CN106520830B - method for targeted editing of mitochondrial genome by using CRISPR/Cas9 - Google Patents
method for targeted editing of mitochondrial genome by using CRISPR/Cas9 Download PDFInfo
- Publication number
- CN106520830B CN106520830B CN201611005202.0A CN201611005202A CN106520830B CN 106520830 B CN106520830 B CN 106520830B CN 201611005202 A CN201611005202 A CN 201611005202A CN 106520830 B CN106520830 B CN 106520830B
- Authority
- CN
- China
- Prior art keywords
- mitochondrial
- sequence
- gene
- vector
- utr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002438 mitochondrial effect Effects 0.000 title claims abstract description 88
- 108091033409 CRISPR Proteins 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000010354 CRISPR gene editing Methods 0.000 title claims abstract description 19
- 239000013598 vector Substances 0.000 claims abstract description 74
- 108091027544 Subgenomic mRNA Proteins 0.000 claims abstract description 65
- 108020005196 Mitochondrial DNA Proteins 0.000 claims abstract description 60
- 210000003470 mitochondria Anatomy 0.000 claims abstract description 60
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 44
- 238000003209 gene knockout Methods 0.000 claims abstract description 37
- 238000005516 engineering process Methods 0.000 claims abstract description 15
- 238000012239 gene modification Methods 0.000 claims abstract description 9
- 210000004102 animal cell Anatomy 0.000 claims abstract description 7
- 210000005260 human cell Anatomy 0.000 claims abstract description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 76
- 210000004027 cell Anatomy 0.000 claims description 66
- 108020005345 3' Untranslated Regions Proteins 0.000 claims description 48
- 239000013600 plasmid vector Substances 0.000 claims description 35
- 108091008146 restriction endonucleases Proteins 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 15
- 238000010362 genome editing Methods 0.000 claims description 14
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 108010085238 Actins Proteins 0.000 claims description 8
- 102000007469 Actins Human genes 0.000 claims description 8
- 238000003753 real-time PCR Methods 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 4
- 238000001712 DNA sequencing Methods 0.000 claims description 2
- 238000000844 transformation Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 34
- 230000004048 modification Effects 0.000 abstract description 10
- 230000008685 targeting Effects 0.000 abstract description 9
- 208000012268 mitochondrial disease Diseases 0.000 abstract description 4
- 239000013612 plasmid Substances 0.000 description 59
- 230000014509 gene expression Effects 0.000 description 28
- 238000001890 transfection Methods 0.000 description 20
- 230000025608 mitochondrion localization Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000035772 mutation Effects 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 11
- 101150001086 COB gene Proteins 0.000 description 10
- 101150053771 MT-CYB gene Proteins 0.000 description 10
- 101150006264 ctb-1 gene Proteins 0.000 description 10
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 10
- 101150088166 mt:Cyt-b gene Proteins 0.000 description 10
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 9
- 102100035009 Holocytochrome c-type synthase Human genes 0.000 description 9
- 108091027963 non-coding RNA Proteins 0.000 description 9
- 102000042567 non-coding RNA Human genes 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000011529 RT qPCR Methods 0.000 description 7
- 102100034538 28S ribosomal protein S12, mitochondrial Human genes 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 101000639726 Homo sapiens 28S ribosomal protein S12, mitochondrial Proteins 0.000 description 6
- 238000010459 TALEN Methods 0.000 description 5
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 101150087530 mt:ATPase6 gene Proteins 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 108020005004 Guide RNA Proteins 0.000 description 4
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000012154 double-distilled water Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 101001066878 Homo sapiens Polyribonucleotide nucleotidyltransferase 1, mitochondrial Proteins 0.000 description 3
- 101150054907 Mrps12 gene Proteins 0.000 description 3
- 102000002681 Polyribonucleotide nucleotidyltransferase Human genes 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 210000001700 mitochondrial membrane Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 208000032087 Hereditary Leber Optic Atrophy Diseases 0.000 description 2
- 201000000639 Leber hereditary optic neuropathy Diseases 0.000 description 2
- 108700036248 MT-RNR1 Proteins 0.000 description 2
- 206010058799 Mitochondrial encephalomyopathy Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005782 double-strand break Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000003197 gene knockdown Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 108091064355 mitochondrial RNA Proteins 0.000 description 2
- 230000006780 non-homologous end joining Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000026447 protein localization Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101150028074 2 gene Proteins 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 101000834253 Gallus gallus Actin, cytoplasmic 1 Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 201000002169 Mitochondrial myopathy Diseases 0.000 description 1
- 101100441075 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) crf2 gene Proteins 0.000 description 1
- 206010056677 Nerve degeneration Diseases 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000012124 Opti-MEM Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 101000626626 Serratia marcescens Type II restriction enzyme SmaI Proteins 0.000 description 1
- 101150058257 UTR2 gene Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001085 differential centrifugation Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000027721 electron transport chain Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000000815 hypotonic solution Substances 0.000 description 1
- 208000023692 inborn mitochondrial myopathy Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000021601 lentivirus infection Diseases 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000020129 regulation of cell death Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种利用CRISPR/Cas9技术对线粒体基因组进行靶向编辑的方法。The invention belongs to the field of biotechnology, and in particular relates to a method for targeted editing of mitochondrial genome by using CRISPR/Cas9 technology.
背景技术Background technique
线粒体是真核细胞的重要细胞器,能产生绝大多数细胞所需的能量。除了提供能量,线粒体也参与了多种细胞功能作用,包括细胞周期和生长的控制、信号传递、细胞分化、细胞死亡等的调控作用。线粒体基因组为双链环状基因组,即mtDNA,其突变会累及多种组织和器官,最终导致各种疾病。在大部分情况下,突变型mtDNA与野生型mtDNA共同存在,称为mtDNA异质性。当突变型的基因组比例超过80%即可表现出某些线粒体疾病的临床症状。常见的线粒体病包括线粒体肌病、线粒体脑病和线粒体脑肌病等。比较典型的疾病如Leber遗传性视神经病(LHON),这种疾病的主要症状为视神经退行性病变,是一种急性或者亚急性发作的母系遗传病,在男性中较多见。目前在线粒体中发现大约有700多种突变,已知有200多种疾病由线粒体DNA突变引起,受这些突变影响的主要是需要大量能量的器官,包括心脏、骨骼肌和大脑,综合征通常也首先表现在这些部位上。调查数据显示,全球每200名婴儿中,就有一人会受到母亲线粒体基因影响,每6500名婴儿中便有一名会因线粒体基因缺陷患上严重疾病。线粒体功能受到核基因组和线粒体基因组共同作用,因此,mtDNA异质性的形成到引起相应的表型是一个复杂的过程。这使得线粒体遗传疾病的治疗变得异常困难。Mitochondria are important organelles of eukaryotic cells that generate most of the energy required by cells. In addition to providing energy, mitochondria are also involved in a variety of cellular functions, including cell cycle and growth control, signal transmission, cell differentiation, regulation of cell death, etc. Mitochondrial genome is a double-stranded circular genome, ie mtDNA, its mutation will affect various tissues and organs, and eventually lead to various diseases. In most cases, mutant mtDNA coexists with wild-type mtDNA, which is called mtDNA heteroplasmy. When the proportion of the mutant genome exceeds 80%, the clinical symptoms of some mitochondrial diseases can be shown. Common mitochondrial diseases include mitochondrial myopathy, mitochondrial encephalopathy, and mitochondrial encephalomyopathy. Typical diseases such as Leber hereditary optic neuropathy (LHON), the main symptom of this disease is optic nerve degeneration, is an acute or subacute onset maternally inherited disease, more common in men. At present, there are about 700 kinds of mutations found in mitochondria, and more than 200 diseases are known to be caused by mutations in mitochondrial DNA. These mutations mainly affect organs that require a lot of energy, including the heart, skeletal muscle and brain. Syndromes are usually also It is first manifested in these parts. According to survey data, one out of every 200 babies in the world will be affected by the mother's mitochondrial gene, and one out of every 6,500 babies will suffer from serious diseases due to mitochondrial gene defects. Mitochondrial function is affected by nuclear genome and mitochondrial genome, therefore, the formation of mtDNA heterogeneity to cause the corresponding phenotype is a complex process. This makes the treatment of mitochondrial genetic diseases extremely difficult.
目前在分子水平上已经发展出两种消除线粒体位点突变的方法,即:限制性内切酶选择性靶向突变的线粒体DNA和利用ZFN /TALEN技术编辑线粒体基因组。At present, two methods to eliminate mitochondrial site mutations have been developed at the molecular level, namely: restriction endonuclease selective targeting of mutant mitochondrial DNA and the use of ZFN/TALEN technology to edit the mitochondrial genome.
如果某些mtDNA部位突变成限制性内切酶位点,则可以运用限制性内切酶选择性靶向突变的线粒体DNA的方法,选择性地降解突变mtDNA。例如人源线粒体ATPase6基因T8993G位点突变会产生新的唯一的SmaI位点。2002年,TANAKA M等在限制性内切酶SmaI基因中添加线粒体定位信号,在细胞的核基因表达体系中表达后可被转运入线粒体,导入内切酶SmaI使突变的线粒体DNA显著减少。因此,在特定的突变位点将特定的内切酶基因输送给相应患者有望降低突变mtDNA的比例。使用该基因编辑方法的前提是线粒体基因突变后必需产生新的特定的内切酶位点。然而在线粒体基因组约16.5kb的序列中很难找出单一的突变酶切位点,这也使实际可操作的mtDNA突变很有限。If some mtDNA sites are mutated into restriction endonuclease sites, the method of restriction endonuclease selectively targeting the mutated mitochondrial DNA can be used to selectively degrade the mutated mtDNA. For example, the T8993G site mutation of the human mitochondrial ATPase6 gene will generate a new unique SmaI site. In 2002, TANAKA M et al. added a mitochondrial localization signal to the restriction endonuclease SmaI gene, which can be transported into the mitochondria after being expressed in the nuclear gene expression system of the cell, and the introduction of the endonuclease SmaI significantly reduced the mutated mitochondrial DNA. Therefore, delivering specific endonuclease genes to corresponding patients at specific mutation sites is expected to reduce the proportion of mutated mtDNA. The premise of using this gene editing method is that a new specific endonuclease site must be generated after mitochondrial gene mutation. However, it is difficult to find a single mutation restriction site in the about 16.5kb sequence of the mitochondrial genome, which also makes the practical mtDNA mutation very limited.
2006年Aaron Klug研究组首次利用ZFN(Zinc-Finger Nuclease)技术对线粒体基因组进行敲除。研究组针对线粒体ATPase6基因T8993G位点进行敲除,成功拯救ATPase6基因的部分活性。2008年Aaron Klug研究组利用这一技术对ATPase6基因T8993G位点进行敲除,进一步直接观测到ATPase6基因T8993G突变位点的线粒体拷贝数显著降低。In 2006, Aaron Klug's research group first used ZFN (Zinc-Finger Nuclease) technology to knock out the mitochondrial genome. The research team knocked out the T8993G site of the mitochondrial ATPase6 gene and successfully rescued part of the activity of the ATPase6 gene. In 2008, Aaron Klug's research group used this technology to knock out the T8993G site of the ATPase6 gene, and further directly observed a significant decrease in the mitochondrial copy number of the T8993G mutation site of the ATPase6 gene.
2013年,迈阿密大学米勒医学院的Carlos T. Moraes博士首次将TALENs技术用于线粒体基因编辑。他们的研究表明:一旦mitoTALENs与特定靶点的DNA结合并切割,突变的mtDNA就被降解。总mtDNA的下降会刺激细胞通过复制未受影响的线粒体基因组来增加其mtDNA。两周之后,mtDNA水平恢复正常。由于突变的mtDNA被剔除,正常的mtDNA得以保留并扩增,因此,细胞中线粒体大部分带有正常的mtDNA。In 2013, Dr. Carlos T. Moraes of the University of Miami Miller School of Medicine used TALENs technology for mitochondrial gene editing for the first time. Their study showed that once the mitoTALENs bind to and cut the target-specific DNA, the mutated mtDNA is degraded. A drop in total mtDNA stimulates cells to increase their mtDNA by duplicating the unaffected mitochondrial genome. After two weeks, mtDNA levels returned to normal. Because the mutated mtDNA is deleted, the normal mtDNA is retained and amplified, so most of the mitochondria in the cell contain normal mtDNA.
CRISPR/Cas9技术是近年来发展起来的一种新的基因编辑技术。在打靶过程中,CRISPR/Cas9系统通过sgRNA-Cas9体系使间区序列邻近基序(Protospacer AdjacentMotif,PAM)3′端前与sgRNA互补的目标DNA产生双链断裂(Double-Strand Breaks,DSB),之后细胞通过非同源末端连接(Non- Homologous End Joining,NHEJ) 或者同源介导的双链DNA修复(Homology-Directed Repair,HDR)对DNA进行修复,以实现对基因组的改造。相较于ZFN /TALEN技术, CRISPR/Cas9技术具有更大的优势,它更易于操作,也具有更强的扩展性,被广泛应用于各种研究对象。对于转染效率较低的细胞,CRISPR/Cas9系统也能够通过慢病毒侵染的方式将相应的载体导入细胞。而TALENs技术出于可能发生重组突变的顾虑,而不适用于通过慢病毒载体侵染进行细胞感染。CRISPR/Cas9系统也很好地解决了TALENs系统载体过大的问题。CRISPR/Cas9 technology is a new gene editing technology developed in recent years. During the targeting process, the CRISPR/Cas9 system uses the sgRNA-Cas9 system to generate double-strand breaks (Double-Strand Breaks, DSB) in the target DNA complementary to the sgRNA before the 3′ end of the Protospacer Adjacent Motif (PAM), Cells then repair DNA through Non-Homologous End Joining (NHEJ) or homology-mediated double-strand DNA repair (Homology-Directed Repair, HDR) to achieve genome modification. Compared with ZFN/TALEN technology, CRISPR/Cas9 technology has greater advantages. It is easier to operate and has stronger scalability, and is widely used in various research objects. For cells with low transfection efficiency, the CRISPR/Cas9 system can also introduce the corresponding vector into cells through lentivirus infection. The TALENs technology is not suitable for cell infection through lentiviral vector infection due to concerns about possible recombination mutations. The CRISPR/Cas9 system also solves the problem of too large TALENs system vectors.
2010年,Michael A. Teitell教授发现一种称为多核苷酸磷酸化酶(PNPASE)的蛋白在调节RNA进入线粒体时发挥重要作用。降低PNPASE的表达会影响RNA进入线粒体的水平,从而影响维持电子传递连所需蛋白的合成。同时,未经加工的线粒体RNA会积聚起来,蛋白翻译会受抑制,能量的产生受到阻碍,这将导致细胞生长的停滞。在此基础上,2012年,Michael A. Teitell等首次通过靶向定位RNA纠正了人类线粒体突变缺陷,这将有助于线粒体相关疾病的治疗。研究人员首先选择稳定的修复RNA,使之从细胞核中出来,定位在线粒体外膜上,然后设计一段输出序列,帮助RNA进入线粒体。一旦RNAs出现在线粒体表面的运送器附近,那么就用第二段输送序列(RP序列)引导RNA进入线粒体。有了这两段序列,就能靶向广谱RNAs,引导其进入线粒体。研究证明这种方法能高效的引导外源RNA进入线粒体。In 2010, Professor Michael A. Teitell discovered that a protein called polynucleotide phosphorylase (PNPASE) plays an important role in regulating the entry of RNA into mitochondria. Reducing the expression of PNPASE affects the level of RNA entering the mitochondria, thereby affecting the synthesis of proteins required to maintain the electron transport chain. At the same time, unprocessed mitochondrial RNA builds up, protein translation is inhibited, energy production is hampered, and cell growth stalls. On this basis, in 2012, Michael A. Teitell et al. corrected the mutation defect of human mitochondria by targeting RNA for the first time, which will help the treatment of mitochondria-related diseases. The researchers first selected stable repair RNAs to exit the nucleus and localize on the outer mitochondrial membrane, and then designed an export sequence to help the RNA enter the mitochondria. Once the RNAs are present near the transporter on the mitochondrial surface, a second delivery sequence (RP sequence) is used to guide the RNA into the mitochondria. With these two sequences, a broad spectrum of RNAs can be targeted and directed into the mitochondria. Studies have shown that this method can efficiently guide foreign RNA into mitochondria.
本发明介绍了一种对线粒体基因进行敲除的全新方法。在以上工作基础上,我们对CRISPR/Cas9技术进行了改造,即改造Cas9和sgRNA,使改造后的CRISPR/Cas9系统具备进入线粒体的能力,从而对线粒体基因组上的特异基因或位点进行打靶,实现对线粒体特定基因、其突变基因或位点的敲除及修饰。因此,应用我们所开发的对线粒体基因进行编辑的CRISPR/Cas9技术,有可能更方便地清除线粒体内突变DNA,从而有望治疗多种线粒体病。The present invention introduces a brand-new method for knocking out mitochondrial genes. On the basis of the above work, we modified the CRISPR/Cas9 technology, that is, modified Cas9 and sgRNA, so that the modified CRISPR/Cas9 system has the ability to enter the mitochondria, so as to target specific genes or sites on the mitochondrial genome, Realize the knockout and modification of specific mitochondrial genes, their mutated genes or sites. Therefore, applying the CRISPR/Cas9 technology developed by us to edit mitochondrial genes, it is possible to more conveniently remove mutant DNA in mitochondria, which is expected to treat a variety of mitochondrial diseases.
