CN106533264A - 高超声速飞行器冷却与半导体温差发电一体化系统 - Google Patents

高超声速飞行器冷却与半导体温差发电一体化系统 Download PDF

Info

Publication number
CN106533264A
CN106533264A CN201611251566.7A CN201611251566A CN106533264A CN 106533264 A CN106533264 A CN 106533264A CN 201611251566 A CN201611251566 A CN 201611251566A CN 106533264 A CN106533264 A CN 106533264A
Authority
CN
China
Prior art keywords
semiconductor thermoelectric
semiconductor
type semiconductor
power generation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611251566.7A
Other languages
English (en)
Inventor
秦江
程昆林
章思龙
鲍文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201611251566.7A priority Critical patent/CN106533264A/zh
Publication of CN106533264A publication Critical patent/CN106533264A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

高超声速飞行器冷却与半导体温差发电一体化系统,涉及高超声速飞行器冷却与半导体温差发电一体化技术。目的是为了满足长航时高超声速飞行的热防护与供电的需求。本发明的N型半导体热电材料(2)和P型半导体热电材料(3)间隔排布,并且通过导流片(5)依次串联构成半导体温差发电装置;半导体温差发电装置两侧均设置有与导流片(5)紧密贴合的导热绝缘层(4);两个导热绝缘层(4)的外侧分别为低温通道(1)和高温通道(6),且低温通道(1)和高温通道(6)相连通。本发明将冷却系统和发电系统合二为一,降低了结构质量,减小了质量惩罚,适用于高超声速飞行器。

