 2和 分别表示数字中频信号 2和数字中频信号 3 , 带间交调数字变频 向量中的元素均为 1 , 表示数字中频信号 1对应的带间交调失真模型系 数向量, M和 K分别表示记忆深度和非线性阶数。 带间互调失真模型向量 1乘以对应的数字变频系数向量 1以及对应的带间 5 互调失真模型系数向量 1。 具体可用以下公式表示: 其中, "™ 表示带间互调失真成分 1对应的带间互调失真模型系数向量, 载 频为 1900MHz, 载频附近的互调失真成分 1的中心频率为 1930MHz,
( = 1930 - 1900 = 30ΜΗζ表示数字中频信号 1的载频与带间互调失真成分的中 心频点的差值, = 1 53 ' 表示数字中频信号 1的釆样率。
同样地, 可以对在数字中频信号 1的载频周围的其他带间互调失真成分 (中心频点为 1830MHz和 1870MHz的带间互调失真成分)进行预失真消除, 得到 (") … ("), 生成数字中频信号 1的预失真输出信号, 表示为 yx (n) = y[in) (n) + (n) + Λ(。"' )'(") + · · · + (n) 对于数字中频信号 2和数字中频信号 3的预失真处理,釆用上述相同的方法即 可分别生成数字中频信号 2和数字中频信号 3对应的预失真输出信号372 (")和 y3 (n)。 传输电路 11 ,用于根据所述预失真电路生成的所述 N路预失真输出信号, 生成射频模拟信号。
具体的, 以传输电路 11对 3路预失真输出信号进程处理为例, 将 3路预 失真输出信号分别进行数字上变频处理提高自身的釆样率, 具体为: 分别进行 插值和滤波将釆样率提升为 3.072GHz, 其中, 对预失真输出信号进行插值和 滤波的过程可分为多级完成, 同时,在滤波环节滤波器的通带设置需要满足的 条件是: 保留预失真电路产生的频带带外成分, 然后将数字上变频处理后的 3 路预失真输出信号分别调制到 1频率为 1900MHz、 2350MHz和 2590MHz的 载波上, 然后将调制后的信号进行合并成一路数字信号, 然后将数字信号转化 为射频模拟信号, 将射频模拟信号通过功率放大器进行传输。
功率放大器 12, 用于根据所述传输电路生成的所述射频模拟信号进行放 大处理, 生成放大处理后的射频模拟信号。
具体的, 功率放大器 12将经过放大处理的射频模拟信号分为两路进行传 输, 一路通过天线 15发射出去, 另一路通过耦合器传输至反馈电路 13。
反馈电路 13 , 用于根据所述功率放大器生成的所述放大处理后的射频模 拟信号, 生成 N路数字中频反馈信号。
具体的, 将功率放大器 12输出的经放大处理的射频模拟信号进行滤波、 解调、 模数转换和数字下变频处理生成 N路数字中频反馈信号。 例如,反馈电路将方法处理的射频模拟信号抗混叠滤波和解调处理后得到 3路模拟信号, 釆用模数转换器将 3路模拟信号转化为 3路数字信号, 分别将 模数转换器输出 3路数字信号进行数字下变频(抽取和滤波), 釆样率变为 153.6MHz, 得到 3路数字中频反馈信号, 其中, 每路数字中频反馈信号为数 字中频信号。 可以理解的是, 进行抽取滤波时需要保留功率放大器 12产生的 非线性失真成分。
学习电路 14, 用于根据所述预失真电路生成的所述 N路预失真输出信号 和所述反馈电路生成的所述 N路数字中频反馈信号, 生成新的 N个预失真模 型系数向量集合。
具体的, 学习电路 14根据反馈电路 13输入的 N路数字中频反馈信号和 预失真电路 10输入的 N路预失真输出信号进行学习得到相应的新的预失真模 型系数向量集合。 假设 N=3 , 学习电路 14首先利用 3路数字中频反馈信号和 3路预失真输 出信号, 分别估计 3个预失真输出信号与数字中频反馈信号的时延、相位和幅 度差, 并对数字中频反馈信号进行时延、 相位和幅度, 并对数字中频反馈信号 进行调整, 使每一路数字中频反馈信号与每一路预失真输出信号分别对齐。 参见图 6, 学习电路 14以生成第 1路数字中频信号的预失真模型系数向 量集合为例, 注意到, 图 6中的处理过程与预失真电路 10中处理方法基本一 致, 区别在于图 7中生成的是预失真学习向量, 并没有乘以预失真系数向量集 合, 预失真学习向量集合表示为
Ul (n) = [u|n (n), u °ss (n), u 1 Ul (out)p ] 利用 Q个釆样点的预失真学习向量, 将 Q个釆样点的预失真电路输出信 号作为参考信号, 釆用 LS最小二乘法方法求解第 1路数字中频信号的预失真 系数, 可以表示为 ω1 = (υ )_1 υ^
= [y, (n- Q+ 1), y, (n- Q+ 2), ..., (η)]Γ
「^("-2+ 1) ]
ux {n - Q + 2)
第 1路数字中频信号的预失真模型系数向量将传输至预失真电路 10, 使 预失真电路 10对输入的第 1路数字中频信号进行预失真处理。 同样地, 第 2 路数字中频信号和第 3路数字中频信号的预失真模型系数向量可釆用上述相 同的方法得到。 实施本发明,预失真电路获取学习电路根据功率放大器的输出信号学习到 的带内互调失真模型系数向量、带间交调失真模型系数向量和带间互调失真模 型系数向量,对输入的数字中频信号进行预失真处理, 消除通过功率放大器后 的带间互调失真性失真, 改善了功率放大器的输出线性度。
参见图 3 , 为本发明实施例的一种预失真方法的流程示意图, 在本实施例 中, 所述预失真方法包括:
S101 根据不同频段的 N路数字中频信号、 N个预失真模型系数向量集 合和预设的 N个数字变频系数向量集合生成 N路预失真输出信号, 其中, 每 个预失真模型系数向量集合中包括 1个带内互调失真模型系数向量、 1个带间 交调失真模型系数向量和至少 1个带间互调失真模型系数向量, N为大于 2的 整数。