发明内容Contents of the invention
本发明的目的在于提供一种简单方便的线粒体基因组上特异基因或位点进行靶向编辑的方法。该方法利用改造的CRISPR/Cas9系统精确打靶线粒体基因组上特异基因或位点,避免了其他方法中构建载体的繁琐流程,大大降低构建载体的时间,极大地提高了基因敲除或修饰改造的效率。The purpose of the present invention is to provide a simple and convenient method for targeted editing of specific genes or sites on the mitochondrial genome. This method uses the modified CRISPR/Cas9 system to precisely target specific genes or sites on the mitochondrial genome, avoiding the cumbersome process of constructing vectors in other methods, greatly reducing the time for constructing vectors, and greatly improving the efficiency of gene knockout or modification. .
本发明采用如下技术方案:The present invention adopts following technical scheme:
利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法,包括如下步骤:A method for targeted editing of the mitochondrial genome using CRISPR/Cas9, comprising the following steps:
(1)构建MitoCRISPR载体;(1) Construction of MitoCRISPR vector;
(2)将特异基因的sgRNA插入到MitoCRISPR载体上构建线粒体基因编辑载体;基因编辑包括了基因敲除和基因修饰改造;(2) Insert the sgRNA of the specific gene into the MitoCRISPR vector to construct the mitochondrial gene editing vector; gene editing includes gene knockout and gene modification;
(3)将上述线粒体基因编辑载体导入人或动物细胞如293T细胞,进行线粒体基因组敲除或修饰, 达到敲除或修饰目标基因的目的;(3) Introduce the above-mentioned mitochondrial gene editing vector into human or animal cells such as 293T cells, and knock out or modify the mitochondrial genome to achieve the purpose of knocking out or modifying the target gene;
所述构建MitoCRISPR载体的方法为,在骨架质粒载体PX459上做如下改造,骨架质粒载体包含CRISPR系统的基本元件,即Cas9蛋白基因和U6启动子;在U6启动子后添加促进外源RNA进入线粒体的信号序列,即3’UTR序列;3’UTR序列帮助稳定RNA,使之能从细胞核中出来,定位在线粒体外膜上;然后,加入RP序列,以帮助RNA进入线粒体;接着,去掉Cas9基因前的核定位信号,添加促进外源蛋白进入线粒体的信号序列,即MLS序列;最终得到了11个可用于进行线粒体基因组特异基因编辑的MitoCRISPR质粒载体。The method for constructing the MitoCRISPR vector is to make the following transformations on the backbone plasmid vector PX459. The backbone plasmid vector contains the basic elements of the CRISPR system, namely the Cas9 protein gene and the U6 promoter; after the U6 promoter, add to promote the entry of exogenous RNA into the mitochondria The signal sequence, that is, the 3'UTR sequence; the 3'UTR sequence helps stabilize the RNA so that it can come out of the nucleus and locate on the outer mitochondrial membrane; then, add the RP sequence to help the RNA enter the mitochondria; then, remove the Cas9 gene The previous nuclear localization signal was added, and the signal sequence that promotes the entry of foreign proteins into the mitochondria, that is, the MLS sequence, was added; finally, 11 MitoCRISPR plasmid vectors that can be used for specific gene editing of the mitochondrial genome were obtained.
步骤(2)具体方法为:选取步骤(1)其中一种MitoCRISPR质粒为骨架,在限制性内切酶BbsI位点上插入目标基因或位点的sgRNA序列,构建线粒体基因敲除或编辑载体。The specific method of step (2) is: select one of the MitoCRISPR plasmids in step (1) as the backbone, and insert the sgRNA sequence of the target gene or site into the restriction endonuclease BbsI site to construct a mitochondrial gene knockout or editing vector.
步骤(3)具体方法为:将步骤(2)获得的质粒敲除载体导入人或动物细胞,3天后提取细胞全基因组,利用实时荧光定量PCR检测线粒体基因组拷贝数变化,以评估MitoCRISPR系统针对线粒体基因组的敲除效率;或者经DNA测序确定基因编辑的效果。The specific method of step (3) is: introduce the plasmid knockout vector obtained in step (2) into human or animal cells, extract the whole genome of the cells after 3 days, and use real-time fluorescent quantitative PCR to detect changes in the copy number of the mitochondrial genome to evaluate the ability of the MitoCRISPR system to target mitochondria. Genome knockout efficiency; or DNA sequencing to determine the effect of gene editing.
其中,构建MitoCRISPR载体pMitoCRISPR-1载体方法为:在U6启动子后加上线粒体定位信号MRPS12基因的3’UTR序列,以增强转录出sgRNA的稳定性,构建了pMito-U6- BbsI-3’UTR的质粒;接着,去掉Cas9基因前的核定位信号,加上线粒体定位信号,Cox8A基因的线粒体定位信号,以帮助Cas9蛋白进入线粒体,构建出pMito-U6-RP-BbsI-3’UTR -CBh-MLS-Cas9质粒;然后在Cas9后加上EGFP,以便于观察转染效率。同时在Cas9表达框后加上线粒体定位信号MRPS12基因的3’UTR序列,以稳定整个结构。得到了从5’-3’端带有如下组件U6-RP-BbsI-3’UTR-CBh-MLS-Cas9 -2A-GFP-3’UTR的pMitoCRISPR1质粒载体。MitoCRISPR质粒上包含CRISPR系统的基本元件,即Cas9基因和U6启动子启动的引导RNA组件;载体上的3’UTR序列帮助稳定RNA,使之能从细胞核中出来,定位在线粒体外膜上,然后RNA5’端的输入序列-RP序列,帮助RNA进入线粒体;一旦3’UTR序列帮助RNAs出现在线粒体表面,那么就用RP序列引导RNA进入靶向线粒体。Among them, the method of constructing the MitoCRISPR vector pMitoCRISPR-1 vector is: add the 3'UTR sequence of the mitochondrial localization signal MRPS12 gene after the U6 promoter to enhance the stability of the transcribed sgRNA, and construct pMito-U6-BbsI-3'UTR The plasmid; then, remove the nuclear localization signal before the Cas9 gene, add the mitochondrial localization signal, the mitochondrial localization signal of the Cox8A gene, to help the Cas9 protein enter the mitochondria, and construct pMito-U6-RP-BbsI-3'UTR-CBh- MLS-Cas9 plasmid; then add EGFP after Cas9 to observe the transfection efficiency. At the same time, the 3'UTR sequence of the mitochondrial positioning signal MRPS12 gene was added after the Cas9 expression frame to stabilize the entire structure. The pMitoCRISPR1 plasmid vector with the following components U6-RP-BbsI-3'UTR-CBh-MLS-Cas9-2A-GFP-3'UTR from the 5'-3' end was obtained. The MitoCRISPR plasmid contains the basic elements of the CRISPR system, namely the Cas9 gene and the guide RNA component driven by the U6 promoter; the 3'UTR sequence on the vector helps stabilize the RNA so that it can come out of the nucleus and be located on the outer mitochondrial membrane, and then The input sequence at the 5' end of the RNA, the RP sequence, helps the RNA enter the mitochondria; once the 3'UTR sequence helps the RNAs appear on the surface of the mitochondria, the RP sequence is used to guide the RNA into the targeted mitochondria.
所获得的MitoCRISPR质粒载体按5’端→3’端顺序,包含如下基因表达及调控元件:U6启动子,用于控制sgRNA的表达;BbsI,限制性内切酶位点,可用于插入目标基因的sgRNA序列;3’UTR, 用于增强sgRNA在线粒体外膜上的稳定性; CBh,为鸡β-actin基因启动子元件,用于控制Cas9蛋白的表达; Cas9,为Cas9核酸酶,用于sgRNA引导的基因切割、修饰与整合;UTR2,用于稳定Cas9的mRNA; 2A,为自剪切肽;GFP,绿色荧光蛋白基因。 The obtained MitoCRISPR plasmid vector contains the following gene expression and regulatory elements in the order of 5' end → 3' end: U6 promoter, used to control the expression of sgRNA; BbsI, a restriction endonuclease site, which can be used to insert the target gene sgRNA sequence; 3'UTR, used to enhance the stability of sgRNA on the mitochondrial outer membrane; CBh, chicken β-actin gene promoter element, used to control the expression of Cas9 protein; Cas9, Cas9 nuclease, used for sgRNA-guided gene cleavage, modification and integration; UTR2, used to stabilize the mRNA of Cas9; 2A, self-cleaving peptide; GFP, green fluorescent protein gene.
所获得的MitoCRISPR质粒载体还包含RP序列,用于引导sgRNA进入线粒体,RP序列可以位于sgRNA前、sgRNA与3’UTR之间、或者3’UTR之后。The obtained MitoCRISPR plasmid vector also contains a RP sequence for guiding the sgRNA into the mitochondria, and the RP sequence can be located before the sgRNA, between the sgRNA and the 3'UTR, or after the 3'UTR.
在骨架质粒载体上添加的基因表达及调控元件包括: 3’UTR序列、RP序列、MLS线粒体定位信号和2A序列,如下所列。The gene expression and regulatory elements added to the backbone plasmid vector include: 3'UTR sequence, RP sequence, MLS mitochondrial localization signal and 2A sequence, as listed below.
Cox8A-3’UTR:AGGGGTCCGTTCTGTCCCTCACACTGTGACCTGACCAGCCCCACCGGCCCATCCTGGTCATGTTACTGCATTTGTGGCCGGCCTCCCCTGGATCATGTCATTCAATTCCAGTCACCTCTTCTGCAATCATGACCTCTTGATGTCTCCATGGTGACCTCCTTGGGGGTCACTGACCCTGCTTGGTGGGGTCCCCCTTGTAACAATAAAATCTATTTAAACTTT。Cox8A-3' UTR: AGGGGTCCGTTCTGTCCCTCACACTGTGACCTGACCAGCCCCCACCGGCCCATCCTGGTCATGTTACTGCATTTGTGGCCGCCTCCCCTGGATCATGTCATTCAATTCCAGTCACCTCTTCTGCAATCATGACCTCTTGATGTCCTCCATGGTGACCTCCCTTGGGGGTCACTGACCCTGCTTGGTGGGGTCCCCCTTGTAACAATAAACT
SOD2-3’UTR:SOD2-3'UTR:
ACCACGATCGTTATGCTGATCATACCCTAATGATCCCAGCAAGATAATGTCCTGTCTTCTAAGATGTGCATCAAGCCTGGTACATACTGAAAACCCTATAAGGTCCTGGATAATTTTTGTTTGATTATTCATTGAAGAAACATTTATTTTCCAATTGTGTGAAGTTTTTGACTGTTAATAAAAGAATCTGTCAACCATCAA。ACCACGATCGTTATGCTGATCATACCCCTAATGATCCCAGCAAGATAATGTCCTGTCTTCTAAGATGTGCATCAAGCCTGGTACATACTGAAAACCCTATAAGGTCCTGGATAATTTTTGTTTGATTATTCATTGAAGAAACATTTATTTTCCAATTGTGTGAAGTTTTTGACTGTTAATAAAGAATCTGTCAACCATCAA.
MRPS12-3’UTR:MRPS12-3'UTR:
CAGAAGAAGTGACGGCTGGGGGCACAGTGGGCTGGGCGCCCCTGCAGAACATGAACCTTCCGCTCCTGGCTGCCACAGGGTCCTCCGATGCTGGCCTTTGCGCCTCTAGAGGCAGCCACTCATGGATTCAAGTCCTGGCTCCGCCTCTTCCATCAGGACCAC。CAGAAGAAGTGACGGCTGGGGGCACAGTGGGCTGGGCGCCCCTGCAGAACATGAACCTTCCGCTCCTGGCTGCCACAGGGTCCTCCGATGCTGGCCTTTGCGCCTCTAGAGGCAGCCACTCATGGATTCAAGTCCTGGCTCCGCCTCTTCCATCAGGACCAC.
ATP5B-3’UTR:ATP5B-3'UTR:
GGGGTCTTTGTCCTCTGTACTGTCTCTCTCCTTGCCCCTAACCCAAAAAGCTTCATTTTTCTGTGTAGGCTGCACAAGAGCCTTGATTGAAGATATATTCTTTCTGAACAGTATTTAAGGTTTCCAATAAAATGTACACCCCTCAG。GGGGTCTTTGTCCTCTGTACTGTCTCTCCTCCTTGCCCCTAACCCAAAAAGCTTCATTTTTCTGTGTAGGCTGCACAAGAGCCTTGATTGAAGATATATTCTTTCTGAACAGTATTTAAGGTTTCCAATAAAATGTACACCCCTCAG.
ATP5B-MLS:ATGTTGGGGTTTGTGGGTCGGGTGGCCGCTGCTCCGGCCTCCGGGGCCTTGCGGAGACTCACCCCTTCAGCGTCGCTGCCCCCAGCTCAGCTCTTACTGCGGGCCGCTCCGACGGCGGTCCATCCTGTCAGGGACTATGCG。ATP5B-MLS: ATGTTGGGGTTTGTGGGTCGGGTGGCCGCTGCTCCGGCCTCCGGGGCCTTGCGGAGACTCACCCCTTCAGCGTCGCTGCCCCCAGCTCAGCTCTTACTGCGGGCCGCTCCGACGGCGGTCCATCCTGTCAGGGACTATGCG.
Cox8A-MLS:ATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGCTTGACAGGCTCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATTCGTTG。Cox8A-MLS: ATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGCTTGACAGGCTCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATTCGTTG.
RP:TCTCCCTGAGCTTCAGGGAG。RP: TCTCCCTGAGCTTCAGGGAG.
2A:GGCAGTGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCA。2A: GGCAGTGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCA.
以上不同组合与所列元件将构建得11个MitoCRISPR质粒载体,即pMitoCRISPR1到pMitoCRISPR11(图1)。sgRNA,即单链引导RNA,单链引导RNA序列为用于线粒体基因敲除及修饰的目标序列。The above different combinations and the listed elements will construct 11 MitoCRISPR plasmid vectors, namely pMitoCRISPR1 to pMitoCRISPR11 (Figure 1). sgRNA is a single-stranded guide RNA, and the single-stranded guide RNA sequence is a target sequence for mitochondrial gene knockout and modification.
所述的构建MitoCRISPR载体pMitoCRISPR1-pMitoCRISPR11方法为:在Cas9基因N端引入了两个AgeI的限制性酶切位点,接着,我们在AgeI酶切位点上置换两种不同的MLS:Cox8A-MLS和ATP5B-MLS;在MitoCRISPR质粒载体的SpeI限制性内切酶位点上可以置换四种不同的3’UTR:MRPS12-3’UTR, Cox8A-3’UTR, SOD2-3’UTR和ATP5B-3’UTR。在U6启动子后面的不同位置添加RP序列: RP -sgRNA, RP -3’UTR, 3’UTR-RP(+)和3’UTR-RP(-)。共获得11种不同的MitoCRISPR载体,其中pMitoCRISPR1-pMitoCRISPR4带有Cox8A-MLS序列;pMitoCRISPR5-pMitoCRISPR8带有ATP5B-MLS-MLS序列;pMitoCRISPR1和pMitoCRISPR5带有MRPS12-3’UTR序列;pMitoCRISPR2和pMitoCRISPR6带有Cox8A-3’UTR序列;pMitoCRISPR3和pMitoCRISPR7带有SOD2-3-3’UTR序列;pMitoCRISPR4和pMitoCRISPR8带有ATP5B-3’UTR序列;pMitoCRISPR9的RP序列在sgRNA和3’UTR中间;pMitoCRISPR10的RP序列为正向在3’UTR后面;pMitoCRISPR11的RP序列为反向在3’UTR后面。所构建的pMitoCRISPR1到pMitoCRISPR11质粒部分结构简示在图1中。pMitoCRISPR1载体全序列如SEQ ID No.1所示。The method for constructing the MitoCRISPR vector pMitoCRISPR1-pMitoCRISPR11 is as follows: two AgeI restriction enzyme sites are introduced at the N-terminus of the Cas9 gene, and then we replace two different MLSs on the AgeI enzyme site: Cox8A-MLS and ATP5B-MLS; four different 3'UTRs can be substituted on the SpeI restriction endonuclease site of the MitoCRISPR plasmid vector: MRPS12-3'UTR, Cox8A-3'UTR, SOD2-3'UTR and ATP5B-3 'UTR. RP sequences were added at different positions behind the U6 promoter: RP -sgRNA, RP -3'UTR, 3'UTR-RP(+) and 3'UTR-RP(-). A total of 11 different MitoCRISPR vectors were obtained, including pMitoCRISPR1-pMitoCRISPR4 with Cox8A-MLS sequence; pMitoCRISPR5-pMitoCRISPR8 with ATP5B-MLS-MLS sequence; pMitoCRISPR1 and pMitoCRISPR5 with MRPS12-3'UTR sequence; pMitoCRISPR2 and pMitoCRISPR6 with Cox8A -3'UTR sequence; pMitoCRISPR3 and pMitoCRISPR7 have SOD2-3-3'UTR sequence; pMitoCRISPR4 and pMitoCRISPR8 have ATP5B-3'UTR sequence; pMitoCRISPR9's RP sequence is between sgRNA and 3'UTR; pMitoCRISPR10's RP sequence is positive The RP sequence of pMitoCRISPR11 is reversed behind the 3'UTR. The partial structure of the constructed plasmids pMitoCRISPR1 to pMitoCRISPR11 is shown in Figure 1. The full sequence of the pMitoCRISPR1 vector is shown in SEQ ID No.1.