Description

高超声速飞行器冷却与半导体温差发电一体化系统
技术领域
本发明涉及高超声速飞行器冷却与半导体温差发电一体化技术。
背景技术
高超声速飞行器在高飞行马赫数下长时间飞行会大大增加机体前缘与燃烧室内热流密度,使得热防护问题成为高超声速飞行的关键技术之一。同时,对于长航时的高超声速飞行器,单一的电池已经无法满足供电需求,必须引入一种能够持续发电的供电系统。
极高的来流总温和可能的超声速燃烧导致高超声速飞行器前缘和发动机燃烧室承受非常高的热载荷。对于长航时所必需的主动冷却热防护方案,有限的金属壁面材料许用温度导致需要冷却剂带走的热流水平很高。研究表明,当前的碳氢燃料难以满足马赫数6以上的热沉需求,这就使得高超声速飞行器需要携带额外的燃料用于冷却,产生严重的质量惩罚。同时,以碳氢燃料作为冷却剂的再生冷却方案受到热流分布不均匀影响,高温下易发生结焦积碳导致冷却系统失效,还会造成燃料部分热沉的浪费。因此,燃料的热沉不足和结焦积碳限制了再生冷却在高超声速飞行器上的应用。
对于长航时的高超声速飞行器,功率密度较低的化学电池难以满足供电需求,而采用常规的利用热机带动发电机的供电方式同样存在较多的问题。一方面,对于吸气式高超声速飞行不可或缺的超燃冲压发动机不具备轴功的输出条件,需要额外的旋转式热机,这必然导致较大的质量惩罚;另一方面,包括发电机在内的高速旋转部件需要独立的支撑结构和滑油系统,进而造成系统复杂性的提高和可靠性的下降。
因此,为了解决长航时高超声速飞行的热防护与供电问题,研制一种能够以较小的质量惩罚实现发电功能,同时有效降低燃料的热沉需求的供电系统具有很高的研究价值与广阔的应用前景。
发明内容
本发明的目的是为了满足长航时高超声速飞行的热防护与供电的需求,提供一种高超声速飞行器冷却与半导体温差发电一体化系统,利用半导体温差热电直接转换技术的优点,解决当前高超声速飞行燃料热沉不足的问题,同时满足飞行器的供电需求。
本发明所述的高超声速飞行器冷却与半导体温差发电一体化系统包括低温通道1、半导体温差发电装置、多个导热绝缘层4、和高温通道6;
所述半导体温差发电装置块包括多个N型半导体热电材料2、多个P型半导体热电材料3和多个导流片5,N型半导体热电材料2和P型半导体热电材料3间隔排布,并且通过导流片5依次串联;
半导体温差发电装置两侧均设置有与导流片5紧密贴合的导热绝缘层4;
两个导热绝缘层4的外侧分别为低温通道1和高温通道6,且低温通道1和高温通道6相连通。
本发明中,再生冷却系统的冷却通道被半导体温差发电装置间隔为高温通道和低温通道两部分。N型半导体热电材料2与所述P型半导体热电材料由导流片5依次串联构成半导体温差发电装置。所述导热绝缘层4用于绝缘,同时允许尽可能多的热量导入温差发电装置。发动机的冷却通道(即高温通道6)的外壁面用于加热作为半导体温差发电装置中间热源的燃料,进而产生温度差。
工作原理:
燃料(冷源,飞行器所携带的燃料)由燃料箱经油泵增压后通过低温通道1流入高温通道6,在高温通道6中吸收因气动加热或燃烧散热而导入飞行器机体或发动机壁面的热量后温度提高成为高温燃料,防止壁面材料发生高温烧蚀,并且与低温通道中的燃料形成温度差。利用温度差,由N型半导体热电材料2、P型半导体热电材料3和导流片5组成的半导体温差发电装置将一部分由高温燃料导入的热能转换为电能经由导线7供给负载使用。导热绝缘层4布置于燃料通道与导流片5之间,防止漏电的同时允许尽可能多的热量流入温差发电装置。
本发明的优点包括:
1.将冷却系统和发电系统合二为一,降低了结构质量,减小了质量惩罚;
2.系统结构简单,无旋转部件,振动小、可靠性高;
3.高温燃料充当半导体温差发电装置与热源的中间介质,降低了半导体材料热端温度;
4.燃料吸收的热量中的一部分以电能的形式导出,减少了对燃料热沉的需求,降低了燃料需用量和最高温度,从而减轻燃料重量并降低碳氢燃料发生结焦积碳的可能性;
5.获得的电能为直流电,便于雷达、导航等电子设备的利用。
本发明主要用于满足高超声速飞行器高电能需求,同时解决当前冷源不足的问题。
附图说明
图1为实施方式一所述系统的结构示意图;
图2为实施方式二所述系统的结构示意图。
具体实施方式
实施方式一:下面结合图1对本实施方式进行详细的描述。本实施方式所述的高超声速飞行器冷却与半导体温差发电一体化系统包括低温通道1、半导体温差发电装置、多个导热绝缘层4和高温通道6;
所述半导体温差发电装置块包括多个N型半导体热电材料2、多个P型半导体热电材料3和多个导流片5,N型半导体热电材料2和P型半导体热电材料3间隔排布,并且通过导流片5依次串联;
半导体温差发电装置两侧均设置有与导流片5紧密贴合的导热绝缘层4;
两个导热绝缘层4的外侧分别为低温通道1和高温通道6,且低温通道1和高温通道6相连通。
所述N型半导体热电材料2和P型半导体热电材料3均采用硅锗合金。高温通道6外壁面的材料为高温合金。
实施方式二:下面结合图2对本实施方式进行详细的描述。本实施方式是对实施方式一所述的高超声速飞行器冷却与半导体温差发电一体化系统的进一步限定,本实施方式中,所述低温通道1的入口与高温通道6的入口位于半导体温差发电装置的同一侧。
燃料在低温通道1与高温通道6中相反的流向造成温差不均匀,不利于提高热电转换效率,因此进一步改进系统结构,如图2所示。所述低温通道1的入口与高温通道6的入口均位于半导体温差发电装置的左侧,
将燃料在低温通道1和高温通道6中的流动调整为相同方向,从而尽可能地降低温差的不均匀度,提高了热电转换效率。

Claims (4)

1.高超声速飞行器冷却与半导体温差发电一体化系统,其特征在于,包括低温通道(1)、半导体温差发电装置、多个导热绝缘层(4)和高温通道(6);
所述半导体温差发电装置包括多个N型半导体热电材料(2)、多个P型半导体热电材料(3)和多个导流片(5),N型半导体热电材料(2)和P型半导体热电材料(3)间隔排布,并且通过导流片(5)依次串联;
半导体温差发电装置两侧均设置有与导流片(5)紧密贴合的导热绝缘层(4);
两个导热绝缘层(4)的外侧分别为低温通道(1)和高温通道(6),且低温通道(1)和高温通道(6)相连通。
2.根据权利要求1所述的高超声速飞行器冷却与半导体温差发电一体化系统,其特征在于,所述的N型半导体热电材料(2)采用硅锗合金。
3.根据权利要求1或2所述的高超声速飞行器冷却与半导体温差发电一体化系统,其特征在于,所述的P型半导体热电材料(3)采用硅锗合金。
4.根据权利要求1所述的高超声速飞行器冷却与半导体温差发电一体化系统,其特征在于,所述低温通道(1)的入口与高温通道(6)的入口位于半导体温差发电装置的同一侧。
CN201611251566.7A 2016-12-29 2016-12-29 高超声速飞行器冷却与半导体温差发电一体化系统 Pending CN106533264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611251566.7A CN106533264A (zh) 2016-12-29 2016-12-29 高超声速飞行器冷却与半导体温差发电一体化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611251566.7A CN106533264A (zh) 2016-12-29 2016-12-29 高超声速飞行器冷却与半导体温差发电一体化系统