具体的, S101对输入的不同频段的 N路数字中频信号进行预失真处理, 具体为: 利用每一路数字中频信号产生对应的预失真模型向量,再分别乘以对 应的预失真模型系数向量和对应的数字变频系数向量,得到每一路的预失真输 出信号。 其中, 每一路数字中频信号的频段均不互相重叠。 每个预失真模型系 数向量集合包括 1个带内互调失真模型系数向量、 1个带间交调失真模型系数 向量和至少 1个带间互调失真模型系数向量,带间互调失真模型系数向量的数 量等于数字中频信号对应的载频附近的带间互调失真成分的数量,该数量可根 据载频、 载频的数量、 频率间隔及信号阶数等约束条件来确定, 例如, 假设 Ν=3 , 3路数字中频信号对应的载频分别为 1900MHz、 2350MHz和 2590MHz, 规定选取信号阶数 d、于 7阶且与载频的频率间隔小于 100MHz的带间互调失真 成分, 则很容易计算得到载频 1900MHz附近的带间互调失真成分的数量为 3 , 相应的, 带间互调失真模型系数向量的数量也为 3。 同样地, 根据上述相同的 约束条件艮容易计算得到载频 2350MHz和 2590MHz附近的带间互调失真成分 的数量也等于 3。
进一步可选的, S101具体包括:
S1011 根据所述 N路数字中频信号生成 N个预失真模型向量集合 Βι、 B2、 …、 BS、…、 Bn ;其中, Β ,Βί …, Β )Ρ ) ,
Ρ为 Bs对应的带间互调失真成分的数量, 为 Bs中带内互调失真模型向量, 3 (cross) D(out)P
Bs 为^中带间交调失真模型向量, Bs 为^中第 P个带间互调失真成分 的带间互调失真模型向量;
S1012 获取 N个预失真模型系数向量集合 、 ω2、 …、 ws、 …、 ω^ -, 其中, 6^)为6¾中带内互调失真模型系数 向量, 4" 为%中带间交调失真模型系数向量, 。^为%中第 P个带间互 调失真成分对应的带间互调失真模型系数向量。
S1013 生成所述预设的 N个数字变频系数向量集合 、 F2、 …、 Fs、 …、 FN ; 其中, Fs = (Fs (in),Fs (cross),Fs (out)l ,Fs (out)2 ,...,Fs (out)p ) , Fs (in)为 Fs中带内互调失真数 字变频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 in)中元素的数量 相等, 且 Fs (in)中元素均为 1 ; FS (CTSS)为 中带间交调失真数字变频系数向量,
D (cross)
Fs (cross)中元素的数量、 Bs 中元素的数量及 4CT°SS)中元素的数量相等,且 FS (CT°SS) 中元素均为 1 ; (°^为 中第 P个带间互调失真成分的带间互调失真数字变 频系数向量, Fs (°ut)p中元素的数量、 Bs 中元素的数量及 中元素的数量相 等, 且 FS (CTSS)中元素均为 ej'2?mfs(°Ut)P /fs , fs (°ut)p为第 S路数字中频信号的载频与 第 P个带间互调失真成分的中心频点的差值, fsamPle为每一路数字中频信号的 釆样率、
S1014、根据所述 N个预失真模型向量集合、所述 N个预失真模型系数向 量集合与所述预设 N个数字变频系数向量集合生成 N路预失真输出信号 、 y2 、 … 、 ys … 、 yN ; 其 中 , ys = B ) · ( a) · Fs (m) + B^cross) · C) · FS (CT0SS) + · °ut)l · Fs (out)l +… + B^out)p · ut)p · Fs (out)p
如图 5所示,以下以具体的参数对上述处理方法进行说明,假设 N=3 , S=l , P=3 , 第 1路数字中频信号 x 载频为 1900MHz, 第 2路数字中频信号 x2的 载频为 2350MHz, 第 3路数字中频信号 x3的载频为 2590MHz, 忽略 7阶以上 的带间互调失真成分,根据上述 3个的载频计算得到表 2所示的带间互调失真 成分的中心频点。例如, -3*1900MHz + l*2350MHz + 2*2590MHz = 1830MHz, 说明中心频率为 1830的带间互调频段是由 3个载频调制产生的, 非线性阶数 为 6阶。
表 2
不失一般的, 以生成数字中频信号 1的预失真输出信号为例进行说明, 带 内互调失真模型向量乘以对应的带内互调失真模型系数向量和对应的数字变 频系数向量具体可用如下公式表示: in) (") = · · F =∑∑ (n - m) \Xl (n - mf'
0 其中, 数字中频信号 1对应的数字变频系数向量中的元素均为 1 , Xl表示 数字中频信号 1 , cff表示数字中频信号 1对应的带内互调预失真模型系数向 量, M表示记忆深度, K表示非线性阶数。 带间交调失真模型向量乘以相应的带间交调失真模型系数向量和对应的 数字变频系数向量具体可用公式表示为: 其中, 2和 分别表示数字中频信号 2和数字中频信号 3 , 带间交调数字变频 向量中的元素均为 1 , a 表示数字中频信号 1对应的带间交调失真模型系 数向量, M和 K分别表示记忆深度和非线性阶数。
带间互调失真模型向量 1乘以对应的数字变频系数向量 1以及对应的带间 互调失真模型系数向量 1。 具体可用以下公式表示: n) = Biout)'
其中, ^ 表示带间互调失真成分 1对应的带间互调失真模型系数向量, 载 频为 1900MHz, 载频附近的带间互调失真成分 1的中心频率为 1930MHz, 表示数字中频信号 1的载频与带间互调失真成分的中 心频点的差值, = 153' 表示数字中频信号 1的釆样率。