构建线粒体基因组目的基因敲除载体方法为:选取上述其中一种MitoCRISPR质粒为骨架,在限制性内切酶BbsI位点上插入目标基因或位点的sgRNA序列,构建线粒体基因敲除重组载体。以pMitoCRISPR1质粒载体为例,具体为pMitoCRISPR1质粒载体经BbsI限制性内切酶酶切,然后用乙醇沉淀纯化出酶切载体;接着将含有RP序列的sgRNA目标基因序列经退火后与酶切的pMitoCRISPR1质粒载体进行连接。连接后的载体经转化,挑菌,鉴定得到重组载体。如本发明针对人线粒体基因组的12sr RNA和Cytb基因各设计一个sgRNA,构建了pMitoCRISPR1-KO-12sr RNA和pMitoCRISPR1-KO-Cytb的质粒。 The method of constructing the target gene knockout vector of mitochondrial genome is as follows: select one of the above-mentioned MitoCRISPR plasmids as the backbone, insert the sgRNA sequence of the target gene or site into the restriction endonuclease BbsI site, and construct the mitochondrial gene knockout recombinant vector. Take the pMitoCRISPR1 plasmid vector as an example, specifically, the pMitoCRISPR1 plasmid vector is digested with BbsI restriction endonuclease, and then the digested vector is purified by ethanol precipitation; then the sgRNA target gene sequence containing the RP sequence is annealed and combined with the digested pMitoCRISPR1 Plasmid vectors were ligated. After the ligated vector was transformed, the bacteria were picked, and the recombinant vector was identified. For example, the present invention designs one sgRNA for the 12sr RNA and Cytb genes of the human mitochondrial genome, and constructs the plasmids of pMitoCRISPR1-KO-12sr RNA and pMitoCRISPR1-KO-Cytb.
在人或动物细胞如293T细胞中编辑线粒体基因组具体方法为:利用脂质体转染技术将上述pMitoCRISPR1-KO-12sr RNA和pMitoCRISPR1-KO-Cytb质粒分别转染293T细胞,3天后提取细胞全基因组,利用实时荧光定量PCR检测线粒体基因组拷贝数变化,以评估MitoCRISPR系统针对线粒体基因组的敲除效率。上述实时荧光定量PCR检测所用的引物如下:H-12sr RNA-qpcr-F: 5’-CTCACCACCTCTTGCTCAG-3’,H-12sr RNA-qpcr-R: 5’-GGCTACACCTTGACCTAACG-3’;β-actin用作内参对照。The specific method of editing the mitochondrial genome in human or animal cells such as 293T cells is as follows: use liposome transfection technology to transfect the above pMitoCRISPR1-KO-12sr RNA and pMitoCRISPR1-KO-Cytb plasmids into 293T cells respectively, and extract the whole genome of the cells after 3 days , using real-time fluorescent quantitative PCR to detect the copy number changes of the mitochondrial genome to evaluate the knockout efficiency of the MitoCRISPR system against the mitochondrial genome. The primers used for the above real-time fluorescent quantitative PCR detection are as follows: H-12sr RNA-qpcr-F: 5'-CTCACCACCTCTTGCTCAG-3', H-12sr RNA-qpcr-R: 5'-GGCTACACCTTGACCTAACG-3'; β-actin was used as Internal reference control.
本发明的优点在于:The advantages of the present invention are:
1、所建立的MitoCRISPR质粒载体系统具有各种调控组件,包括U6- RP-BbsI-3’UTR-CBh- MLS -Cas9-2A-GFP- 3’UTR,可以满足需要插入的目标sgRNA序列及用于基因切割的Cas9在线粒体内的稳定表达及作用;在MitoCRISPR质粒载体所建立的含目标sgRNA序列的线粒体基因敲除载体,同时拥有sgRNA表达元件和Cas9基因表达元件,比二者分离的双质粒转染系统转染效率高。1. The established MitoCRISPR plasmid vector system has various regulatory components, including U6-RP-BbsI-3'UTR-CBh-MLS-Cas9-2A-GFP-3'UTR, which can meet the needs of the inserted target sgRNA sequence and use The stable expression and function of Cas9 for gene cutting in mitochondria; the mitochondrial gene knockout vector containing the target sgRNA sequence established in the MitoCRISPR plasmid vector has both sgRNA expression elements and Cas9 gene expression elements, compared with the double plasmid separated from the two The transfection system has high transfection efficiency.
2、MitoCRISPR质粒载体上拥有多个限制性内切酶切割位点,各个调控元件可以轻松替换。3、MitoCRISPR质粒载体选取了一个特殊的限制性内切酶位点即Bbs I酶切位点,可以插入目标sgRNA序列,以防止载体自连。合成的寡核苷酸退火后直接与酶切载体连接。采用此方法做克隆,sgRNA的连接效率高达90%以上。4、载体上带有用于筛选的EGFP基因,可以对转染的细胞进行筛选或者观察转染效率。且GFP和Cas9蛋白之间靠自剪切多肽T2A连接,可以使GFP蛋白与Cas9蛋白表达分离;一方面能控制载体大小,另一方面不影响Cas9蛋白的活性。5、该载体上拥有MLS序列,即Mitochondrial Localization Sequence,以引导Cas9蛋白进入线粒体。6、该载体系统上拥有有两个特殊的元件:RP序列和3’UTR序列。首先载体上的3’UTR序列帮助稳定的RNA,使之能从细胞核中出来,定位在线粒体外膜上,然后RNA5’端的一段输入序列-RP序列,帮助RNA进入线粒体。一旦3’UTR序列帮助RNAs出现在线粒体表面,那么就用RP序列,即运输序列就可以引导RNA进入靶向线粒体。有了这两段序列,就能靶向sgRNA,引导其进入线粒体,编辑线粒体基因组。7、该系统优化了不同的MLS序列以及3’UTR序列。我们在该系统中使用了Cox8A-MLS和ATP5B-MLS;使用了MRPS12-3’UTR,ATP5B-3’UTR,Cox8A-3’UTR,以及SOD2-3’UTR 。构建了整套的MitoCRISPR质粒载体系列,用于插入整合不同的sgRNA,可以测试不同MitoCRISPR质粒载体所构建的含目标sgRNA序列的线粒体基因敲除或基因修饰载体的基因敲除或修饰效率,从而选定较优的载体用于进一步的研究或实际应用。8、该系统优化了RP序列在MitoCRISPR系统中的位置,以排除其对系统中蛋白功能表达的影响。我们测试了RP序列分别放在了sgRNA序列前、3’UTR序列前以及3’UTR后面,观察了RP序列所在位置对MitoCRISPR功能的影响,确定了RP序列在3’UTR序列后面,其基因敲除或修饰的效果最好。2. The MitoCRISPR plasmid vector has multiple restriction endonuclease cutting sites, and each regulatory element can be easily replaced. 3. The MitoCRISPR plasmid vector has selected a special restriction endonuclease site, namely the Bbs I restriction site, which can be inserted into the target sgRNA sequence to prevent the vector from self-ligating. The synthesized oligonucleotides are annealed and ligated directly to the enzyme-cut vector. Using this method for cloning, the connection efficiency of sgRNA is as high as 90%. 4. The vector carries the EGFP gene for screening, which can screen the transfected cells or observe the transfection efficiency. Moreover, GFP and Cas9 protein are connected by self-cleaving polypeptide T2A, which can separate the expression of GFP protein and Cas9 protein; on the one hand, it can control the size of the carrier, and on the other hand, it does not affect the activity of Cas9 protein. 5. The vector has the MLS sequence, namely Mitochondrial Localization Sequence, to guide the Cas9 protein into the mitochondria. 6. The carrier system has two special elements: RP sequence and 3'UTR sequence. First, the 3'UTR sequence on the carrier helps stabilize the RNA so that it can come out of the nucleus and locate on the mitochondrial outer membrane, and then an input sequence at the 5' end of the RNA-RP sequence helps the RNA enter the mitochondria. Once the 3'UTR sequence helps the RNAs to appear on the mitochondrial surface, the RP sequence, the trafficking sequence, can guide the RNA into the targeted mitochondria. With these two sequences, the sgRNA can be targeted, guided into the mitochondria, and edited the mitochondrial genome. 7. The system optimizes different MLS sequences and 3'UTR sequences. We used Cox8A-MLS and ATP5B-MLS in this system; used MRPS12-3'UTR, ATP5B-3'UTR, Cox8A-3'UTR, and SOD2-3'UTR. Constructed a complete set of MitoCRISPR plasmid vector series for inserting and integrating different sgRNAs, and can test the gene knockout or modification efficiency of mitochondrial gene knockout or gene modification vectors constructed by different MitoCRISPR plasmid vectors containing target sgRNA sequences, so as to select The better carrier is used for further research or practical application. 8. The system optimizes the position of the RP sequence in the MitoCRISPR system to exclude its influence on the functional expression of the protein in the system. We tested that the RP sequence was placed before the sgRNA sequence, before the 3'UTR sequence and behind the 3'UTR sequence, and observed the effect of the position of the RP sequence on the function of MitoCRISPR, and determined that the RP sequence was behind the 3'UTR sequence, and its gene knockout It works best when removing or retouching.
附图说明Description of drawings
图1 pMitoCRISP1载体质粒图谱。图a为pMitoCRISPR1载体,包含Cas9和sgRNA表达元件,Amp抗性基因以及pBR322和F1复制起点;图b为不同MLS以及3’UTR元件组合所获得的11个pMitoCRISPR载体,即pMitoCRISPR1到pMitoCRISPR11图,其中A:MRPS12-3’UTR,B:ATP5B-3’UTR,C:COX8A-3’UTR,D:SOD2-3’UTR,E:COX8A-MLS,F:ATP5B-MLS,U6:U6启动子,RP:RP序列,Bbsl:限制性内切酶酶切位点,3‘UTR:3‘端非编码区,CBH:CBH启动子,MLS:MLS序列,Cas9:Cas9蛋白基因,EGFP:绿色荧光蛋白基因。Fig. 1 Plasmid map of pMitoCRISP1 vector. Figure a is the pMitoCRISPR1 vector, including Cas9 and sgRNA expression elements, Amp resistance gene, pBR322 and F1 origin of replication; Figure b is the 11 pMitoCRISPR vectors obtained by combining different MLS and 3'UTR elements, namely pMitoCRISPR1 to pMitoCRISPR11, where A: MRPS12-3'UTR, B: ATP5B-3'UTR, C: COX8A-3'UTR, D: SOD2-3'UTR, E: COX8A-MLS, F: ATP5B-MLS, U6: U6 promoter, RP: RP sequence, Bbsl: restriction enzyme cutting site, 3'UTR: 3' non-coding region, CBH: CBH promoter, MLS: MLS sequence, Cas9: Cas9 protein gene, EGFP: green fluorescent protein Gene.
图2 MitoCRISPR载体中Cas9表达元件功能验证,Non为空白对照;MitoCRISPR为线粒体基因敲除的空载体;MitoCRISPR-KO-12sr RNA和MitoCRISPR-KO-Cytb的质粒为针对人线粒体的12sr RNA和Cytb基因的敲除载体。为了验证MitoCRISPR质粒是否有效,我们针对293T细胞线粒体的12sr RNA和Cytb基因各设计一个sgRNA,构建了MitoCRISPR-KO-12srRNA和MitoCRISPR-KO-Cytb的质粒。将上述两个质粒分别导入细胞之后检测EGFP蛋白的表达情况。Figure 2 Functional verification of Cas9 expression elements in MitoCRISPR vector, Non is blank control; MitoCRISPR is an empty vector for mitochondrial gene knockout; MitoCRISPR-KO-12sr RNA and MitoCRISPR-KO-Cytb plasmids are 12sr RNA and Cytb gene targeting human mitochondria knockout vector. In order to verify whether the MitoCRISPR plasmid is effective, we designed a sgRNA for the mitochondrial 12srRNA and Cytb genes of 293T cells, and constructed the MitoCRISPR-KO-12srRNA and MitoCRISPR-KO-Cytb plasmids. After the above two plasmids were respectively introduced into the cells, the expression of EGFP protein was detected.
图3 Cas9蛋白线粒体定位。其中对照为Mitotrack染料对线粒体染色的对照;NLS-Cas9为核定位的Cas9蛋白定位对照;MitoCRISPR为对线粒体定位的Cas9蛋白定位。Figure 3 Mitochondrial localization of Cas9 protein. The control is the control of mitochondrial staining by Mitotrack dye; NLS-Cas9 is the nuclear localization Cas9 protein localization control; MitoCRISPR is the mitochondrial localization Cas9 protein localization.
图4 sgRNA和Cas9表达验证。图a表示293T细胞分别转染pMitoCRISPR1和pMitoCRISPR1-KO-12sr RNA质粒后,RT-PCR检测sgRNA在线粒体内表达;图b表示分别转染pMitoCRISPR1-KO-RP,pMitoCRISPR1, pMitoCRISPR1-KO-12sr RNA和pMitoCRISPR1-KO-Cytb质粒后,Western Blot检测Cas9在该细胞中的表达情况。Figure 4 sgRNA and Cas9 expression verification. Figure a shows that after 293T cells were transfected with pMitoCRISPR1 and pMitoCRISPR1-KO-12sr RNA plasmids, RT-PCR detected the expression of sgRNA in mitochondria; After the pMitoCRISPR1-KO-Cytb plasmid, Western Blot was used to detect the expression of Cas9 in the cells.
图5 针对线粒体12sr RNA基因位点的敲除,qPCR分析细胞内线粒体基因组的拷贝数变化。其中Mock为对照组,EG为实验组;MitoCRISPR为未加sgRNA对照,KO-12Sr RNA和KO1-12Sr RNA为组间对照。Fig. 5 For the knockout of the mitochondrial 12sr RNA locus, qPCR analysis of the copy number changes of the mitochondrial genome in cells. Among them, Mock is the control group, EG is the experimental group; MitoCRISPR is the control without sgRNA, and KO-12Sr RNA and KO1-12Sr RNA are the controls between groups.
图6 针对线粒体Cytb基因位点的敲除,qPCR分析细胞内线粒体基因组的拷贝数变化。其中Mock为对照组,EG为实验组;MitoCRISPR为未加sgRNA对照,KO-cytb和KO1-cytb为组间对照。Figure 6 For the knockout of the mitochondrial Cytb gene locus, qPCR analysis of the copy number changes of the mitochondrial genome in the cells. Among them, Mock is the control group, EG is the experimental group; MitoCRISPR is the control without sgRNA, and KO-cytb and KO1-cytb are the control between groups.
图7 MitoCRISPR系统中不同基因的MLS元件对线粒体基因敲除的影响。其中Mock为对照组;MitoCRISPR为未加sgRNA对照,pMitoCRISPR1-Cox8A-MLS-KO-12sr RNA和pMitoCRISPR5-ATP5B-MLS-KO-12sr RNA为不同的MLS元件对照。Figure 7 Effects of MLS elements of different genes on mitochondrial gene knockout in the MitoCRISPR system. Among them, Mock is the control group; MitoCRISPR is the control without sgRNA, and pMitoCRISPR1-Cox8A-MLS-KO-12sr RNA and pMitoCRISPR5-ATP5B-MLS-KO-12sr RNA are the controls of different MLS elements.
图8 MitoCRISPR系统中RP序列的位置对线粒体基因敲除的影响。其中Mock为对照组;MitoCRISPR为未加sgRNA对照,pMitoCRISPR1-RP-sgRNA-KO-12sr RNA,pMitoCRISPR1-RP-3’UTR -KO-12sr RNA,p MitoCRISPR1 -3’UTR- RP(+)-sgRNA-KO-12sr RNA和pMitoCRISPR1 -3’UTR- RP(-)-KO-12sr RNA为RP序列不同位置的实验组。Figure 8 The effect of the position of RP sequence in the MitoCRISPR system on mitochondrial gene knockout. Where Mock is the control group; MitoCRISPR is the control without sgRNA, pMitoCRISPR1-RP-sgRNA-KO-12srRNA, pMitoCRISPR1-RP-3'UTR-KO-12srRNA, pMitoCRISPR1-3'UTR-RP(+)-sgRNA -KO-12sr RNA and pMitoCRISPR1 -3'UTR- RP(-)-KO-12sr RNA are experimental groups at different positions of the RP sequence.
图9 MitoCRISPR系统中不同基因的3’UTR元件对线粒体基因敲除的影响。其中Mock为对照组;MitoCRISPR为未加sgRNA对照,pMitoCRISPR2-Cox8A-3’UTR-KO-12sr RNA,pMitoCRISPR3-SOD2-3’UTR-KO-12sr RNA, pMitoCRISPR1-MRPS12-3’UTR-KO-12sr RNA和pMitoCRISPR4-ATP5B-3’UTR-KO-12sr RNA为不同的3’UTR元件实验组。Figure 9 Effects of 3'UTR elements of different genes on mitochondrial gene knockout in the MitoCRISPR system. Mock is the control group; MitoCRISPR is the control without sgRNA, pMitoCRISPR2-Cox8A-3'UTR-KO-12sr RNA, pMitoCRISPR3-SOD2-3'UTR-KO-12sr RNA, pMitoCRISPR1-MRPS12-3'UTR-KO-12sr RNA and pMitoCRISPR4-ATP5B-3'UTR-KO-12sr RNA are experimental groups of different 3'UTR elements.