Publications (1)

Publication Number Publication Date
CN106533264A true CN106533264A (zh) 2017-03-22

Family

ID=58335709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611251566.7A Pending CN106533264A (zh) 2016-12-29 2016-12-29 高超声速飞行器冷却与半导体温差发电一体化系统

Country Status (1)

Country Link
CN (1) CN106533264A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800034A (zh) * 2020-06-30 2020-10-20 哈尔滨工业大学 一种应用于高速飞行器半导体热电转换装置的多功能防护结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414694A (zh) * 2002-12-20 2003-04-30 清华大学 基于燃料燃烧直接实现热电转换的装置
CN101873093A (zh) * 2010-07-01 2010-10-27 重庆大学 一种光热混合发电及热利用一体化的太阳能综合利用系统
JP2015008617A (ja) * 2013-06-26 2015-01-15 株式会社旭製作所 ガス器具
CN105515448A (zh) * 2016-01-19 2016-04-20 哈尔滨工业大学 高超声速飞行器蒙皮冷却与半导体温差发电一体化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414694A (zh) * 2002-12-20 2003-04-30 清华大学 基于燃料燃烧直接实现热电转换的装置
CN101873093A (zh) * 2010-07-01 2010-10-27 重庆大学 一种光热混合发电及热利用一体化的太阳能综合利用系统
JP2015008617A (ja) * 2013-06-26 2015-01-15 株式会社旭製作所 ガス器具
CN105515448A (zh) * 2016-01-19 2016-04-20 哈尔滨工业大学 高超声速飞行器蒙皮冷却与半导体温差发电一体化系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800034A (zh) * 2020-06-30 2020-10-20 哈尔滨工业大学 一种应用于高速飞行器半导体热电转换装置的多功能防护结构

Similar Documents

Publication Publication Date Title
CN106533263A (zh) 高超声速飞行器多级半导体温差发电与冷却一体化系统
US8552283B2 (en) Thermoelectric application for waste heat recovery from semiconductor devices in power electronics systems
CN104279678A (zh) 一种具有废热回收功能的空调器
CN109803891A (zh) 用于具有内燃机和燃料箱的交通工具的驱动系统
CN106089438A (zh) 一种微型温差发电装置及其在小型发动机能量回收上的应用方法
CN103061856A (zh) 用于飞行器的热电发电
CN105604661A (zh) 一种汽车排气管余热发电装置
WO2023115986A1 (zh) 一种燃料电池废热回收系统以及车辆
CN105515448A (zh) 高超声速飞行器蒙皮冷却与半导体温差发电一体化系统
CN107612426A (zh) 船舶余热回收两级温差发电装置及发电方法
CN101562415B (zh) 发电装置
CN112104264B (zh) 一种用于航空发动机上热电发电的装置
CN106533264A (zh) 高超声速飞行器冷却与半导体温差发电一体化系统
CN104158443B (zh) 基于高超声速流气动加热和热电转换的飞行器用电源装置
CN104202898B (zh) 基于高超声速流能量利用的零能耗零质量合成射流装置
JP2014529178A (ja) 特に自動車において電流を生成するための熱電装置の製造方法、およびこのような方法により得られる熱電装置
CN207530727U (zh) 一种多级尾气温差发电系统及机动车
CN102306701B (zh) 一种长程集中冷却动力热电偶转换元件
CN2899273Y (zh) 发动机余热温差发电装置
US9999164B2 (en) Cooling apparatus for cooling electronic device in aircraft
CN205908413U (zh) 一种新型风力发电机
CN202560356U (zh) 一种提高燃油利用率的汽车尾气废热发电系统
GB2450784A (en) Thermoelectric power generator
WO2017162196A1 (zh) 热电转换模块、新型内燃机、新型电机及发电方法
Pohekar et al. Automotive Waste Heat Harvesting for Electricity Generation using Thermoelectric Generator A Review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170322