同样地, 可以对在数字中频信号 1的载频周围的其他带间互调失真成分 (中心频点为 1830MHz和 1870MHz的带间互调失真成分)进行预失真消除, 得到 (") … ("), 生成数字中频信号 1的预失真输出信号, 表示为
对于数字中频信号 2和数字中频信号 3的预失真处理,釆用上述相同的方法即 可分别生成数字中频信号 2和数字中频信号 3对应的预失真输出信号372 (")和 y3 (n)。
S102 根据所述 N路预失真输出信号, 生成射频模拟信号。
具体的, 以 S102对 3路预失真输出信号进程处理为例, 将 3路预失真输 出信号分别进行数字上变频处理提高自身的釆样率, 具体为: 分别进行插值和 滤波将釆样率提升为 3.072GHz, 其中, 对预失真输出信号进行插值和滤波的 过程可分为多级完成,同时,在滤波环节滤波器的通带设置需要满足的条件是: 保留预失真电路产生的频带带外成分,然后将数字上变频处理后的 3路预失真 输出信号分别调制到 1频率为 1900MHz、 2350MHz和 2590MHz的载波上, 然后将调制后的信号进行合并成一路数字信号,然后将数字信号转化为射频模 拟信号, 将射频模拟信号通过功率放大器进行传输。
S103 根据所述射频模拟信号进行放大处理,生成放大处理后的射频模拟 信号。
具体的,将经过放大处理的射频模拟信号分为两路进行传输, 一路通过天 线发射出去, 另一路通过耦合器由 S104进行处理。
S104、 根据所述放大处理后的射频模拟信号, 生成 N路数字中频反馈信 具体的,将 S103输出的经放大处理的射频模拟信号进行滤波、模数转换、 解调和数字下变频处理生成 N路数字中频反馈信号。 例如,将放大处理的射频模拟信号抗混叠滤波和解调处理后得到 3路模拟 信号, 釆用模数转换器将 3路模拟信号转化为 3路数字信号,分别将模数转换 器输出 3路数字信号进行数字下变频(抽取和滤波), 釆样率变为 153.6MHz, 得到 3路数字中频反馈信号, 其中, 每路数字中频反馈信号为数字中频信号。 可以理解的是, 进行抽取滤波时需要保留功率放大器产生的非线性失真成分。
S105 根据所述 N路预失真输出信号和所述 N路数字中频反馈信号, 生 成新的 N个预失真模型系数向量集合。
具体的,首先对 S104处理后得到的数字中频反馈信号和 S101处理后得到 的预失真输出信号估计出数字中频反馈信号和预失真输出信号的时延、相位和 幅度进行调整, 以使 N路数字中频反馈信号中的每一路数字中频反馈信号保 持同步以及 N路预失真输出信号中的每一路预失真输出信号保持同步。 然后, 才艮据 S101处理后得到的 N路预失真输出信号和 S104处理后得到的 N路数字 中频反馈信号釆用预设算法计算得到所述当前的 N个预失真模型系数向量集 合。 具体的计算方法可以是: 通过对 N路预失真输出信号和 N路数字中频反 馈信号进行拟合运算,以分别得到每一路预失真输出信号和每一路数字中频反 馈信号之间的函数关系,具体拟合运算的算法可以是最小二乘法等现有技术中 任何已知的拟合算法, 本发明不作限制。
可选的, 釆用如下公式确定所述新的 N个预失真模型系数向量集合中的 第 S个预失真模型系数向量集合:
Ys = [ys (n- Q+ 1) Q+ 2),…, (η)]Γ
us [n— Q + \^
U ,其中, Q为第 S路数字中频反馈信号的釆样点的数量, us Kn)
为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。
可以理解的是,在非理想的预失真系统,预失真系统的输入和输出是存在 一定的时间延迟, 因此, S101中根据不同频段的 N路数字中频信号、 N个预 失真模型系数向量集合和预设的 N个数字变频系数向量集合生成 N路预失真 输出信号时, 当前从 S105中获得预失真模型系数向量集合并不是根据当前的 数字中频信号经过传输、 放大、 反馈和学习生成的, 这样在 S101首次进行预 失真处理时, 无法实时获取到 S105生成的预失真模型系数向量集合, 因此规 定 S101为首次预失真处理时, S101利用预设的预失真模型系数向量集合生成 预失真输出信号。
可选的, 在 S101之前还包括: 根据不同频段的 N路基带信号, 生成所述 N路数字中频信号。
具体的, 将不同频段的 N路基带信号进行数字上变频处理和削波处理后 生成 N 路数字中频信号, 削波处理可抑制功率放大器输入信号的峰均比 ( PAPR, Peak Average Power Ratio )„ 例如, 假设输入 3路基带信号, 每一路 基带信号的釆样率均为 30.72MHz,预处理电路 16分别对每一路基带信号进行 5倍插值和滤波处理, 将每一路基带信号的釆样率提升为 153.6MHz, 然后将 经过数字上变频处理后的信号进行削波处理。
实施本发明 ,预失真电路获取学习电路根据功率放大器的输出信号学习到 的带内互调失真模型系数向量、带间交调失真模型系数向量和带间互调失真模 型系数向量,对输入的数字中频信号进行预失真处理, 消除通过功率放大器后 的带间互调失真性失真, 改善了功率放大器的输出线性度。
图 7描述了本发明另一个实施例提供的预失真系统的结构,包括至少一个 处理器 20 (例如 CPU ), 至少一个网络接口 23或者其他通信接口,存储器 21 , 和至少一个通信总线 24, 用于实现这些装置之间的连接通信。 处理器 20用于 执行存储器 21中存储的可执行模块,例如计算机程序。存储器 21可能包含高 速随机存取存储器( RAM: Random Access Memory ), 也可能还包括非不稳定 的存储器( non- volatile memory ), 例:^至少一个磁盘存储器。 通过至少一个网 络接口 23 (可以是有线或者无线) 实现该预失真系统与至少一个通信单元之 间的通信连接, 可以使用互联网, 广域网, 本地网, 城域网等。 在本发明的实