具体实施方式Detailed ways
实施例1 MitoCRISPR质粒载体的构建Example 1 Construction of MitoCRISPR plasmid vector
首先我们在U6启动子后加上线粒体定位信号MRPS12基因的3’UTR信号。构建Mito-U6-RP-BbsI-3’UTR的质粒。接着去掉Cas9基因前的核定位信号,加上Cox8A的线粒体定位信号,即MLS序列,构建Mito-U6-RP-BbsI-3’UTR -CBh-MLS-Cas9的质粒。然后在Cas9后加上EGFP基因,以便于观察转染效率。同时在Cas9表达框后加上MRPS12的3’UTR信号,以稳定所表达的Cas9 mRNA整个结构。最终得到了Mito-U6-RP-BbsI-3’UTR-CBh-MLS-Cas9 -2A-GFP-3’UTR(MitoCRISPR)质粒载体,即p MitoCRISPR1(图1a)。First, we added the 3'UTR signal of the mitochondrial localization signal MRPS12 gene after the U6 promoter. The plasmid of Mito-U6-RP-BbsI-3'UTR was constructed. Then remove the nuclear localization signal before the Cas9 gene, add the mitochondrial localization signal of Cox8A, that is, the MLS sequence, and construct the plasmid of Mito-U6-RP-BbsI-3'UTR-CBh-MLS-Cas9. Then add the EGFP gene after Cas9 to observe the transfection efficiency. At the same time, the 3'UTR signal of MRPS12 was added after the Cas9 expression frame to stabilize the entire structure of the expressed Cas9 mRNA. The Mito-U6-RP-BbsI-3’UTR-CBh-MLS-Cas9-2A-GFP-3’UTR (MitoCRISPR) plasmid vector, pMitoCRISPR1, was finally obtained (Fig. 1a).
具体为:Specifically:
(1)用于控制sgRNA表达的元件的导入:在PX459载体的U6启动子后加上RNA的线粒体定位信号RP序列和起稳定作用的MRPS12的 3’UTR信号序列,成功构建了Mito-U6-RP-gRNA-3’UTR载体。(1) The introduction of elements used to control the expression of sgRNA: After the U6 promoter of the PX459 vector, the mitochondrial localization signal RP sequence of RNA and the 3'UTR signal sequence of MRPS12, which play a stabilizing role, were added to successfully construct Mito-U6- RP-gRNA-3'UTR vector.
具体方法为:首先合成gRNA骨架和MRPS12的3’UTR信号。同时在MRPS12的3’ UTR信号两端加上酶切位点,以便更换不同的3’ UTR信号。gRNA-3’UTR如下:The specific method is as follows: first synthesize the gRNA backbone and the 3'UTR signal of MRPS12. At the same time, enzyme cutting sites were added to both ends of the 3'UTR signal of MRPS12 to replace different 3'UTR signals. gRNA-3'UTR is as follows:
5’-AGGACGAAAcaccggGTCTTCgaGAAGACctgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcCAGAAGAAGTGACGGCTGGGGGCACAGTGGGCTG GGCGCCCCTGCAGAACATGAACCTTCCGCTCCTGGCTGCCACAGGGTCCTCCGATGCTGGCCTTTGCGCCTCTAGA GGCAGCCACTCATGGATTCAAGTCCTGGCTCCGCCTCTTCCATCAGGACCACACTAGTTTTTTTagcgcgtgcgccaattctgcagacaaatggctctagaggtacccg-3’。其中粗体为BbsI酶切位点,用于sgRNA和RP序列的插入,BbsI的酶切位点;斜体为MRPS12的3’UTR信号。5'-AGGACGAAAcaccggGTCTTCgaGAAGACctgttttagagctaGAAAtagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgc CAGAAGAAGTGACGGCTGGGGGCACAGTGGGCTG GGCGCCCCTGCAGAACATGAACCTTCCGCTCCTGGCTGCCACAGGGTCCTCCGATGCTGGCCTTTGCGCCTCTAGA GGCAGCCACTCATGGATTCAAGTCCTGGCTCCGCCTCTTCCATCAGGACCAC ACTAGTTTTTTTagcgcgtgcgccaattctgcagacaaatggctctagaggtacccg-3'。 Bold is the restriction site of BbsI, which is used for the insertion of sgRNA and RP sequences, and the restriction site of BbsI; italic is the 3'UTR signal of MRPS12.
接着扩增gRNA-3’UTR片段,以便连接到PX459载体骨架上。所用引物如下:The gRNA-3'UTR fragment was then amplified for ligation into the PX459 vector backbone. The primers used are as follows:
INFUSION-F:5’-atcttGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGA-3’,INFUSION-F: 5'-atcttGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGA-3',
INFUSION-R:5’-GTAAGTTATGTAACGGGTACCTCTAGAGCCATTTGTCTGCAG-3’INFUSION-R: 5'-GTAAGTTATGTAACGGGTACCTCTAGAGCCATTTGTCTGCAG-3'
用TaKaRa的PCR反应试剂盒进行PCR扩增,条件如下:反应体系设置为20 μl:模板1μl、Pfu聚合酶 0.1μl,10×Pfu 缓冲液 2μl,dNTP 1.6μl,引物INFUSION-F与INFUSION-R各0.4 μl,ddH2O 15.5μL,反应温度梯度为94℃,5 min;94℃,30 s;55℃,30 s;72℃,30 s;72℃,5 min;然后以PX459载体为骨架,用BbsI和kpnI双酶切使之线性化。此外,为保留BbsI酶切位点,sgRNA表达框的序列需用IN-fusion的方法连入载体。利用BbsI和KpnI限制性内切酶把载体上的序列切除,然后用IN-Fusion的方法把合成的序列无缝连接到PX459载体上。IN-Fusion反应体系如下:分别向PCR管加入线性化的载体 2μL、插入sgRNA-3’UTR片段5μL、ddH2O 3μL,共10μL,轻轻混匀后离心。50℃反应15min。接着转化,挑取单克隆菌株、提取质粒DNA,通过测序鉴定获得的重组质粒pMito-U6-RP-gRNA-3’UTR。 Use TaKaRa’s PCR reaction kit for PCR amplification, the conditions are as follows: the reaction system is set to 20 μl: template 1 μl, Pfu polymerase 0.1 μl, 10×Pfu buffer 2 μl, dNTP 1.6 μl, primers INFUSION-F and INFUSION-R 0.4 μl each, ddH2O 15.5 μL, the reaction temperature gradient was 94°C, 5 min; 94°C, 30 s; 55°C, 30 s; 72°C, 30 s; 72°C, 5 min; BbsI and kpnI double digestion to linearize it. In addition, in order to retain the BbsI restriction site, the sequence of the sgRNA expression cassette needs to be ligated into the vector by IN-fusion. Use BbsI and KpnI restriction endonucleases to excise the sequence on the vector, and then use the IN-Fusion method to seamlessly connect the synthetic sequence to the PX459 vector. The IN-Fusion reaction system is as follows: add 2 μL of linearized vector, 5 μL of inserted sgRNA-3’UTR fragment, and 3 μL of ddH2O to the PCR tube, totaling 10 μL, mix gently and then centrifuge. React at 50°C for 15 minutes. Then transform, pick the monoclonal strain, extract the plasmid DNA, and identify the obtained recombinant plasmid pMito-U6-RP-gRNA-3'UTR by sequencing.
(2)用于控制Cas9表达元件的导入:接着,在上述pMito--U6-RP-gRNA-3’UTR去掉Cas9基因前的核定位信号,替换成Cox8A的线粒体定位信号。构建pMito--U6-RP-BbsI-3’UTR-CBh-MLS-flag-Cas9载体。具体方法为,首先合成Age I- MLS-Flag- Cas9(part)BglII的结构。合成的序列如下:5’-accggtgccaccATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGCTTGA CAGGCTCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATTCGTTGATGGACTATAAGGACCACGACGGAGACTACAAGGATCATGATATTGATTACAAAGACGATGACGATAAGATGGCCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCT-3’。(2) Used to control the introduction of Cas9 expression elements: Next, remove the nuclear localization signal before the Cas9 gene in the above pMito--U6-RP-gRNA-3'UTR, and replace it with the mitochondrial localization signal of Cox8A. The pMito--U6-RP-BbsI-3'UTR-CBh-MLS-flag-Cas9 vector was constructed. The specific method is to first synthesize the structure of Age I-MLS-Flag-Cas9 (part) BglII.合成的序列如下:5'-accggtgccacc ATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGCTTGA CAGGCTCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATTCGTTG ATGGACTATAAGGACCACGACGGAGACTACAAGGATCATGATATTGATTACAAAGACGATGACGATAAGATGGCCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAG AGATCT -3'。
粗体为Age I限制性内切酶位点,斜体色为Bgl II限制性内切酶位点,下划线为Cox8A的线粒体定位信号。接着利用Age I的酶和Bgl II限制性内切酶把Mito-U6-RP-gRNA-3’UTR载体上的序列切掉,然后用同样的酶切割AgeI- MLS-Flag- Cas9- Bgl II的结构序列,将二者连接,接着转化,挑取单克隆细菌株、提取质粒DNA,通过测序鉴定获得的重组质粒pMito-U6-RP-BbsI-3’UTR-CBh-MLS-flag-Cas9。Bold is the site of Age I restriction endonuclease, italic is the site of Bgl II restriction endonuclease, underline is the mitochondrial localization signal of Cox8A. Then use the enzyme of Age I and the restriction endonuclease of Bgl II to cut off the sequence on the Mito-U6-RP-gRNA-3'UTR vector, and then use the same enzyme to cut the DNA of AgeI-MLS-Flag-Cas9-Bgl II Structural sequence, connecting the two, and then transforming, picking a single clonal bacterial strain, extracting plasmid DNA, and identifying the obtained recombinant plasmid pMito-U6-RP-BbsI-3'UTR-CBh-MLS-flag-Cas9 by sequencing.
(3)筛选标签EGFP的构建:最后,在pMito-U6-RP-BbsI-3’UTR-CBh-MLS-flag-Cas9质粒载体的Cas9基因序列后加上EGFP,把嘌呤霉素基因去掉,以便于观察转染效率。同时在Cas9表达框后加上MRPS12的3’UTR信号,以稳定表达的Cas9mRNA结构。具体方法为:首先合成EcoRI-T2A-EGFP-3’UTR–EcoRI的结构,接着利用EcoRI的酶把载体上的序列切掉,然后用同样的酶切割EcorI-T2A-EGFP- 3’UTR–EcorI的序列,连接到Mito-U6-RP-gRNA-3’UTR-CBh-MLS-flag-Cas9. 接着转化,挑取细菌单克隆测序。用Bioedit软件对测序结果进行分析,结果表明成功构建了MitoCRISPR(Mito-U6-RP-gRNA-3’UTR-CBh- MLS-Cas9-2A-GFP-3’UTR)载体。(3) Construction of the screening tag EGFP: Finally, add EGFP after the Cas9 gene sequence of the pMito-U6-RP-BbsI-3'UTR-CBh-MLS-flag-Cas9 plasmid vector, and remove the puromycin gene so that To observe the transfection efficiency. At the same time, the 3'UTR signal of MRPS12 was added after the Cas9 expression frame to stabilize the expressed Cas9 mRNA structure. The specific method is: first synthesize the structure of EcoRI-T2A-EGFP-3'UTR-EcoRI, then use EcoRI enzyme to cut off the sequence on the vector, and then use the same enzyme to cut EcoRI-T2A-EGFP-3'UTR-EcoRI The sequence was connected to Mito-U6-RP-gRNA-3'UTR-CBh-MLS-flag-Cas9. Then transformed, and the bacterial single clone was picked and sequenced. The sequencing results were analyzed with Bioedit software, and the results showed that the MitoCRISPR (Mito-U6-RP-gRNA-3'UTR-CBh-MLS-Cas9-2A-GFP-3'UTR) vector was successfully constructed.
实施例2 针对线粒体12sr RNA基因位点的基因敲除 Example 2 Gene Knockout for the Mitochondrial 12sr RNA Gene Locus
构建针对线粒体12srRNA基因位点的线粒体基因敲除载体具体方法如下:The specific method for constructing a mitochondrial gene knockout vector targeting the mitochondrial 12srRNA gene locus is as follows:
选取pMitoCRISPR1质粒为骨架构建线粒体基因敲除重组质粒载体,pMitoCRISPR1质粒上包含CRISPR系统的基本元件,即Cas9蛋白基因和控制sgRNA在线粒体中表达的元件,包括U6启动子、RP序列及3’UTR序列。U6启动子用于启动sgRNA的表达, 3’UTR序列帮助稳定表达的sgRNA,使之能从细胞核中出来,定位在线粒体外膜上; RNA5’端的输入序列-RP序列,帮助RNA进入线粒体。一旦3’UTR序列帮助RNAs出现在线粒体表面,那么就用第二段运输序列(RP序列)就可以引导RNA进入靶向线粒体。有了这两段序列,就能靶向sgRNA,引导其进入线粒体,编辑线粒体基因组。该载体选取了一个特殊的BbsI酶切位点可用于插入特异的sgRNA,以防止载体自连。并且该载体上带有EGFP基因,可以对转染的细胞进行筛选或者观察转染效率。Select the pMitoCRISPR1 plasmid as the backbone to construct the mitochondrial gene knockout recombinant plasmid vector. The pMitoCRISPR1 plasmid contains the basic elements of the CRISPR system, namely the Cas9 protein gene and the elements that control the expression of sgRNA in mitochondria, including the U6 promoter, RP sequence and 3'UTR sequence . The U6 promoter is used to promote the expression of sgRNA. The 3'UTR sequence helps stabilize the expressed sgRNA so that it can come out of the nucleus and locate on the mitochondrial outer membrane; the input sequence at the 5' end of the RNA-RP sequence helps the RNA enter the mitochondria. Once the 3'UTR sequence helps RNAs appear on the mitochondrial surface, a second trafficking sequence (RP sequence) can be used to guide the RNA into the targeted mitochondria. With these two sequences, the sgRNA can be targeted, guided into the mitochondria, and edited the mitochondrial genome. The vector selects a special BbsI restriction site for inserting specific sgRNA to prevent self-ligation of the vector. And the carrier has EGFP gene, which can screen the transfected cells or observe the transfection efficiency.
本实例选取线粒体基因组上12sr RNA基因,对其进行敲除,具体步骤如下:In this example, the 12sr RNA gene on the mitochondrial genome is selected and knocked out. The specific steps are as follows:
sgRNA退火: 加入10×PCR 缓冲液2μL、Mito-KO-H-12sr RNA-F 1μL、Mito-KO-H-12sr RNA-R 1μL、ddH2O 16μL,共20μL,处理条件为95℃ 5 min,2.5℃/s降至85℃;0.25℃/s从 85℃降至25℃,然后25℃ 5 min。sgRNA annealing: Add 2 μL of 10×PCR buffer, 1 μL of Mito-KO-H-12sr RNA-F, 1 μL of Mito-KO-H-12sr RNA-R, 16 μL of ddH 2 O, a total of 20 μL, and the treatment condition is 95°C for 5 min , 2.5°C/s down to 85°C; 0.25°C/s from 85°C to 25°C, then 25°C for 5 min.
12sr RNA基因的sgRNA目标序列如下:12sr RNA: 5’-TAAGGGCTATCGTAGTTTTC-3’;RP序列为: 5’-TCTCCCTGAGCTTCAGGGAG-3’。The sgRNA target sequence of the 12sr RNA gene is as follows: 12sr RNA: 5'-TAAGGGCTATCGTAGTTTTC-3'; RP sequence: 5'-TCTCCCTGAGCTTCAGGGAG-3'.
用于插入到pMitoCRISPR1质粒Bbs I酶切位点的12s rRNA基因的sgRNA引物序列如下:Mito-KO-H-12sr RNA-F: 5’-CACCGTCTCCCTGAGCTTCAGGGAGTAAGGGCTATCGTAGTTTTC-3’The sgRNA primer sequence for the 12s rRNA gene inserted into the Bbs I restriction site of pMitoCRISPR1 plasmid is as follows: Mito-KO-H-12sr RNA-F: 5'-CACCGTCTCCCCTGAGCTTCAGGGAGTAAGGGCTATCGTAGTTTTC-3'
Mito-KO-H-12sr RNA-R:5’-AAACGAAAACTACGATAGCCCTTACTCCCTGAAGCTCAGGGAGAC-3’。Mito-KO-H-12sr RNA-R: 5'-AAACGAAAACTACGATAGCCCTTACTCCCTGAAGCTCAGGGAGAC-3'.