( RRU )或移动台等通信设备中的发射机的射频放大过程, 相应的, 预失真系 统可以为基站、 射频拉远单元或移动台等, 本发明不作限制。
在一些实施方式中, 存储器 21存储了程序 211 , 程序 211可以被处理器 20执行, 这个程序包括:
根据不同频段的 N路数字中频信号、 N个预失真模型系数向量集合和预 设的 N个数字变频系数向量集合生成 N路预失真输出信号, 其中, 每个预失 真模型系数向量集合中包括 1个带内互调失真模型系数向量、 1个带间交调失 真模型系数向量和至少 1个带间互调失真模型系数向量, N为大于 2的整数; 根据所述 N路预失真输出信号, 生成射频模拟信号;
根据所述射频模拟信号进行放大处理, 生成放大处理后的射频模拟信号; 根据所述放大处理后的射频模拟信号, 生成 N路数字中频反馈信号; 根据所述 N路预失真输出信号和所述 N路数字中频反馈信号, 生成新的 N个预失真模型系数向量集合。
进一步的, 在本发明的实施例中, 处理器 20执行所述根据不同频段的 N 路数字中频信号、 N个预失真模型系数向量集合和预设的 N个数字变频系数 向量集合生成 N路预失真输出信号的步骤包括:
根据所述 N路数字中频信号生成 N个预失真模型向量集合 Bi、 B2
L , τ¾ — " ¾(cross) ¾(out)i ¾(out)2 ¾(°ut)p Λ R(in)
Bs、 ···、 BN; 其中, l^S^N, Bs - (Bs 'Bs 'Bs 'Bs ) , Bs 为^中带内互调失真模型向量, P 为^对应的带间互调失真成分的数量, (cross) )p
Bs 为^中带间交调失真模型向量, Bs 为^中第 P个带间互调失真成分 的带间互调失真模型向量;
获取 N个预失真模型系数向量集合 、 ωΊ、 …、 cos、 …、 其中, ω, = ( η) , ^cross) , °ut)l , ^s∞t)2― ^s∞t)p ), w )为 ws中带内互调失真模型系数向量, ^" 为 中带间交调失真模型系数向量, ^。 为 中第 P个带间互调失真 成分对应的带间互调失真模型系数向量;
生成所述预设的 N个数字变频系数向量集合 、 F2、 …、 Fs、 …、 FN; 其中, Fs = (Fs (in),Fs (cross),Fs (out)l,Fs (out)2 ,...,Fs (out)p), F }为 Fs中带内互调失真数字变 频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 w )中元素的数量相等, 且 Fs (in)中元素均为 1; FS (CT°SS)为 中带间交调失真数字变频系数向量, FS (CT°SS)中 元素的数量、 ^ 中元素的数量及 4CT°SS)中元素的数量相等, 且 (" 中元素 均为 1; (°4为 中第 P个带间互调失真成分的带间互调失真数字变频系数 向量, Fs (°ut)p中元素的数量、 Bs 中元素的数量及 中元素的数量相等, 且 中元素均为 e^nfs(^/fs , 为第 s路数字中频信号的载频与第 p个 带间互调失真成分的中心频点的差值, fsamPle为每一路数字中频信号的釆样率; 根据所述 N个预失真模型向量集合、 N个预失真模型系数向量集合与所 述预设的 N个数字变频系数向量集合生成 N路预失真输出信号 、 y2、 …、 ys … 、 yN ; 其 中 , ys = B( s ,n) · ( a) · Fs (m) + B^cross) · C) · FS (CT0SS) + · °ut)l · Fs (out)l +… + B^out)p · ut)p · Fs (out)p
进一步的, 处理器 20还用于执行:
根据不同频段的 N路基带信号, 生成所述 N路数字中频信号。
进一步的,处理器 20执行所述根据所述 N路预失真输出信号和所述 N路 数字中频反馈信号, 生成新的 N个预失真模型系数向量集合的步骤包括: 釆用如下公式确定所述新的 N个预失真模型系数向量集合中的第 S个预 失真模型系数向量集合:
«5=(u U5)_1U F5 n-Q+l),^(n-Q+2),...,^(n)]
us n— Q + \^
usin-Q + 2)
,其中, Q为第 S路数字中频反馈信号的釆样点的数量: us \n)
为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM)或随机存储记忆体(Random Access Memory, RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发 明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流 程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims (4)

  1. 权 利 要 求
    1、 一种预失真系统, 其特征在于, 包括:
    预失真电路,用于根据不同频段的 N路数字中频信号、学习电路生成的 N 个预失真模型系数向量集合和预设的 N个数字变频系数向量集合, 生成 N路 预失真输出信号,其中,每个预失真模型系数向量集合中包括 1个带内互调失 真模型系数向量、 1个带间交调失真模型系数向量和至少 1个带间互调失真模 型系数向量, N为大于 2的整数;
    传输电路, 用于根据所述预失真电路生成的所述 N路预失真输出信号, 生成射频模拟信号;
    功率放大器,用于根据所述传输电路生成的所述射频模拟信号进行放大处 理, 生成放大处理后的射频模拟信号;