线粒体12srRNA基因敲除载体的构建:pMitoCRISPR1质粒DNA 17μL、 10×FastDigest buffer 5μL、 Bbs I限制性内切酶5μL、 ddH2O 23μL,共50 μL, 反应1小时,95℃ 5min。在1.5 mLEP中,加入2μL该反应液、1.84μL上述sgRNA退火反应液2.5μL、10×T4 DNA连接酶缓冲液、T4 DNA连接酶 1μL,室温连接10-30 min.在带有200μL感受态细胞的1.5 mLEP管中,温和地加入上述1μL DNA连接反应液,混匀,后冰浴30 min,37℃水浴6 min,冰上置放3 min;加入800μL LB细菌培养液,37℃水浴,1h; 取上清50μL,在LB固体平板上混匀涂板,37℃倒置培养过夜。挑选具抗性的单克隆菌落,用康维世纪无内毒素质粒小提试剂盒提取质粒DNA,送上海铂尚生物技术有限公司进行测序,以确定重组质粒pMitoCRISPR1-KO-12sr RNA,即带有12s rRNA基因sgRNA的线粒体基因敲除质粒的构建成功。 Construction of mitochondrial 12srRNA gene knockout vector: 17 μL of pMitoCRISPR1 plasmid DNA, 5 μL of 10× FastDigest buffer, 5 μL of Bbs I restriction endonuclease, 23 μL of ddH2O, a total of 50 μL, reacted for 1 hour, 95°C for 5 minutes. In 1.5 mLEP, add 2 μL of the reaction solution, 1.84 μL of the above sgRNA annealing reaction solution 2.5 μL, 10×T4 DNA ligase buffer, T4 DNA ligase 1 μL, and connect at room temperature for 10-30 min. Gently add 1 μL of the above DNA ligation reaction solution to the 1.5 mLEP tube, mix well, then ice-bath for 30 min, 37 °C water bath for 6 min, and place on ice for 3 min; add 800 μL LB bacterial culture solution, 37 °C water bath, 1 h ; Take 50 μL of the supernatant, mix it on the LB solid plate, and culture it upside down at 37°C overnight. Select the resistant monoclonal colony, extract the plasmid DNA with Kangwei Century Endotoxin-Free Plasmid Mini-prep Kit, and send it to Shanghai Boshang Biotechnology Co., Ltd. for sequencing to confirm that the recombinant plasmid pMitoCRISPR1-KO-12sr RNA contains The mitochondrial gene knockout plasmid of 12s rRNA gene sgRNA was successfully constructed.
和sgRNA线粒体定位实验的具体方法如下:The specific method of the sgRNA mitochondrial localization experiment is as follows:
为了验证Cas9和sgRNA是否定位线粒体,我们将NLS-Cas9,pMitoCRISPR1载体分别转染细胞,两天后用共聚焦显微镜观察Cas9蛋白在线粒体上的定位;将pMitoCRISPR1和pMitoCRISPR1-KO-12sr RNA质粒转染细胞,两天后RT-PCR分析sgRNA在线粒体的表达情况。其中,用缺乏RP序列的pMitoCRISPR1载体做对照质粒。In order to verify whether Cas9 and sgRNA are localized to mitochondria, we transfected cells with NLS-Cas9 and pMitoCRISPR1 vectors respectively, and observed the localization of Cas9 protein on mitochondria with a confocal microscope two days later; transfected cells with pMitoCRISPR1 and pMitoCRISPR1-KO-12sr RNA plasmids , Two days later, RT-PCR was used to analyze the expression of sgRNA in mitochondria. Among them, the pMitoCRISPR1 vector lacking the RP sequence was used as a control plasmid.
其中Cas9蛋白步骤如下:将转染72h的细胞接种于多聚赖氨酸处理过的玻片上,冰PBS洗三遍,每次5分钟。用4%的多聚甲醛固定爬片15分钟,PBS浸洗3次;0.5% TritonX-100(PBS配制)室温通透1小时,PBS浸洗3次;封闭液室温封闭30min;吸水纸吸掉封闭液,每个玻片滴加足够量的稀释好的flag一抗并放入湿盒,4℃孵育过夜;PBS浸洗爬片3次,每次3min,吸水纸吸干爬片上多余液体后滴加稀释好的荧光二抗,湿盒中37℃避光孵育1h,PBS浸洗细胞3次,每次3min;滴加DAPI避光孵育2min,对细胞进行染核,PBS洗4次;用吸水纸吸干爬片上的液体,用含抗荧光淬灭剂的封片液封片,然后在共聚焦显微镜下观察采集图像。The Cas9 protein steps are as follows: cells transfected for 72 hours were inoculated on polylysine-treated glass slides, and washed three times with ice-cold PBS for 5 minutes each time. Fix slides with 4% paraformaldehyde for 15 minutes, soak in PBS for 3 times; permeabilize with 0.5% TritonX-100 (prepared in PBS) for 1 hour at room temperature, soak in PBS for 3 times; seal with blocking solution for 30 minutes at room temperature; absorb with absorbent paper Blocking solution, add a sufficient amount of diluted flag primary antibody to each slide and put it in a wet box, incubate overnight at 4°C; soak slides in PBS 3 times, 3 minutes each time, absorb excess liquid on the slides with absorbent paper Add the diluted fluorescent secondary antibody dropwise, incubate at 37°C in the dark for 1 h in a wet box, soak the cells 3 times in PBS, 3 min each time; add DAPI and incubate in the dark for 2 min, stain the cells, wash 4 times with PBS; Blot the liquid on the slide with absorbent paper, seal the slide with a mounting solution containing anti-fluorescence quenching agent, and then observe and collect images under a confocal microscope.
其中提取线粒体步骤如下:首先把细胞从培养皿中消化下来,用低渗溶液裂解细胞5-10min,然后用Dounce匀浆器配套的研杵B在冰上快速的研磨细胞,研磨时研杵B应上下垂直运动以增加与匀浆液的接触面积,通常在匀浆10次左右观察匀浆效果。接着利用差速离心的方法得到粗提的线粒体。将粗提的线粒体加入12%的percoll溶液中,混合液小心置于19% percoll和40% percoll梯度上,50000g离心25分钟。小心吸取位于浅黄色界面层的样品,重悬于分离缓冲液,17000g离心10分钟即得到纯的线粒体。提取线粒体RNA,反转录后,利用RT-PCR检测sgRNA。The steps for extracting mitochondria are as follows: First, digest the cells from the culture dish, lyse the cells with a hypotonic solution for 5-10 minutes, and then quickly grind the cells on ice with the pestle B provided by the Dounce homogenizer. It should move up and down vertically to increase the contact area with the homogenate, and usually observe the homogenate effect after about 10 times of homogenization. Then, the crudely extracted mitochondria were obtained by differential centrifugation. The crudely extracted mitochondria were added to 12% percoll solution, the mixture was carefully placed on a gradient of 19% percoll and 40% percoll, and centrifuged at 50000g for 25 minutes. Carefully draw the sample located in the light yellow interface layer, resuspend in the separation buffer, and centrifuge at 17000g for 10 minutes to obtain pure mitochondria. Mitochondrial RNA was extracted, and after reverse transcription, sgRNA was detected by RT-PCR.
编辑293T细胞线粒体基因组的具体方法如下:The specific method for editing the mitochondrial genome of 293T cells is as follows:
为了验证MitoCRISPR质粒是否有效,我们针对人线粒体基因组的12sr RNA基因位点设计一个sgRNA,构建了如上所述pMitoCRISPR1-KO-12sr RNA质粒。将该质粒转染293T细胞,3天后检测线粒体基因组拷贝数变化,以评估MitoCRISPR系统的效率。具体方法如下:用70μl opti-MEM(Gibco,货号:31985-070)+ 3μl PEI (polysciences,货号:670587) (1μg/μl)试剂充分混匀,然后加入1μl DNA (1μg/μl),室温孵育5 min,将混合液滴加入细胞中,37℃孵育细胞过夜。细胞转染质粒3天后,使用全基因组提取试剂盒对细胞基因组进行提取,之后利用微量分光光度计测量样品的浓度,将样品浓度统一稀释到50 ng/μl。提取细胞基因组后,用高通量实时荧光定量PCR仪(QuantStudio 6 Flex)对12sr RNA和β-actin进行扩增。扩增结束后,实时荧光定量PCR仪能够自动给出荧光曲线,计算该反应的CT值。CT值是指实时荧光定量PCR仪收集到的荧光信号达到给定值时反应经过的循环数,其中C指的是Cycle,T指的是阈值。我们根据CT值用△△Ct法计算各样本之间的相对表达量。In order to verify whether the MitoCRISPR plasmid is effective, we designed an sgRNA targeting the 12sr RNA gene locus of the human mitochondrial genome, and constructed the pMitoCRISPR1-KO-12sr RNA plasmid as described above. The plasmid was transfected into 293T cells, and the mitochondrial genome copy number changes were detected 3 days later to evaluate the efficiency of the MitoCRISPR system. The specific method is as follows: Mix well with 70 μl opti-MEM (Gibco, catalog number: 31985-070) + 3 μl PEI (polysciences, catalog number: 670587) (1 μg/μl) reagent, then add 1 μl DNA (1 μg/μl), and incubate at room temperature After 5 min, the mixed solution was added to the cells, and the cells were incubated overnight at 37°C. Three days after the cells were transfected with the plasmid, the genome of the cells was extracted using a genome-wide extraction kit, and then the concentration of the sample was measured with a micro-spectrophotometer, and the concentration of the sample was uniformly diluted to 50 ng/μl. After extracting the cell genome, 12sr RNA and β-actin were amplified with a high-throughput real-time fluorescent quantitative PCR instrument (QuantStudio 6 Flex). After the amplification is completed, the real-time fluorescent quantitative PCR instrument can automatically give the fluorescence curve and calculate the CT value of the reaction. The CT value refers to the number of cycles of the reaction when the fluorescent signal collected by the real-time fluorescent quantitative PCR instrument reaches a given value, where C refers to Cycle, and T refers to the threshold. We used the △△Ct method to calculate the relative expression of each sample according to the CT value.
qPCR扩增条件如下:在MicroAmp® Fast 8-Tube Strip, 0.1 ml 快速反应8联管中配制反应混合液,反应体系设置为20ul:模板,3ul、SYBR GREEN I Mix,10ul、上游引物F,0.4 ul、下游引物R,0.4 ul、ddH2O,6.2μL,PCR反应温度梯度为95℃,20S;95℃,3S;56℃,30s;72℃,30s;72℃,5min;溶解曲线扩增阶段为95℃,15s 、60℃,60s、95℃,15s。结果分析:将上述pMitoCRISPR1-KO-12s rRNA质粒导入293T细胞后,可以发现细胞有EGFP表达(如图2)。为了验证Cas9是否有进入线粒体,pMitoCRISPR1质粒转染后两天,我们通过特异抗体进行荧光染色,用共聚焦显微镜确定了Cas9在线粒体上的定位(如图3)。同时提取了细胞蛋白,进行Western Blot分析,结果进一步表明了Cas9的表达(图4b)。为了验证表达的12srRNA sgRNA是否有进入线粒体,我们提取了线粒体,分析线粒体里面sgRNA的含量,结果表明sgRNA有进入线粒体(图4a)。 The qPCR amplification conditions are as follows: prepare the reaction mixture in MicroAmp® Fast 8-Tube Strip, 0.1 ml fast reaction 8-tube, and set the reaction system to 20ul: template, 3ul, SYBR GREEN I Mix, 10ul, upstream primer F, 0.4 ul, downstream primer R, 0.4 ul, ddH2O, 6.2 μL, the PCR reaction temperature gradient is 95°C, 20S; 95°C, 3S; 56°C, 30s; 72°C, 30s; 72°C, 5min; the melting curve amplification stage is 95°C, 15s, 60°C, 60s, 95°C, 15s. Result analysis: After the above pMitoCRISPR1-KO-12s rRNA plasmid was introduced into 293T cells, it was found that the cells expressed EGFP (as shown in Figure 2). In order to verify whether Cas9 has entered the mitochondria, two days after the transfection of the pMitoCRISPR1 plasmid, we performed fluorescent staining with specific antibodies, and confirmed the localization of Cas9 on the mitochondria with a confocal microscope (as shown in Figure 3). At the same time, the cell protein was extracted and analyzed by Western Blot, and the results further showed the expression of Cas9 (Figure 4b). In order to verify whether the expressed 12srRNA sgRNA has entered the mitochondria, we extracted the mitochondria and analyzed the content of sgRNA in the mitochondria, and the results showed that the sgRNA had entered the mitochondria (Figure 4a).
接着我们提取293T细胞全基因组,针对12sr RNA基因位点的敲除,利用线粒体基因组12sr RNA以及核基因组β-actin引物,分析了细胞内线粒体基因组的拷贝数变化。qPCR结果显示:线粒体基因组12sr RNA以及核基因组β-actin引物的扩增效率几乎一致分别为99.548%和97.271%。转染MitoCRISPR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约30%(如图5)。这些结果表明我们成功地构建了线粒体基因敲除质粒pMitoCRISPR1-KO-12s rRNA载体,这一质粒载体导入293T细胞后,成功地敲除了线粒体基因组。Next, we extracted the whole genome of 293T cells, aimed at the knockout of the 12sr RNA gene locus, and analyzed the copy number changes of the mitochondrial genome in the cells using primers of 12sr RNA in the mitochondrial genome and β-actin in the nuclear genome. The qPCR results showed that the amplification efficiencies of the mitochondrial genome 12sr RNA and nuclear genome β-actin primers were almost identical, 99.548% and 97.271%, respectively. After transfection of the MitoCRISPR-KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 30% (Figure 5). These results indicated that we successfully constructed the mitochondrial gene knockout plasmid pMitoCRISPR1-KO-12s rRNA vector, which successfully knocked out the mitochondrial genome after the plasmid vector was introduced into 293T cells.
实施例3 针对线粒体cytb基因位点的线粒体基因敲除 Example 3 Mitochondrial gene knockout targeting the mitochondrial cytb gene locus
本实例选取线粒体基因组上cytb基因,对其进行敲除,具体步骤如下:用实例2所述方法进行退火反应。In this example, the cytb gene on the mitochondrial genome is selected and knocked out, and the specific steps are as follows: the annealing reaction is performed using the method described in Example 2.
Cytb的sgRNA目标序列为:ATCCCGTTTCGTGCAAGAAT;RP序列为:TCTCCCTGAGCTTCAGGGAG;用于插入到pMitoCRISPR1质粒Bbs I酶切位点的Cytb基因sgRNA引物序列如下::Mito-KO-H-Cytb-F: CACCGTCTCCCTGAGCTTCAGGGAGATCCCGTTTCGTGCAAGAAT;The sgRNA target sequence of Cytb is: ATCCCGTTTCGTGCAAGAAT; the RP sequence is: TCTCCCTGAGCTTCAGGGAG; the Cytb gene sgRNA primer sequence for insertion into the Bbs I restriction site of pMitoCRISPR1 plasmid is as follows: Mito-KO-H-Cytb-F: CACCGTCTCCCCTGAGCTTCAGGGAGATCCCGTTTCGTGCAAGAAT;
Mito-KO-H-Cytb-R:AAACATTCTTGCACGAAACGGGATCTCCCTGAAGCTCAGGGAGAC;Mito-KO-H-Cytb-R:AAACATTCTTGCACGAAACGGGATCTCCCTGAAGCTCAGGGAGAC;
用实例2所述方法构建线粒体Cytb基因敲除载体pMitoCRISPR1-KO-Cytb,并通过测序进行验证。接着将该质粒载体用实例2所述的方法转染293T细胞,3天后,用实例2所述的方法检测该质粒载体对线粒体基因组敲除的效率。 将上述pMitoCRISPR1-KO-Cytb质粒导入293T细胞后,可以发现细胞有EGFP表达(如图2)。同时,提取上述细胞的蛋白,进行Western Blot分析,结果表明了Cas9的表达(图4b)。接着我们提取上述细胞全基因组,针对Cytb基因位点的敲除,利用线粒体基因组12sr RNA以及核基因组β-actin引物,分析了细胞内线粒体基因组的拷贝数变化。qPCR结果显示:线粒体基因组12sr RNA以及核基因组β-actin引物的扩增效率几乎一致分别为99.548%和97.271%。转染MitoCRISPR-KO-Cytb敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约30%(如图6)。这些结果表明我们成功地构建了线粒体基因敲除质粒pMitoCRISPR1-KO-Cytb载体,这一质粒载体导入293T细胞后,成功地敲除了线粒体基因组。The mitochondrial Cytb gene knockout vector pMitoCRISPR1-KO-Cytb was constructed using the method described in Example 2, and verified by sequencing. Next, the plasmid vector was transfected into 293T cells by the method described in Example 2, and after 3 days, the efficiency of the plasmid vector for mitochondrial genome knockout was detected by the method described in Example 2. After the above pMitoCRISPR1-KO-Cytb plasmid was introduced into 293T cells, it was found that the cells expressed EGFP (Figure 2). At the same time, the protein of the above cells was extracted and analyzed by Western Blot, the results showed the expression of Cas9 (Figure 4b). Next, we extracted the whole genome of the above cells, aimed at knocking out the Cytb gene locus, and analyzed the copy number changes of the mitochondrial genome in the cells by using the 12sr RNA of the mitochondrial genome and the β-actin primers of the nuclear genome. The qPCR results showed that the amplification efficiencies of the mitochondrial genome 12sr RNA and nuclear genome β-actin primers were almost identical, 99.548% and 97.271%, respectively. After transfection of the MitoCRISPR-KO-Cytb knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 30% (Figure 6). These results indicated that we successfully constructed the mitochondrial gene knockout plasmid pMitoCRISPR1-KO-Cytb vector, which successfully knocked out the mitochondrial genome after the plasmid vector was introduced into 293T cells.