    反馈电路,用于根据所述功率放大器生成的所述放大处理后的射频模拟信 号, 生成 N路数字中频反馈信号;
    所述学习电路, 用于根据所述预失真电路生成的所述 N路预失真输出信 号和所述反馈电路生成的所述 N路数字中频反馈信号, 生成新的 N个预失真 模型系数向量集合。 2、 如权利要求 1所述的预失真系统, 其特征在于, 所述预失真电路包括: 第一子电路, 用于根据所述 N路数字中频信号生成 N个预失真模型向量 集合 Bi 、 B2 Bs 、 … 、 BN ; 其 中 , 1 S N ,
    Bs = (B } , B^cross) , B^out)' , , ... , Β ) , ρ 为 应的带间互调失真成分的数 (in) cross)
    量, Bs 为^中带内互调失真模型向量, Bs 为^中带间交调失真模型向量, Bs 为^中第 P个带间互调失真成分的带间互调失真模型向量;
    第二子电路, 用于获取所述学习电路生成的 N个预失真模型系数向量集 合 ω2、 …、 ω8、 …、 ωΝ ·, 其中, ί¾ =( η
    为 β¾中带内互调失真模型系数向量, CT°SS)为 β¾中带间交调失真模型系数向 量, 为 β¾中第 Ρ个带间互调失真成分对应的带间互调失真模型系数向量; 第三子电路,用于生成所述预设的 Ν个数字变频系数向量集合 S、 F2、…、 Fs FN; 其中, Fs =(Fs (in),Fs (cross),Fs (out)l,Fs (out)2,...,Fs (out)p) , F 为 Fs中带内互 调失真数字变频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 ^in)中元 素的数量相等,且 Fs (in)中元素均为 1; FS (CT°SS)为 中带间交调失真数字变频系数
    3 (cross)
    向量, FS (CT°SS)中元素的数量、 Bs 中元素的数量及 CT°SS)中元素的数量相等, 且 8)中元素均为 1; (°^为 中第 P个带间互调失真成分的带间互调失真
    ( ut)p
    数芋字殳变频频系系数数向向量量,, E Fs (°ut)p中元素 Λ的Α数量、 B L>
    s s 中元素的数量及 W)P中元素的
    j2^nfs (0Ut)P/fsample ^(out)- 数量相等, 且1¾ s)中元素均为 e j2mts ts , fs (°ut)p为第 S路数字中频信号的 载频与第 P个带间互调失真成分的中心频点的差值, samPle为每一路数字中频 信号的釆样率;
    第四子电路, 用于根据所述 N个预失真模型向量集合、 所述 N个预失真 模型系数向量集合与所述预设的 N个数字变频系数向量集合生成 N路预失真 输 出 信 号 ^ 、 y2 ys yN ; 其 中 , ys = B ) · ( a) · Fs (m) + W) · Fs S) + Β · ut)' · Fs ut)' + + B )p · ^out)p · Fs (out)p 3、 如权利要求 1或 2所述的预失真系统, 其特征在于, 还包括: 预处理电路, 用于根据不同频段的 N路基带信号, 生成所述 N路数字中 频信号, 并将所述 N路数字中频信号输入至所述预失真电路。
    4、 如权利要求 2所述的预失真系统, 其特征在于, 所述学习电路具体釆 用如下公式确定所述新的 N个预失真模型系数向量集合中的第 S个预失真模 型系数向量集合:
    Ys = [ys (n- Q+ 1) Q+ 2), (η)]Γ
    us n— Q + \^
    U =| 。\ , ,其中, Q为第 S路数字中频反馈信号的釆样点的数量, us{n)
    为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。 一种预失真方法, 其特征在于, 包括: 根据不同频段的 N路数字中频信号、 N个预失真模型系数向量集合和预 设的 N个数字变频系数向量集合生成 N路预失真输出信号, 其中, 每个预失 真模型系数向量集合中包括 1个带内互调失真模型系数向量、 1个带间交调失 真模型系数向量和至少 1个带间互调失真模型系数向量, N为大于 2的整数; 根据所述 N路预失真输出信号, 生成射频模拟信号;
    根据所述射频模拟信号进行放大处理, 生成放大处理后的射频模拟信号; 根据所述放大处理后的射频模拟信号, 生成 N路数字中频反馈信号; 根据所述 N路预失真输出信号和所述 N路数字中频反馈信号, 生成新的 N个预失真模型系数向量集合。
  2. 6、 如权利要求 5所述的方法, 其特征在于, 所述根据不同频段的 N路数 字中频信号、 N个预失真模型系数向量集合和预设的 N个数字变频系数向量 集合生成 N路预失真输出信号的步骤包括:
    根据所述 N路数字中频信号生成 N个预失真模型向量集合 Bi、 B2 Bs、 ···、 BN ; 其中, l ^S^N, Bs - (Bs ,BS ,BS ,BS , -, Bs ) , Bs 为^中带内互调失真模型向量, P 为^对应的带间互调失真成分的数量, (cross) )p
    Bs 为^中带间交调失真模型向量, Bs 为^中第 P个带间互调失真成分 的带间互调失真模型向量;
    获取 N个预失真模型系数向量集合 、 ω2、 …、 ω8、 …、 其中, ω8 = ( η) , o) ss) , °ut)l , ^ou¾ , - - , ^°ut)p ) , 为 ws中带内互调失真模型系数向量, ^" 为 中带间交调失真模型系数向量, ^。 为 中第 P个带间互调失真 成分对应的带间互调失真模型系数向量;
    生成所述预设的 N个数字变频系数向量集合 、 F2、 …、 Fs、 …、 FN ; 其中, Fs = (Fs (in),Fs (cross),Fs (out)l ,Fs (out)2 ,...,Fs (out)p ), F }为 Fs中带内互调失真数字变 频系数向量, Fs (in)中元素的数量、 B 中元素的数量及 w )中元素的数量相等, 且 Fs (in)中元素均为 1 ; FS (CT°SS)为 中带间交调失真数字变频系数向量, FS (CT°SS)中 元素的数量、 ^ 中元素的数量及 4CT°SS)中元素的数量相等, 且 (" 中元素 均为 1 ; (°4为 中第 P个带间互调失真成分的带间互调失真数字变频系数 向量, Fs (°ut)p中元素的数量、 Bs 中元素的数量及 中元素的数量相等, 且 FS (CT 中元素均为 ej'2?mfs(°Ut)P /fs , fs (°ut)p为第 S路数字中频信号的载频与第 P个 带间互调失真成分的中心频点的差值 , samPle为每一路数字中频信号的釆样率; 根据所述 N个预失真模型向量集合、 N个预失真模型系数向量集合与所 述预设的 N个数字变频系数向量集合生成 N路预失真输出信号 、 y2、 …、 ys … 、 yN ; 其 中 , ys = B ) · ( a) · Fs (m) + B^cross) · C) · FS (CT0SS) + B out)1 · °ut)l · Fs (out)l +… + B^out)p · ^out)p · Fs (out)p
  3. 7、 如权利要求 5或 6所述的方法, 其特征在于, 所述根据不同频段的 N 路数字中频信号、 所述 N个预失真模型系数向量集合和预设的 N个数字变频 系数向量集合生成 N路预失真输出信号的步骤之前, 还包括:
    根据不同频段的 N路基带信号, 生成所述 N路数字中频信号。
  4. 8、 如权利要求 6所述的方法, 其特征在于, 所述根据所述 N路预失真 ¾ 出信号和所述 N路数字中频反馈信号, 生成新的 N个预失真模型系数向量集 合的步骤包括:
    釆用如下公式确定所述新的 N个预失真模型系数向量集合中的第 S个预 失真模型系数向量集合:
    Ys = s (n- Q+ 1) Q+ 2),…, (n)]r
    us n— Q + \)
    us in - Q + 2)
    ,其中, Q为第 S路数字中频反馈信号的釆样点的数量: us \n)
    为根据第 S路数字中频反馈信号与第 S路的数字变频系数向量集合生成的预 失真学习向量集合。
CN201480078633.2A 2014-04-30 2014-04-30 一种预失真系统和方法 Pending CN106537862A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/076632 WO2015165087A1 (zh) 2014-04-30 2014-04-30 一种预失真系统和方法

Publications (1)

Publication Number Publication Date
CN106537862A true CN106537862A (zh) 2017-03-22

Family

ID=54358041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480078633.2A Pending CN106537862A (zh) 2014-04-30 2014-04-30 一种预失真系统和方法

Country Status (4)

Country Link
US (1) US9768811B2 (zh)
EP (1) EP3131251A4 (zh)
CN (1) CN106537862A (zh)
WO (1) WO2015165087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110771104A (zh) * 2017-05-31 2020-02-07 华为技术有限公司 预失真处理方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203294A1 (en) * 2015-06-17 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Least mean squares adaptation of a concurrent multi-band pre-distorter using overlapping spines
US10541657B2 (en) 2017-08-28 2020-01-21 Qualcomm Incorporated Method and apparatus for digital pre-distortion with reduced oversampling output ratio
CN110768701B (zh) * 2018-07-27 2022-10-28 中兴通讯股份有限公司 信道状态处理方法及装置、系统、终端、基站、存储介质
WO2020187384A1 (en) * 2019-03-15 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Per-branch, combined, and grouped combined mimo dpd
US10892786B1 (en) * 2019-10-17 2021-01-12 Analog Devices International Unlimited Company Digital predistortion with out-of-band and peak expansion regularization