实施例4 MitoCRISPR载体上不同MLS元件对线粒体基因敲除的影响Example 4 Effects of Different MLS Elements on MitoCRISPR Vectors on Mitochondrial Gene Knockout
线粒体中存在上千种蛋白质或者RNA,其中绝大部分是由核基因编码的。这些蛋白必需进入线粒体起作用,而引导这些蛋白质进入线粒体的信号肽序列被称为MLS序列。本实施例使用了两种不同基因的MLS元件,并比较了二者对线粒体基因敲除效率的影响。具体方法如下:首先在Cas9蛋白N端引入了两个Age I限制性酶切位点;接着,在Age I酶切位点上置换两种不同的MLS:Cox8A-MLS和ATP5B-MLS,分别构建了MitoCRISPR载体。本实例将线粒体基因组上的12sr RNA 的sgRNA目标序列插入到上述分别带有Cox8A-MLS和ATP5B-MLS序列的MitoCRISPR载体上,分别构建了线粒体基因敲除质粒,pMitoCRISPR1-Cox8A-MLS-KO-12sr RNA和pMitoCRISPR5-ATP5B-MLS-KO-12sr RNA。将上述质粒导入293T细胞3天后,提取细胞全基因组,用实例2中所述的qPCR方法,利用线粒体基因组12sr RNA以及核基因组β-actin引物,分析了细胞内线粒体基因组的拷贝数变化,进而验证线粒体基因组的敲除效率,以确定Cox8A-MLS和ATP5B-MLS元件对线粒体基因敲除的影响。There are thousands of proteins or RNAs in mitochondria, most of which are encoded by nuclear genes. These proteins must enter the mitochondria to function, and the signal peptide sequence that guides these proteins into the mitochondria is called the MLS sequence. In this example, MLS elements of two different genes were used, and the effects of the two on the efficiency of mitochondrial gene knockout were compared. The specific method is as follows: first, two Age I restriction enzyme sites were introduced into the N-terminal of the Cas9 protein; then, two different MLSs were replaced on the Age I site: Cox8A-MLS and ATP5B-MLS, respectively constructed MitoCRISPR vector. In this example, the sgRNA target sequence of 12sr RNA on the mitochondrial genome was inserted into the above-mentioned MitoCRISPR vectors with Cox8A-MLS and ATP5B-MLS sequences respectively, and the mitochondrial gene knockout plasmids, pMitoCRISPR1-Cox8A-MLS-KO-12sr were respectively constructed RNA and pMitoCRISPR5-ATP5B-MLS-KO-12sr RNA. Three days after the above plasmid was introduced into 293T cells, the whole genome of the cells was extracted, and the qPCR method described in Example 2 was used to analyze the copy number changes of the mitochondrial genome in the cells using the 12sr RNA of the mitochondrial genome and the β-actin primers of the nuclear genome, and then verified Knockdown efficiency of the mitochondrial genome to determine the effect of Cox8A-MLS and ATP5B-MLS elements on mitochondrial gene knockdown.
结果显示:转染pMitoCRISPR5-ATP5B-MLS-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约30%(如图7),转染pMitoCRISPR1-Cox8A-MLS-KO-12srRNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约22%(如图7)。这些结果表明带有ATP5B-MLS序列的线粒体基因敲除载体要比带有Cox8A-MLS序列的线粒体基因敲除载体的敲除效率高。The results showed that after transfection of pMitoCRISPR5-ATP5B-MLS-KO-12srRNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 30% (as shown in Figure 7), transfection of pMitoCRISPR1-Cox8A-MLS-KO-12srRNA After knocking out the plasmid, the mitochondrial genome copy number in 293T cells decreased by about 22% (Figure 7). These results indicated that the mitochondrial gene knockout vector with the ATP5B-MLS sequence was more efficient than the mitochondrial gene knockout vector with the Cox8A-MLS sequence.
实施例5 MitoCRISPR载体上RP序列的位置对线粒体基因敲除的影响Example 5 Effect of the position of the RP sequence on the MitoCRISPR vector on mitochondrial gene knockout
线粒体中存在上千种蛋白质或者RNA,其中绝大部分是由核基因编码的。研究表明将外源RNA引导进入线粒体,RP序列在其中起了至关重要的作用,本实施例优化了RP序列在MitoCRISPR系统中的位置,以排除其对系统中蛋白功能的影响。试验中,我们将RP序列分别放在了sgRNA序列前,3’UTR序列前以及3’UTR后面,分别构建了MitoCRISPR-RP-sgRNA,MitoCRISPR- RP-3’UTR,MitoCRISPR -3’UTR- RP(+)和MitoCRISPR -3’UTR- RP(-)等pMitoCRISPR1及pMitoCRISPR9到 pMitoCRISPR11质粒载体,以便观察其位置对MitoCRISP系统中的影响。接着针对线粒体基因组上的12sr RNA基因,分别构建了带有12sr RNA基因sgRNA序列及在上述不同位置放置的RP序列的线粒体基因敲除质粒载体pMitoCRISPR1-RP-sgRNA-KO-12sr RNA, pMitoCRISPR9-RP-3’UTR-KO-12sr RNA, pMitoCRISPR10 -3’UTR-RP(+)-sgRNA-KO-12sr RNA和pMitoCRISPR11-3’UTR-RP(-)-KO-12sr RNA质粒。将这些质粒转染293T细胞对线粒体基因组进行如上所述的靶向敲除,转染3天后,用上述qPCR方法检测线粒体基因组拷贝数变化,以评估MitoCRISPR系统的效率。结果显示(图8):转染pMitoCRISPR1-RP-sgRNA-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约22%,转染pMitoCRISPR9-RP-3’UTR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约22%, 转染pMitoCRISPR10-3’UTR- RP(+)-sgRNA-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约42%, 转染pMitoCRISPR11-3’UTR- RP(-)-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约5%。这些结果表明RP序列加在3’UTR后面的敲除效率是最高的(图8)。There are thousands of proteins or RNAs in mitochondria, most of which are encoded by nuclear genes. Studies have shown that the RP sequence plays a crucial role in guiding the exogenous RNA into the mitochondria. This example optimizes the position of the RP sequence in the MitoCRISPR system to exclude its influence on the protein function in the system. In the experiment, we put the RP sequence before the sgRNA sequence, before the 3'UTR sequence and after the 3'UTR sequence, respectively constructing MitoCRISPR-RP-sgRNA, MitoCRISPR-RP-3'UTR, MitoCRISPR-3'UTR-RP (+) and MitoCRISPR-3'UTR-RP(-) and other pMitoCRISPR1 and pMitoCRISPR9 to pMitoCRISPR11 plasmid vectors, in order to observe the impact of their positions on the MitoCRISP system. Next, for the 12sr RNA gene on the mitochondrial genome, the mitochondrial gene knockout plasmid vectors pMitoCRISPR1-RP-sgRNA-KO-12sr RNA, pMitoCRISPR9-RP were respectively constructed with the 12sr RNA gene sgRNA sequence and the RP sequence placed at the above different positions -3'UTR-KO-12sr RNA, pMitoCRISPR10 -3'UTR-RP(+)-sgRNA-KO-12sr RNA and pMitoCRISPR11-3'UTR-RP(-)-KO-12sr RNA plasmids. These plasmids were transfected into 293T cells to knock out the mitochondrial genome as described above. Three days after transfection, the mitochondrial genome copy number changes were detected by the above-mentioned qPCR method to evaluate the efficiency of the MitoCRISPR system. The results showed (Figure 8): after transfection of pMitoCRISPR1-RP-sgRNA-KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 22%, and the transfection of pMitoCRISPR9-RP-3'UTR-KO- After the 12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 22%. The genome copy number decreased by about 42%. After transfection of pMitoCRISPR11-3'UTR-RP(-)-KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 5%. These results indicated that the knockout efficiency of the RP sequence added after the 3'UTR was the highest (Fig. 8).
实施例6 MitoCRISPR载体上不同3’UTR元件对线粒体基因敲除的影响Example 6 Effects of Different 3'UTR Elements on MitoCRISPR Vectors on Mitochondrial Gene Knockout
线粒体中存在上千种蛋白质或者RNA,其中绝大部分是由核基因编码的。研究表明将外源RNA引导进入线粒体,RP序列和3’UTR元件在其中起了至关重要的作用,本实施例中我们除了RP序列之外,使用了四种不同基因的3’UTR元件,并比较了它们对线粒体基因敲除效率的影响。具体方法如下:我们在MitoCRISPR载体的Spe I酶切位点上置换四种不同的3’UTR:Cox8A-3’UTR,MRPS12-3’UTR,SOD2-3’UTR和ATP5B-3’UTR,构建了带有上述四种3’UTR序列的MitoCRISPR2-Cox8A-3’UTR, MitoCRISPR3-SOD2-3’UTR, MitoCRISPR1-MRPS12-3’UTR和MitoCRISPR4-ATP5B-3’UTR质粒载体。接着本实例针对线粒体基因组上的12sr RNA基因,在上述四种带有不同3’UTR序列的载体上,插入12sr RNA基因的sgRNA序列,构建了pMitoCRISPR2-Cox8A-3’UTR-KO-12sr RNA, pMitoCRISPR3-SOD2-3’UTR-KO-12sr RNA,pMitoCRISPR1-MRPS12-3’UTR-KO-12sr RNA和pMitoCRISPR4-ATP5B-3’UTR-KO-12sr RNA质粒。将这些质粒载体导入293T细胞后,用上述方法分析了细胞内线粒体基因组的拷贝数变化。结果显示(图9):转染MitoCRISPR2-Cox8A-3’UTR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约43%,转染MitoCRISPR3-SOD2-3’UTR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约13%,转染MitoCRISPR1-MRPS12-3’UTR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约22%,转染MitoCRISPR4-ATP5B-3’UTR-KO-12sr RNA敲除质粒后,293T细胞内的线粒体基因组拷贝数下降了大约34%。带有Cox8A-3’UTR序列的线粒体基因敲除质粒的敲除效率是最高的(图9)。There are thousands of proteins or RNAs in mitochondria, most of which are encoded by nuclear genes. Studies have shown that RP sequences and 3'UTR elements play a crucial role in guiding foreign RNA into mitochondria. In this example, we used 3'UTR elements of four different genes in addition to RP sequences. And compared their effects on mitochondrial gene knockout efficiency. The specific method is as follows: We replaced four different 3'UTRs at the Spe I restriction site of the MitoCRISPR vector: Cox8A-3'UTR, MRPS12-3'UTR, SOD2-3'UTR and ATP5B-3'UTR, and constructed MitoCRISPR2-Cox8A-3'UTR, MitoCRISPR3-SOD2-3'UTR, MitoCRISPR1-MRPS12-3'UTR and MitoCRISPR4-ATP5B-3'UTR plasmid vectors with the above four 3'UTR sequences were obtained. Next, in this example, for the 12sr RNA gene on the mitochondrial genome, the sgRNA sequence of the 12sr RNA gene was inserted into the above four vectors with different 3'UTR sequences to construct pMitoCRISPR2-Cox8A-3'UTR-KO-12srRNA, pMitoCRISPR3-SOD2-3'UTR-KO-12sr RNA, pMitoCRISPR1-MRPS12-3'UTR-KO-12sr RNA and pMitoCRISPR4-ATP5B-3'UTR-KO-12sr RNA plasmids. After these plasmid vectors were introduced into 293T cells, the copy number changes of the mitochondrial genome in the cells were analyzed by the method described above. The results showed (Figure 9): after transfection of MitoCRISPR2-Cox8A-3'UTR-KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 43%, and the transfection of MitoCRISPR3-SOD2-3'UTR- After the KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 13%. After transfection of MitoCRISPR4-ATP5B-3'UTR-KO-12sr RNA knockout plasmid, the mitochondrial genome copy number in 293T cells decreased by about 34%. The knockout efficiency of the mitochondrial gene knockout plasmid with the Cox8A-3'UTR sequence was the highest (Figure 9).
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 福建师范大学<110> Fujian Normal University
<120> 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法<120> Method for Targeted Editing of Mitochondrial Genome Using CRISPR/Cas9
<130> 22<130> 22
<160> 22<160> 22
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 9645<211> 9645
<212> DNA<212>DNA
<213> pMitoCRISPR1<213> pMitoCRISPR1
<400> 1<400> 1
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgccagaaga agtgacggct 360gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgccagaaga agtgacggct 360
gggggcacag tgggctgggc gcccctgcag aacatgaacc ttccgctcct ggctgccaca 420gggggcacag tgggctgggc gcccctgcag aacatgaacc ttccgctcct ggctgccaca 420
gggtcctccg atgctggcct ttgcgcctct agaggcagcc actcatggat tcaagtcctg 480gggtcctccg atgctggcct ttgcgcctct agaggcagcc actcatggat tcaagtcctg 480
gctccgcctc ttccatcagg accacttttt ttagcgcgtg cgccaattct gcagacaaat 540gctccgcctc ttccatcagg accacttttt ttagcgcgtg cgccaattct gcagacaaat 540
ggctctagag gtacccgtta cataacttac ggtaaatggc ccgcctggct gaccgcccaa 600ggctctagag gtacccgtta cataacttac ggtaaatggc ccgcctggct gaccgcccaa 600
cgacccccgc ccattgacgt caatagtaac gccaataggg actttccatt gacgtcaatg 660cgacccccgc ccattgacgt caatagtaac gccaataggg actttccatt gacgtcaatg 660
ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc atatgccaag 720ggtggagtat ttacggtaaa ctgcccactt ggcagtacat caagtgtatc atatgccaag 720
tacgccccct attgacgtca atgacggtaa atggcccgcc tggcattgtg cccagtacat 780tacgccccct attgacgtca atgacggtaa atggcccgcc tggcattgtg cccagtacat 780
gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg ctattaccat 840gaccttatgg gactttccta cttggcagta catctacgta ttagtcatcg ctattaccat 840
ggtcgaggtg agccccacgt tctgcttcac tctccccatc tcccccccct ccccaccccc 900ggtcgaggtg agccccacgt tctgcttcac tctccccatc tcccccccct ccccaccccc 900
aattttgtat ttatttattt tttaattatt ttgtgcagcg atgggggcgg gggggggggg 960aattttgtat ttatttattt tttaattatt ttgtgcagcg atgggggcgg gggggggggg 960
ggggcgcgcg ccaggcgggg cggggcgggg cgaggggcgg ggcggggcga ggcggagagg 1020ggggcgcgcg ccaggcgggg cggggcgggg cgaggggcgg ggcggggcga ggcggagagg 1020
tgcggcggca gccaatcaga gcggcgcgct ccgaaagttt ccttttatgg cgaggcggcg 1080tgcggcggca gccaatcaga gcggcgcgct ccgaaagttt ccttttatgg cgaggcggcg 1080
gcggcggcgg ccctataaaa agcgaagcgc gcggcgggcg ggagtcgctg cgacgctgcc 1140gcggcggcgg ccctataaaa agcgaagcgc gcggcgggcg ggagtcgctg cgacgctgcc 1140
ttcgccccgt gccccgctcc gccgccgcct cgcgccgccc gccccggctc tgactgaccg 1200ttcgccccgt gccccgctcc gccgccgcct cgcgccgccc gccccggctc tgactgaccg 1200
cgttactccc acaggtgagc gggcgggacg gcccttctcc tccgggctgt aattagctga 1260cgttactccc acaggtgagc gggcgggacg gcccttctcc tccgggctgt aattagctga 1260
gcaagaggta agggtttaag ggatggttgg ttggtggggt attaatgttt aattacctgg 1320gcaagaggta agggtttaag ggatggttgg ttggtggggt attaatgttt aattacctgg 1320
agcacctgcc tgaaatcact ttttttcagg ttggaccggt gccaccatgt ccgtcctgac 1380agcacctgcc tgaaatcact ttttttcagg ttggaccggt gccaccatgt ccgtcctgac 1380
gccgctgctg ctgcggggct tgacaggctc ggcccggcgg ctcccagtgc cgcgcgccaa 1440gccgctgctg ctgcggggct tgacaggctc ggcccggcgg ctcccagtgc cgcgcgccaa 1440
gatccattcg ttgatggact ataaggacca cgacggagac tacaaggatc atgatattga 1500gatccattcg ttgatggact ataaggacca cgacggagac tacaaggatc atgatattga 1500
ttacaaagac gatgacgata agatggccgg tatccacgga gtcccagcag ccgacaagaa 1560ttacaaagac gatgacgata agatggccgg tatccacgga gtcccagcag ccgacaagaa 1560
gtacagcatc ggcctggaca tcggcaccaa ctctgtgggc tgggccgtga tcaccgacga 1620gtacagcatc ggcctggaca tcggcaccaa ctctgtgggc tgggccgtga tcaccgacga 1620
gtacaaggtg cccagcaaga aattcaaggt gctgggcaac accgaccggc acagcatcaa 1680gtacaaggtg cccagcaaga aattcaaggt gctgggcaac accgaccggc acagcatcaa 1680
gaagaacctg atcggagccc tgctgttcga cagcggcgaa acagccgagg ccacccggct 1740gaagaacctg atcggagccc tgctgttcga cagcggcgaa acagccgagg ccaccccggct 1740
gaagagaacc gccagaagaa gatacaccag acggaagaac cggatctgct atctgcaaga 1800gaagagaacc gccagaagaa gatacaccag acggaagaac cggatctgct atctgcaaga 1800
gatcttcagc aacgagatgg ccaaggtgga cgacagcttc ttccacagac tggaagagtc 1860gatcttcagc aacgagatgg ccaaggtgga cgacagcttc ttccacagac tggaagagtc 1860
cttcctggtg gaagaggata agaagcacga gcggcacccc atcttcggca acatcgtgga 1920cttcctggtg gaagaggata agaagcacga gcggcacccc atcttcggca acatcgtgga 1920
cgaggtggcc taccacgaga agtaccccac catctaccac ctgagaaaga aactggtgga 1980cgaggtggcc taccacgaga agtaccccac catctaccac ctgagaaaga aactggtgga 1980
cagcaccgac aaggccgacc tgcggctgat ctatctggcc ctggcccaca tgatcaagtt 2040cagcaccgac aaggccgacc tgcggctgat ctatctggcc ctggcccaca tgatcaagtt 2040
ccggggccac ttcctgatcg agggcgacct gaaccccgac aacagcgacg tggacaagct 2100ccggggccac ttcctgatcg agggcgacct gaaccccgac aacagcgacg tggacaagct 2100
gttcatccag ctggtgcaga cctacaacca gctgttcgag gaaaacccca tcaacgccag 2160gttcatccag ctggtgcaga cctacaacca gctgttcgag gaaaacccca tcaacgccag 2160
cggcgtggac gccaaggcca tcctgtctgc cagactgagc aagagcagac ggctggaaaa 2220cggcgtggac gccaaggcca tcctgtctgc cagactgagc aagagcagac ggctggaaaa 2220
tctgatcgcc cagctgcccg gcgagaagaa gaatggcctg ttcggaaacc tgattgccct 2280tctgatcgcc cagctgcccg gcgagaagaa gaatggcctg ttcggaaacc tgattgccct 2280
gagcctgggc ctgaccccca acttcaagag caacttcgac ctggccgagg atgccaaact 2340gagcctgggc ctgaccccca acttcaagag caacttcgac ctggccgagg atgccaaact 2340
gcagctgagc aaggacacct acgacgacga cctggacaac ctgctggccc agatcggcga 2400gcagctgagc aaggacacct acgacgacga cctggacaac ctgctggccc agatcggcga 2400
ccagtacgcc gacctgtttc tggccgccaa gaacctgtcc gacgccatcc tgctgagcga 2460ccagtacgcc gacctgtttc tggccgccaa gaacctgtcc gacgccatcc tgctgagcga 2460