KR20210108196A (ko) * 2020-02-25 2021-09-02 주식회사 케이엠더블유 멀티 밴드 송신기
EP4183112A4 (en) * 2020-07-20 2023-08-23 Telefonaktiebolaget LM Ericsson (publ.) RADIO TRANSMITTER AND ASSOCIATED METHOD
CN113612453B (zh) * 2021-08-11 2023-09-15 电子科技大学 一种低采样率反馈的数字预失真校正方法与装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192856A (zh) * 2006-11-20 2008-06-04 大唐移动通信设备有限公司 预失真方法和装置
CN102118334A (zh) * 2010-11-29 2011-07-06 大唐移动通信设备有限公司 一种数字预失真处理方法及装置
CN102163956A (zh) * 2010-02-24 2011-08-24 富士通株式会社 用于预失真器的信号反馈回路和方法、以及功率放大设备
CN102412791A (zh) * 2011-11-29 2012-04-11 电子科技大学 一种用于高效功率放大器的数字预失真处理方法
US20130094610A1 (en) * 2011-10-14 2013-04-18 Fadhel Ghannouchi Digital Multi-band Predistortion Linearizer with Nonlinear Subsampling Algorithm in the Feedback Loop
US20130200950A1 (en) * 2012-02-03 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Predistortion of concurrent multi-band signal to compensate for pa non-linearity
CN103718456A (zh) * 2011-12-09 2014-04-09 株式会社Ntt都科摩 预失真器、预失真器控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI982738A (fi) * 1998-12-17 2000-06-18 Nokia Networks Oy Lähettimen linearisointi
US7289773B2 (en) * 2003-01-23 2007-10-30 Powerwave Technologies, Inc. Digital transmitter system employing self-generating predistortion parameter lists and adaptive controller
JP4417174B2 (ja) * 2004-05-19 2010-02-17 株式会社日立国際電気 プリディストータ
US8620233B2 (en) * 2008-04-11 2013-12-31 Samsung Electroncs Co., Ltd. Method of power amplifier predistortion adaptation using compression detection
JP4866388B2 (ja) * 2008-05-22 2012-02-01 富士通株式会社 歪補償装置および歪補償方法
US8285770B1 (en) * 2008-08-29 2012-10-09 Xilinx, Inc. Method of and circuit for generating parameters for a predistortion circuit in an integrated circuit using a matrix
JP5355508B2 (ja) * 2009-08-27 2013-11-27 株式会社エヌ・ティ・ティ・ドコモ べき級数型ディジタルプリディストータとその歪補償制御方法
US8351877B2 (en) * 2010-12-21 2013-01-08 Dali Systems Co. Ltfd. Multi-band wideband power amplifier digital predistorition system and method
US8391809B1 (en) * 2011-10-13 2013-03-05 Futurewei Technologies, Inc. System and method for multi-band predistortion
US9362876B2 (en) * 2011-12-22 2016-06-07 Southern Methodist University Look-up table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications
US9385762B2 (en) * 2013-05-22 2016-07-05 Telefonaktiebolaget L M Ericsson (Publ) Linearization of intermodulation bands for concurrent dual-band power amplifiers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192856A (zh) * 2006-11-20 2008-06-04 大唐移动通信设备有限公司 预失真方法和装置
CN102163956A (zh) * 2010-02-24 2011-08-24 富士通株式会社 用于预失真器的信号反馈回路和方法、以及功率放大设备
CN102118334A (zh) * 2010-11-29 2011-07-06 大唐移动通信设备有限公司 一种数字预失真处理方法及装置
US20130094610A1 (en) * 2011-10-14 2013-04-18 Fadhel Ghannouchi Digital Multi-band Predistortion Linearizer with Nonlinear Subsampling Algorithm in the Feedback Loop
CN102412791A (zh) * 2011-11-29 2012-04-11 电子科技大学 一种用于高效功率放大器的数字预失真处理方法
CN103718456A (zh) * 2011-12-09 2014-04-09 株式会社Ntt都科摩 预失真器、预失真器控制方法
US20130200950A1 (en) * 2012-02-03 2013-08-08 Telefonaktiebolaget L M Ericsson (Publ) Predistortion of concurrent multi-band signal to compensate for pa non-linearity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110771104A (zh) * 2017-05-31 2020-02-07 华为技术有限公司 预失真处理方法和装置
CN110771104B (zh) * 2017-05-31 2021-01-29 华为技术有限公司 预失真处理方法和装置
US10985705B2 (en) 2017-05-31 2021-04-20 Huawei Technologies Co., Ltd. Pre-distortion processing method and apparatus

Also Published As

Publication number Publication date
US20170047954A1 (en) 2017-02-16
EP3131251A4 (en) 2017-04-19
EP3131251A1 (en) 2017-02-15
WO2015165087A1 (zh) 2015-11-05
US9768811B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
CN106537862A (zh) 一种预失真系统和方法
CN1914871B (zh) Fm ofdm传输的峰均功率降低
US9184784B2 (en) Method and apparatus for digital predistortion for a switched mode power amplifier
JP6089706B2 (ja) 送信信号電力制御装置、通信装置及びプリディストーション係数更新方法
US9698862B2 (en) Transformed kernels for cancelling non-linear distortion
US20190253098A1 (en) Tower top device and passive intermodulation cancellation method
US20170257251A1 (en) Predistortion Processing Apparatus and Method
CN104935540A (zh) 一种同时同频全双工极限自干扰抵消方法
CN107005513A (zh) 一种信号的削波处理方法和设备
JP2018523940A (ja) 送信機による非線形の事前符号化
CN104811213A (zh) 自干扰信号消除设备及方法
CN103457638A (zh) 电力线通信信道突发脉冲噪声的抑制装置及其抑制方法
EP2997655A1 (en) Baseband equivalent volterra series for digital predistortion in multi-band power amplifiers
EP3360260B1 (en) Crest factor reduction in a radio transmitter
CN111064439A (zh) 一种改善短波数字预失真性能的系统及方法
WO2016138880A1 (zh) 一种多频段信号处理方法及设备
CN102404273B (zh) 一种基于新的压扩变换的ofdm信号传输方法
CN103338179B (zh) 调制误差率可控的ofdm系统峰均比抑制器
CN102694562A (zh) 利用改进的变步长nlms算法的自适应干扰消除的方法
CN201947373U (zh) 一种高效率数字电视发射装置
CN103812818A (zh) 基于非线性压扩函数的ofdm信号峰平比抑制方法
CN102904846B (zh) 一种适应快变信号的数字预失真处理方法
CN115001913A (zh) 一种基于数字辅助的全双工频域自干扰消除方法
CN101841304B (zh) 带有线性校正器的功率放大装置
CN201682498U (zh) 一种数字无线直放站系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170322