catcctgaga gtgaacaccg agatcaccaa ggcccccctg agcgcctcta tgatcaagag 2520catcctgaga gtgaacaccg agatcaccaa ggcccccctg agcgcctcta tgatcaagag 2520
atacgacgag caccaccagg acctgaccct gctgaaagct ctcgtgcggc agcagctgcc 2580atacgacgag caccaccagg acctgaccct gctgaaagct ctcgtgcggc agcagctgcc 2580
tgagaagtac aaagagattt tcttcgacca gagcaagaac ggctacgccg gctacattga 2640tgagaagtac aaagagattt tcttcgacca gagcaagaac ggctacgccg gctacattga 2640
cggcggagcc agccaggaag agttctacaa gttcatcaag cccatcctgg aaaagatgga 2700cggcggagcc agccaggaag agttctacaa gttcatcaag cccatcctgg aaaagatgga 2700
cggcaccgag gaactgctcg tgaagctgaa cagagaggac ctgctgcgga agcagcggac 2760cggcaccgag gaactgctcg tgaagctgaa cagagaggac ctgctgcgga agcagcggac 2760
cttcgacaac ggcagcatcc cccaccagat ccacctggga gagctgcacg ccattctgcg 2820cttcgacaac ggcagcatcc cccaccagat ccacctggga gagctgcacg ccattctgcg 2820
gcggcaggaa gatttttacc cattcctgaa ggacaaccgg gaaaagatcg agaagatcct 2880gcggcaggaa gatttttacc cattcctgaa ggacaaccgg gaaaagatcg agaagatcct 2880
gaccttccgc atcccctact acgtgggccc tctggccagg ggaaacagca gattcgcctg 2940gaccttccgc atcccctact acgtgggccc tctggccagg ggaaacagca gattcgcctg 2940
gatgaccaga aagagcgagg aaaccatcac cccctggaac ttcgaggaag tggtggacaa 3000gatgaccaga aagagcgagg aaaccatcac cccctggaac ttcgaggaag tggtggacaa 3000
gggcgcttcc gcccagagct tcatcgagcg gatgaccaac ttcgataaga acctgcccaa 3060gggcgcttcc gccccagagct tcatcgagcg gatgaccaac ttcgataaga acctgcccaa 3060
cgagaaggtg ctgcccaagc acagcctgct gtacgagtac ttcaccgtgt ataacgagct 3120cgagaaggtg ctgcccaagc acagcctgct gtacgagtac ttcaccgtgt ataacgagct 3120
gaccaaagtg aaatacgtga ccgagggaat gagaaagccc gccttcctga gcggcgagca 3180gaccaaagtg aaatacgtga ccgagggaat gagaaagccc gccttcctga gcggcgagca 3180
gaaaaaggcc atcgtggacc tgctgttcaa gaccaaccgg aaagtgaccg tgaagcagct 3240gaaaaaggcc atcgtggacc tgctgttcaa gaccaaccgg aaagtgaccg tgaagcagct 3240
gaaagaggac tacttcaaga aaatcgagtg cttcgactcc gtggaaatct ccggcgtgga 3300gaaagaggac tacttcaaga aaatcgagtg cttcgactcc gtggaaatct ccggcgtgga 3300
agatcggttc aacgcctccc tgggcacata ccacgatctg ctgaaaatta tcaaggacaa 3360agatcggttc aacgcctccc tgggcacata ccacgatctg ctgaaaatta tcaaggacaa 3360
ggacttcctg gacaatgagg aaaacgagga cattctggaa gatatcgtgc tgaccctgac 3420ggacttcctg gacaatgagg aaaacgagga cattctggaa gatatcgtgc tgaccctgac 3420
actgtttgag gacagagaga tgatcgagga acggctgaaa acctatgccc acctgttcga 3480actgtttgag gacagagaga tgatcgagga acggctgaaa acctatgccc acctgttcga 3480
cgacaaagtg atgaagcagc tgaagcggcg gagatacacc ggctggggca ggctgagccg 3540cgacaaagtg atgaagcagc tgaagcggcg gagatacacc ggctggggca ggctgagccg 3540
gaagctgatc aacggcatcc gggacaagca gtccggcaag acaatcctgg atttcctgaa 3600gaagctgatc aacggcatcc gggacaagca gtccggcaag acaatcctgg atttcctgaa 3600
gtccgacggc ttcgccaaca gaaacttcat gcagctgatc cacgacgaca gcctgacctt 3660gtccgacggc ttcgccaaca gaaacttcat gcagctgatc cacgacgaca gcctgacctt 3660
taaagaggac atccagaaag cccaggtgtc cggccagggc gatagcctgc acgagcacat 3720taaagaggac atccagaaag cccaggtgtc cggccagggc gtagcctgc acgagcacat 3720
tgccaatctg gccggcagcc ccgccattaa gaagggcatc ctgcagacag tgaaggtggt 3780tgccaatctg gccggcagcc ccgccattaa gaagggcatc ctgcagacag tgaaggtggt 3780
ggacgagctc gtgaaagtga tgggccggca caagcccgag aacatcgtga tcgaaatggc 3840ggacgagctc gtgaaagtga tgggccggca caagcccgag aacatcgtga tcgaaatggc 3840
cagagagaac cagaccaccc agaagggaca gaagaacagc cgcgagagaa tgaagcggat 3900cagagagaac cagaccaccc agaagggaca gaagaacagc cgcgagagaa tgaagcggat 3900
cgaagagggc atcaaagagc tgggcagcca gatcctgaaa gaacaccccg tggaaaacac 3960cgaagagggc atcaaagagc tgggcagcca gatcctgaaa gaacaccccg tggaaaacac 3960
ccagctgcag aacgagaagc tgtacctgta ctacctgcag aatgggcggg atatgtacgt 4020ccagctgcag aacgagaagc tgtacctgta ctacctgcag aatgggcggg atatgtacgt 4020
ggaccaggaa ctggacatca accggctgtc cgactacgat gtggaccata tcgtgcctca 4080ggaccaggaa ctggacatca accggctgtc cgactacgat gtggaccata tcgtgcctca 4080
gagctttctg aaggacgact ccatcgacaa caaggtgctg accagaagcg acaagaaccg 4140gagctttctg aaggacgact ccatcgacaa caaggtgctg accagaagcg acaagaaccg 4140
gggcaagagc gacaacgtgc cctccgaaga ggtcgtgaag aagatgaaga actactggcg 4200gggcaagagc gacaacgtgc cctccgaaga ggtcgtgaag aagatgaaga actactggcg 4200
gcagctgctg aacgccaagc tgattaccca gagaaagttc gacaatctga ccaaggccga 4260gcagctgctg aacgccaagc tgattaccca gagaaagttc gacaatctga ccaaggccga 4260
gagaggcggc ctgagcgaac tggataaggc cggcttcatc aagagacagc tggtggaaac 4320gagaggcggc ctgagcgaac tggataaggc cggcttcatc aagagacagc tggtggaaac 4320
ccggcagatc acaaagcacg tggcacagat cctggactcc cggatgaaca ctaagtacga 4380ccggcagatc acaaagcacg tggcacagat cctggactcc cggatgaaca ctaagtacga 4380
cgagaatgac aagctgatcc gggaagtgaa agtgatcacc ctgaagtcca agctggtgtc 4440cgagaatgac aagctgatcc gggaagtgaa agtgatcacc ctgaagtcca agctggtgtc 4440
cgatttccgg aaggatttcc agttttacaa agtgcgcgag atcaacaact accaccacgc 4500cgatttccgg aaggatttcc agttttacaa agtgcgcgag atcaacaact accaccacgc 4500
ccacgacgcc tacctgaacg ccgtcgtggg aaccgccctg atcaaaaagt accctaagct 4560ccacgacgcc tacctgaacg ccgtcgtggg aaccgccctg atcaaaaagt accctaagct 4560
ggaaagcgag ttcgtgtacg gcgactacaa ggtgtacgac gtgcggaaga tgatcgccaa 4620ggaaagcgag ttcgtgtacg gcgactacaa ggtgtacgac gtgcggaaga tgatcgccaa 4620
gagcgagcag gaaatcggca aggctaccgc caagtacttc ttctacagca acatcatgaa 4680gagcgagcag gaaatcggca aggctaccgc caagtacttc ttctacagca acatcatgaa 4680
ctttttcaag accgagatta ccctggccaa cggcgagatc cggaagcggc ctctgatcga 4740ctttttcaag accgagatta ccctggccaa cggcgagatc cggaagcggc ctctgatcga 4740
gacaaacggc gaaaccgggg agatcgtgtg ggataagggc cgggattttg ccaccgtgcg 4800gacaaacggc gaaaccgggg agatcgtgtg ggataagggc cgggattttg ccaccgtgcg 4800
gaaagtgctg agcatgcccc aagtgaatat cgtgaaaaag accgaggtgc agacaggcgg 4860gaaagtgctg agcatgcccc aagtgaatat cgtgaaaaag accgaggtgc agacaggcgg 4860
cttcagcaaa gagtctatcc tgcccaagag gaacagcgat aagctgatcg ccagaaagaa 4920cttcagcaaa gagtctatcc tgcccaagag gaacagcgat aagctgatcg ccagaaagaa 4920
ggactgggac cctaagaagt acggcggctt cgacagcccc accgtggcct attctgtgct 4980ggactgggac cctaagaagt acggcggctt cgacagcccc accgtggcct attctgtgct 4980
ggtggtggcc aaagtggaaa agggcaagtc caagaaactg aagagtgtga aagagctgct 5040ggtggtggcc aaagtggaaa agggcaagtc caagaaactg aagagtgtga aagagctgct 5040
ggggatcacc atcatggaaa gaagcagctt cgagaagaat cccatcgact ttctggaagc 5100ggggatcacc atcatggaaa gaagcagctt cgagaagaat cccatcgact ttctggaagc 5100
caagggctac aaagaagtga aaaaggacct gatcatcaag ctgcctaagt actccctgtt 5160caagggctac aaagaagtga aaaaggacct gatcatcaag ctgcctaagt actccctgtt 5160
cgagctggaa aacggccgga agagaatgct ggcctctgcc ggcgaactgc agaagggaaa 5220cgagctggaa aacggccgga agagaatgct ggcctctgcc ggcgaactgc agaagggaaa 5220
cgaactggcc ctgccctcca aatatgtgaa cttcctgtac ctggccagcc actatgagaa 5280cgaactggcc ctgccctcca aatatgtgaa cttcctgtac ctggccagcc actatgagaa 5280
gctgaagggc tcccccgagg ataatgagca gaaacagctg tttgtggaac agcacaagca 5340gctgaagggc tcccccgagg ataatgagca gaaacagctg tttgtggaac agcacaagca 5340
ctacctggac gagatcatcg agcagatcag cgagttctcc aagagagtga tcctggccga 5400ctacctggac gagatcatcg agcagatcag cgagttctcc aagagagtga tcctggccga 5400
cgctaatctg gacaaagtgc tgtccgccta caacaagcac cgggataagc ccatcagaga 5460cgctaatctg gacaaagtgc tgtccgccta caacaagcac cgggataagc ccatcagaga 5460
gcaggccgag aatatcatcc acctgtttac cctgaccaat ctgggagccc ctgccgcctt 5520gcaggccgag aatatcatcc acctgtttac cctgaccaat ctgggagccc ctgccgcctt 5520
caagtacttt gacaccacca tcgaccggaa gaggtacacc agcaccaaag aggtgctgga 5580caagtacttt gacaccacca tcgaccggaa gaggtacacc agcaccaaag aggtgctgga 5580
cgccaccctg atccaccaga gcatcaccgg cctgtacgag acacggatcg acctgtctca 5640cgccaccctg atccaccaga gcatcaccgg cctgtacgag acacggatcg acctgtctca 5640
gctgggaggc gacaaaaggc cggcggccac gaaaaaggcc ggccaggcaa aaaagaaaaa 5700gctgggaggc gacaaaaggc cggcggccac gaaaaaggcc ggccaggcaa aaaagaaaaa 5700
ggaattcggc agtggagagg gcagaggaag tctgctaaca tgcggtgacg tcgaggagaa 5760ggaattcggc agtggagagg gcagaggaag tctgctaaca tgcggtgacg tcgaggagaa 5760
tcctggccca atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 5820tcctggccca atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 5820
cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 5880cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 5880
tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 5940tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 5940
ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga 6000ctggcccacc ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga 6000
ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 6060ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 6060
caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 6120caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 6120
cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 6180cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 6180
cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 6240cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 6240
gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 6300gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 6300
gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 6360gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 6360
cgacaaccac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga 6420cgacaaccac tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga 6420
tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 6480tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 6480
gtacaagtaa ctcgagcaga agaagtgacg gctgggggca cagtgggctg ggcgcccctg 6540gtacaagtaa ctcgagcaga agaagtgacg gctgggggca cagtggggctg ggcgcccctg 6540
cagaacatga accttccgct cctggctgcc acagggtcct ccgatgctgg cctttgcgcc 6600cagaacatga accttccgct cctggctgcc acagggtcct ccgatgctgg cctttgcgcc 6600
tctagaggca gccactcatg gattcaagtc ctggctccgc ctcttccatc aggaccacga 6660tctagaggca gccactcatg gattcaagtc ctggctccgc ctcttccatc aggaccga 6660
attctaacta gagctcgctg atcagcctcg actgtgcctt ctagttgcca gccatctgtt 6720attctaacta gagctcgctg atcagcctcg actgtgcctt ctagttgcca gccatctgtt 6720
gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 6780gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc 6780
taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 6840taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt 6840
ggggtggggc aggacagcaa gggggaggat tgggaagaga atagcaggca tgctggggag 6900ggggtggggc aggacagcaa gggggaggat tgggaagaga atagcaggca tgctggggag 6900
cggccgcagg aacccctagt gatggagttg gccactccct ctctgcgcgc tcgctcgctc 6960cggccgcagg aacccctagt gatggagttg gccactccct ctctgcgcgc tcgctcgctc 6960
actgaggccg ggcgaccaaa ggtcgcccga cgcccgggct ttgcccgggc ggcctcagtg 7020actgaggccg ggcgaccaaa ggtcgcccga cgcccgggct ttgcccgggc ggcctcagtg 7020
agcgagcgag cgcgcagctg cctgcagggg cgcctgatgc ggtattttct ccttacgcat 7080agcgagcgag cgcgcagctg cctgcagggg cgcctgatgc ggtattttct ccttacgcat 7080
ctgtgcggta tttcacaccg catacgtcaa agcaaccata gtacgcgccc tgtagcggcg 7140ctgtgcggta tttcacaccg catacgtcaa agcaaccata gtacgcgccc tgtagcggcg 7140
cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 7200cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 7200
tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 7260tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 7260
gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 7320gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 7320
accccaaaaa acttgatttg ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 7380accccaaaaa acttgatttg ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 7380
tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 7440tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 7440
gaacaacact caaccctatc tcgggctatt cttttgattt ataagggatt ttgccgattt 7500gaacaacact caaccctatc tcgggctatt cttttgattt ataagggatt ttgccgattt 7500
cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 7560cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 7560
tattaacgtt tacaatttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 7620tattaacgtt tacaatttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 7620
taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 7680taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 7680
cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 7740cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 7740
caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg 7800caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg 7800
ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc 7860ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc 7860
gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 7920gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 7920
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt 7980aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt 7980
tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag 8040tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag 8040
aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 8100aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 8100
aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa 8160aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa 8160
tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc 8220tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc 8220
aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag 8280aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag 8280
tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 8340tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 8340
ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 8400ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 8400
taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg 8460taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg 8460
agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa 8520agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa 8520
caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg caacaattaa 8580caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg caacaattaa 8580
tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg 8640tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg 8640
gctggtttat tgctgataaa tctggagccg gtgagcgtgg aagccgcggt atcattgcag 8700gctggtttat tgctgataaa tctggagccg gtgagcgtgg aagccgcggt atcattgcag 8700
cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg 8760cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg 8760
caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt 8820caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt 8820
ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt 8880ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt 8880
aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac 8940aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac 8940
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 9000gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 9000
atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 9060atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 9060
tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 9120tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 9120
gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 9180gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 9180
actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 9240actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 9240
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 9300gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 9300
agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 9360agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 9360
ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 9420ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 9420
aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc 9480aggcggacag gtatccggta agcggcaggg tcggaacagg aggagcgcacg agggagcttc 9480
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 9540cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 9540
gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 9600gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 9600
cctttttacg gttcctggcc ttttgctggc cttttgctca catgt 9645cctttttacg gttcctggcc ttttgctggc cttttgctca catgt 9645
<210> 2<210> 2
<211> 222<211> 222
<212> DNA<212>DNA
<213> Cox8A-3'UTR<213> Cox8A-3'UTR
<400> 2<400> 2
aggggtccgt tctgtccctc acactgtgac ctgaccagcc ccaccggccc atcctggtca 60aggggtccgt tctgtccctc acactgtgac ctgaccagcc ccaccggccc atcctggtca 60
tgttactgca tttgtggccg gcctcccctg gatcatgtca ttcaattcca gtcacctctt 120tgttactgca tttgtggccg gcctcccctg gatcatgtca ttcaattcca gtcacctctt 120
ctgcaatcat gacctcttga tgtctccatg gtgacctcct tgggggtcac tgaccctgct 180ctgcaatcat gacctcttga tgtctccatg gtgacctcct tgggggtcac tgaccctgct 180
tggtggggtc ccccttgtaa caataaaatc tatttaaact tt 222tggtggggtc ccccttgtaa caataaaatc tattaaact tt 222
<210> 3<210> 3
<211> 201<211> 201
<212> DNA<212>DNA
<213> SOD2-3'UTR<213> SOD2-3'UTR
<400> 3<400> 3
accacgatcg ttatgctgat cataccctaa tgatcccagc aagataatgt cctgtcttct 60accacgatcg ttatgctgat cataccctaa tgatcccagc aagataatgt cctgtcttct 60
aagatgtgca tcaagcctgg tacatactga aaaccctata aggtcctgga taatttttgt 120aagatgtgca tcaagcctgg tacatactga aaaccctata aggtcctgga taatttttgt 120
ttgattattc attgaagaaa catttatttt ccaattgtgt gaagtttttg actgttaata 180ttgattattc attgaagaaa catttatttt ccaattgtgt gaagtttttg actgttaata 180
aaagaatctg tcaaccatca a 201aaagaatctg tcaaccatca a 201
<210> 4<210> 4
<211> 162<211> 162
<212> DNA<212>DNA
<213> MRPS12-3'UTR<213> MRPS12-3'UTR
<400> 4<400> 4
cagaagaagt gacggctggg ggcacagtgg gctgggcgcc cctgcagaac atgaaccttc 60cagaagaagt gacggctggg ggcacagtgg gctgggcgcc cctgcagaac atgaaccttc 60
cgctcctggc tgccacaggg tcctccgatg ctggcctttg cgcctctaga ggcagccact 120cgctcctggc tgccacaggg tcctccgatg ctggcctttg cgcctctaga ggcagccact 120
catggattca agtcctggct ccgcctcttc catcaggacc ac 162catggattca agtcctggct ccgcctcttc catcaggacc ac 162
<210> 5<210> 5
<211> 146<211> 146
<212> DNA<212>DNA
<213> ATP5B-3'UTR<213>ATP5B-3'UTR
<400> 5<400> 5
ggggtctttg tcctctgtac tgtctctctc cttgccccta acccaaaaag cttcattttt 60ggggtctttg tcctctgtac tgtctctctc cttgccccta acccaaaaag cttcattttt 60
ctgtgtaggc tgcacaagag ccttgattga agatatattc tttctgaaca gtatttaagg 120ctgtgtaggc tgcacaagag ccttgattga agatatattc tttctgaaca gtatttaagg 120
tttccaataa aatgtacacc cctcag 146tttccaataa aatgtacacc cctcag 146
<210> 6<210> 6
<211> 141<211> 141
<212> DNA<212>DNA
<213> ATP5B-MLS<213>ATP5B-MLS
<400> 6<400> 6
atgttggggt ttgtgggtcg ggtggccgct gctccggcct ccggggcctt gcggagactc 60atgttggggt ttgtgggtcgggtggccgct gctccggcct ccggggcctt gcggagactc 60
accccttcag cgtcgctgcc cccagctcag ctcttactgc gggccgctcc gacggcggtc 120accccttcag cgtcgctgcc cccagctcag ctcttactgc gggccgctcc gacggcggtc 120
catcctgtca gggactatgc g 141catcctgtca gggactatgc g 141
<210> 7<210> 7
<211> 87<211> 87
<212> DNA<212>DNA
<213> Cox8A-MLS<213> Cox8A-MLS
<400> 7<400> 7
atgtccgtcc tgacgccgct gctgctgcgg ggcttgacag gctcggcccg gcggctccca 60atgtccgtcc tgacgccgct gctgctgcgg ggcttgacag gctcggcccg gcggctccca 60
gtgccgcgcg ccaagatcca ttcgttg 87gtgccgcgcg ccaagatcca ttcgttg 87
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212>DNA
<213> RP<213>RP
<400> 8<400> 8
tctccctgag cttcagggag 20tctccctgag cttcagggag 20
<210> 9<210> 9
<211> 63<211> 63
<212> DNA<212>DNA
<213> 2A<213> 2A
<400> 9<400> 9
ggcagtggag agggcagagg aagtctgcta acatgcggtg acgtcgagga gaatcctggc 60ggcagtggag agggcagagg aagtctgcta acatgcggtg acgtcgagga gaatcctggc 60
cca 63cca 63
<210> 10<210> 10
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 10<400> 10
ctcaccacct cttgctcag 19ctcaccacct cttgctcag 19
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 11<400> 11
ggctacacct tgacctaacg 20ggctacacct tgacctaacg 20
<210> 12<210> 12
<211> 326<211> 326
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 12<400> 12
aggacgaaac accgggtctt cgagaagacc tgttttagag ctagaaatag caagttaaaa 60aggacgaaac accgggtctt cgagaagacc tgttttagag ctagaaatag caagttaaaa 60
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgccag aagaagtgac 120taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgccag aagaagtgac 120
ggctgggggc acagtgggct gggcgcccct gcagaacatg aaccttccgc tcctggctgc 180ggctgggggc acagtggggct gggcgcccct gcagaacatg aaccttccgc tcctggctgc 180
cacagggtcc tccgatgctg gcctttgcgc ctctagaggc agccactcat ggattcaagt 240cacagggtcc tccgatgctg gcctttgcgc ctctagaggc agccactcat ggattcaagt 240
cctggctccg cctcttccat caggaccaca ctagtttttt tagcgcgtgc gccaattctg 300cctggctccg cctcttccat caggaccaca ctagtttttt tagcgcgtgc gccaattctg 300
cagacaaatg gctctagagg tacccg 326cagacaaatg gctctagagg tacccg 326
<210> 13<210> 13
<211> 39<211> 39
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 13<400> 13
atcttgtgga aaggacgaaa caccgggtct tcgagaaga 39atcttgtgga aaggacgaaa caccgggtct tcgagaaga 39
<210> 14<210> 14
<211> 42<211> 42
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 14<400> 14
gtaagttatg taacgggtac ctctagagcc atttgtctgc ag 42gtaagttatg taacgggtac ctctagagcc atttgtctgc ag 42
<210> 15<210> 15
<211> 451<211> 451
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 15<400> 15
accggtgcca ccatgtccgt cctgacgccg ctgctgctgc ggggcttgac aggctcggcc 60accggtgcca ccatgtccgt cctgacgccg ctgctgctgc ggggcttgac aggctcggcc 60
cggcggctcc cagtgccgcg cgccaagatc cattcgttga tggactataa ggaccacgac 120cggcggctcc cagtgccgcg cgccaagatc cattcgttga tggactataa ggaccacgac 120
ggagactaca aggatcatga tattgattac aaagacgatg acgataagat ggccggtatc 180ggagactaca aggatcatga tattgattac aaagacgatg acgataagat ggccggtatc 180
cacggagtcc cagcagccga caagaagtac agcatcggcc tggacatcgg caccaactct 240cacggagtcc cagcagccga caagaagtac agcatcggcc tggacatcgg caccaactct 240
gtgggctggg ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt caaggtgctg 300gtgggctggg ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt caaggtgctg 300
ggcaacaccg accggcacag catcaagaag aacctgatcg gagccctgct gttcgacagc 360ggcaacaccg accggcacag catcaagaag aacctgatcg gagccctgct gttcgacagc 360
ggcgaaacag ccgaggccac ccggctgaag agaaccgcca gaagaagata caccagacgg 420ggcgaaacag ccgaggccac ccggctgaag agaaccgcca gaagaagata caccagacgg 420
aagaaccgga tctgctatct gcaagagatc t 451aagaaccgga tctgctatct gcaagagatc t 451
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 16<400> 16
taagggctat cgtagttttc 20taagggctat cgtagttttc 20
<210> 17<210> 17
<211> 45<211> 45
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 17<400> 17
caccgtctcc ctgagcttca gggagtaagg gctatcgtag ttttc 45caccgtctcc ctgagcttca gggagtaagg gctatcgtag ttttc 45
<210> 18<210> 18
<211> 45<211> 45
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 18<400> 18
aaacgaaaac tacgatagcc cttactccct gaagctcagg gagac 45aaacgaaaac tacgatagcc cttactccct gaagctcagg gagac 45
<210> 19<210> 19
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 19<400> 19
atcccgtttc gtgcaagaat 20atcccgtttc gtgcaagaat 20
<210> 20<210> 20
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 20<400> 20
tctccctgag cttcagggag 20tctccctgag cttcagggag 20
<210> 21<210> 21
<211> 45<211> 45
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 21<400> 21
caccgtctcc ctgagcttca gggagatccc gtttcgtgca agaat 45caccgtctcc ctgagcttca gggagatccc gtttcgtgca agaat 45
<210> 22<210> 22
<211> 45<211> 45
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 22<400> 22
aaacattctt gcacgaaacg ggatctccct gaagctcagg gagac 45aaacattctt gcacgaaacg ggatctccct gaagctcagg gagac 45
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611005202.0A CN106520830B (en) | 2016-11-16 | 2016-11-16 | method for targeted editing of mitochondrial genome by using CRISPR/Cas9 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611005202.0A CN106520830B (en) | 2016-11-16 | 2016-11-16 | method for targeted editing of mitochondrial genome by using CRISPR/Cas9 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106520830A CN106520830A (en) | 2017-03-22 |
CN106520830B true CN106520830B (en) | 2019-12-10 |
Family
ID=58351910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611005202.0A Active CN106520830B (en) | 2016-11-16 | 2016-11-16 | method for targeted editing of mitochondrial genome by using CRISPR/Cas9 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106520830B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111263810A (en) | 2017-08-22 | 2020-06-09 | 纳匹基因公司 | Organelle genome modification using polynucleotide directed endonucleases |
CN108018310B (en) * | 2017-10-24 | 2020-07-28 | 苏州大学 | Construction method and application of inducible transgenic mouse cardiomyopathy animal model |
CN108410906A (en) * | 2018-03-05 | 2018-08-17 | 淮海工学院 | A kind of CRISPR/Cpf1 gene editing methods being applicable in Yu Haiyang shell-fish mitochondrial genomes |
CN108595914B (en) * | 2018-05-16 | 2021-06-25 | 湖南农业大学 | A high-precision prediction method for mitochondrial RNA editing sites in tobacco |
CN109207520B (en) * | 2018-09-25 | 2022-05-10 | 北京锦篮基因科技有限公司 | Gene medicine for Leber hereditary optic neuropathy |
CN109576304A (en) * | 2018-11-29 | 2019-04-05 | 西北农林科技大学 | A kind of universal transcript profile editor carrier and its construction method |
CN111560392B (en) * | 2020-05-07 | 2022-03-01 | 广州市妇女儿童医疗中心(广州市妇幼保健院、广州市儿童医院、广州市妇婴医院、广州市妇幼保健计划生育服务中心) | miRNA expression vector and its application |
CN112251468B (en) * | 2020-10-22 | 2023-04-04 | 钟刚 | Mitochondrial targeted gene editing complex, preparation method and application thereof, and mitochondrial genome editing method |
CN113717960B (en) * | 2021-08-27 | 2023-07-18 | 电子科技大学 | A new Cas9 protein, CRISPR-Cas9 genome-directed editing vector and genome editing method |
CN114540325B (en) | 2022-01-17 | 2022-12-09 | 广州医科大学 | Method for targeted DNA demethylation, fusion protein and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602935A (en) * | 2014-10-20 | 2016-05-25 | 聂凌云 | Novel mitochondrial genome editing tool |
-
2016
- 2016-11-16 CN CN201611005202.0A patent/CN106520830B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602935A (en) * | 2014-10-20 | 2016-05-25 | 聂凌云 | Novel mitochondrial genome editing tool |
Non-Patent Citations (2)
Title |
---|
CRISPR/Cas9 技术的发展及在基因组编辑中的应用;张凯丽等;《生物技术通报》;20160526(第5期);全文 * |
CRISPR/Cas9介导的基因组编辑技术;宁静等;《生物学通报》;20160420(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106520830A (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106520830B (en) | method for targeted editing of mitochondrial genome by using CRISPR/Cas9 | |
US20240078661A1 (en) | Rna molecules, methods of producing circular rna, and treatment methods | |
US11779657B2 (en) | Compositions and methods for mitochondrial genome editing | |
US20240156919A1 (en) | Dystrophin gene exon deletion using engineered nucleases | |
KR101952966B1 (en) | Vectors and sequences for the treatment of diseases | |
CN110904155B (en) | A base editor and its preparation method and application | |
KR102387830B1 (en) | Stable and minimal side effects for genome editing complex and nucleic acid encoding the same | |
CN107922953A (en) | Improve the nuclease of gene editing efficiency | |
CN1774500B (en) | An expression cassette and vector for transient or stable expression of exogenous molecules | |
CN112592900B (en) | Method for constructing oncolytic adeno-associated virus oAAVs expressing pyroptosis protein and its application | |
CN112138152A (en) | AAV vector-based coronavirus infection universal gene therapy medicine and preparation method thereof | |
CN114634923B (en) | Adenosine deaminase, base editor fusion protein, base editor system and use | |
US11530423B1 (en) | Composition for regulating production of ribonucleic acid | |
CN103014045A (en) | Recombinant HBV (Hepatitis B Virus) vector for expressing specific HBVshRNA (Hepatitis B Virus Short Hairpin Ribonucleic Acid) as well as construction method and application of vector | |
CN113583978A (en) | 3 kinds of recombinant adenovirus, RBD of SARS-CoV-2 Spike protein and their application | |
KR20230173145A (en) | Engineering B cell-based protein factories to treat serious diseases | |
CN109182379A (en) | It is a kind of with reducing triglycerides and the stem cell of cholesterol effect and its preparation method and application simultaneously | |
CN108004198B (en) | Method for establishing high-throughput drug screening model based on ICAM-1 signal channel | |
CN107090473A (en) | Antibacterial peptide PR39 and PG1 coexpression vector and turn PR39 and PG1 DNA murine preparation methods | |
CN109943563A (en) | Methods for CRISPR-Cas9 System-mediated Genome Knockout of Rabies Virus | |
CN112410375B (en) | Adenovirus vector AdC68XY, virus packaged by adenovirus vector AdC68XY and application of adenovirus vector AdC68XY | |
CN113774087A (en) | A method for constructing an animal model of dwarfism syndrome | |
CN109929864A (en) | Nucleotide sequence tWPRE and its expression vector and application | |
CN114181318B (en) | Recombinant adeno-associated virus for tissue-specific expression of IDUA fusion protein penetrating blood brain barrier and application thereof | |
CN115572735A (en) | Method for constructing recombinant adenovirus vector, recombinant adenovirus vector constructed by same and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |