CN106518094B - 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法 - Google Patents

一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法 Download PDF

Info

Publication number
CN106518094B
CN106518094B CN201610850563.9A CN201610850563A CN106518094B CN 106518094 B CN106518094 B CN 106518094B CN 201610850563 A CN201610850563 A CN 201610850563A CN 106518094 B CN106518094 B CN 106518094B
Authority
CN
China
Prior art keywords
alb
whisker
composite granule
preparation
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610850563.9A
Other languages
English (en)
Other versions
CN106518094A (zh
Inventor
肖国庆
杨潘
丁冬海
任耘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201610850563.9A priority Critical patent/CN106518094B/zh
Publication of CN106518094A publication Critical patent/CN106518094A/zh
Application granted granted Critical
Publication of CN106518094B publication Critical patent/CN106518094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种含有AlB2晶须的AlB2‑Al2O3复合粉体及其制备方法,所述的AlB2‑Al2O3复合粉体中含有AlB2晶须,AlB2晶须的晶须长度为1~38μm,AlB2晶须的直径为50~350nm。制备方法包括以容易获取且廉价的铝粉和氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成方法进行含有AlB2纳米晶须的AlB2‑Al2O3复合粉体的制备,制备得到的含有AlB2晶须的AlB2‑Al2O3复合粉体的纳米晶须的分散性好,能充分发挥纳米晶须的桥接作用,有助于提高AlB2‑Al2O3复合粉体的力学性能,以此为抗氧化剂的低碳含碳耐火材料的抗熔渣侵蚀性和热震稳定性也有了明显的提高。该制备方法不仅制备过程简单经济,生产成本大大降低,而且能降低能耗,更加节能环保,可广泛应用于转炉、钢包等冶金行业。

Description

一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法
技术领域
本发明属于无机非金属材料技术领域,特别涉及一种含有AlB2晶须的 AlB2-Al2O3复合粉体及其制备方法。
技术背景
随着含碳耐火材料在转炉、钢包等冶金行业的广泛应用,在使用过程中含碳耐火材料存在向钢液增碳、散热量大等问题也越来越突出,因此在制备超低碳钢、精品钢时就迫切需要开发低碳的含碳耐火材料。低碳含碳耐火材料中碳含量要求在5%以下,碳含量的降低使得耐火材料中的碳的分布均匀性明显降低。另外,含碳耐火材料存在的主要缺点是碳易被氧化和强度较低,这就产生了一个难题,既要使碳的含量保持在较低水平,又要保留低碳含碳耐火材料高的抗熔渣侵蚀性和热震稳定性。为解决这个问题,常加入一些传统的添加剂如Si、Al、Mg、Mg-Al、SiC、B4C粉等抑制碳的氧化与提高制品的强度。但Si、Al、Mg、Mg-Al等添加剂与碳反应,进一步降低碳的含量,从而降低低碳含碳耐火材料高的抗熔渣侵蚀性和热震稳定性,而SiC、B4C等含碳抗氧化剂,会增加低碳含碳耐火材料的碳含量。而AlB2的加入则不会带来碳含量的变化,目前,尚未有将AlB2应用于含碳耐火材料的报道,尤其是自蔓延高温合成法制备含有AlB2晶须的AlB2-Al2O3复合粉体并将其应用于耐火材料工业中的相关报道。
含有AlB2晶须的AlB2-Al2O3复合粉体具有较高的比表面积,活性高,在低碳含碳耐火材料中分散性好,可提高AlB2-Al2O3复合粉体的抗氧化性,另外,AlB2-Al2O3复合粉体中含有的AlB2晶须可以发挥其桥接作用,有助于增强低碳含碳耐火材料的韧性和抗拉强度,进一步提高低碳含碳耐火材料的抗熔渣侵蚀性和热震稳定性。
目前制备AlB2-Al2O3复合粉体的方法还可以采用固相烧结法,这种方法不但能耗高,合成温度高,生成周期较长,且产物中很难生成纳米晶须状的物质。自蔓延高温合成技术又叫燃烧合成,是近几十年发展起来制备无机材料的新技术;这种材料制备技术具有减少能耗,缩短反应时间,且合成的产物纯度较高等优点。
发明内容
针对现有技术中的缺陷和不足,本发明提供了一种含有AlB2晶须的 AlB2-Al2O3复合粉体及其制备方法,该方法不仅制备工艺简单经济,且通过一步的制备方法就能获得含有AlB2晶须的AlB2-Al2O3复合粉体。
为了实现上述任务,本发明采取如下技术解决方案:
一种含有AlB2晶须的AlB2-Al2O3复合粉体,所述的AlB2-Al2O3复合粉体中含有AlB2晶须,AlB2晶须的长度为1~38μm,AlB2晶须的直径为50~ 350nm。
具体的,包括以铝粉和氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成方法进行含有AlB2晶须的AlB2-Al2O3复合粉体的制备。
更具体的,按质量百分比计,铝粉为41.6%~50.6%,氧化硼为46.4%,铝镁合金为3%~12%,铝粉、氧化硼和铝镁合金质量百分比之和为100%。
优选的,按质量百分比计,铝粉为50.6%,氧化硼为46.4%,铝镁合金为3%。
优选的,按质量百分比计,铝粉为44.6%,氧化硼为46.4%,铝镁合金为9%。
优选的,按质量百分比计,铝粉为41.6%,氧化硼为46.4%,铝镁合金为12%。
所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,所述的自蔓延高温合成方法包括将铝粉与氧化硼粉按Al-B2O3相图进行配料,配料中加入铝镁合金混匀后干压成型得到试样,通过引燃剂引发试样进行自蔓延高温合成反应,反应后的试样进行粉碎研磨即得含有AlB2晶须的AlB2-Al2O3复合粉体。
具体的,将铝粉与氧化硼粉按Al-B2O3相图配料,配料中加入铝镁合金混匀后干压成相对理论密度为70%、直径为20mm和高为15mm的圆柱形试样进行自蔓延高温合成反应。
更具体的,所述的引燃剂包括C-Ti引燃剂,所述的C-Ti引燃剂是将碳粉和钛粉按摩尔比为1:1的用量混配制得。
本发明的优点为:
(1)本发明的含有AlB2晶须的AlB2-Al2O3复合粉体具有较高的比表面积,活性高,晶粒细,且性能优异等优点,AlB2晶须的晶须长度为1~ 38μm,AlB2纳米晶须的直径为50~350nm,且纳米晶须在低碳含碳耐火材料中分散性好,可提高AlB2-Al2O3复合粉体的抗氧化性。
(2)根据原位合成理论,本发明采用自蔓延高温合成技术制得的含有 AlB2晶须的AlB2-Al2O3复合粉体,AlB2晶须可以发挥其桥接作用,有助于增强低碳含碳耐火材料的韧性和抗拉强度,进一步提高低碳含碳耐火材料的抗熔渣侵蚀性和热震稳定性。该方法以铝粉与氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成进行含AlB2晶须的AlB2-Al2O3复合粉体的制备,不仅制备过程简单经济,生产成本大大降低,而且能降低能耗,更加节能环保。
附图说明
图1是本发明的工艺流程图;
图2为本发明实施例1制备的AlB2-Al2O3复合粉体的XRD图;
图3为本发明实施例1制备的AlB2-Al2O3复合粉体的SEM图;
图4是本发明实施例2制备的AlB2-Al2O3复合粉体的XRD图;
图5为本发明实施例2制备的AlB2-Al2O3复合粉体的SEM图;
图6是本发明实施例3制备的AlB2-Al2O3复合粉体的XRD图;
图7是本发明实施例3制备的AlB2-Al2O3复合粉体的SEM图;
以下结合附图和实施例对本发明作进一步的详细说明。
具体实施方式
本发明的含有AlB2晶须的AlB2-Al2O3复合粉体中,AlB2晶须的晶须长度为1~38μm,AlB2晶须的直径为50~350nm。
结合图1,本发明的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法包括以廉价的铝粉和氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成方法进行含有AlB2晶须的AlB2-Al2O3复合粉体的制备。
具体的,按质量百分比计,铝粉为41.6%~50.6%,氧化硼为46.4%,铝镁合金为3%~12%,铝粉、氧化硼和铝镁合金质量百分比之和为100%。
具体的,自蔓延高温合成方法包括将铝粉与氧化硼粉按Al-B2O3相图进行配料,加入铝镁合金粉,混匀后干压成型得到试样,通过引燃剂引发试样进行自蔓延高温合成反应,反应后的试样进行粉碎研磨即得含有AlB2晶须的AlB2-Al2O3复合粉体。
进一步的,将铝粉与氧化硼粉按Al-B2O3相图进行配料,加入铝镁合金粉,混匀后干压成相对理论密度为70%、直径为20mm和高为15mm的圆柱形试样进行自蔓延高温合成反应。
更进一步的,所述的引燃剂包括C-Ti引燃剂,所述的C-Ti引燃剂是将碳粉和钛粉按摩尔比为1:1的用量混配制得。
采用自蔓延高温合成技术制备AlB2-Al2O3复合粉体符合国家低碳环保的政策,且制备的AlB2-Al2O3复合粉体含有AlB2纳米晶须,这对提高可提高AlB2-Al2O3复合粉体的抗氧化性,进一步提高低碳含碳耐火材料的抗熔渣侵蚀性和热震稳定性方面具有重要意义。目前,国内还没有关于AlB2纳米晶须的相关研究报道。
以下是发明人给出的实施例,本发明不限于以下的实施例,在本发明给出的范围内,均能制备出的含有AlB2晶须的AlB2-Al2O3复合粉体。
实施例1:
本实施例采用铝粉(纯度≥99.0%)和氧化硼粉(纯度≥99.0%)为原料,铝镁合金(合金中镁质量百分比为5%)为添加剂,按质量百分比计,原料中铝粉为50.6%,原料氧化硼为46.4%,原料中铝镁合金为3%。将混合均匀的原料装入模具中,再对其进行干压成型,压制成直径为20mm、高度为 15mm、相对密度为70%的圆柱形试样;结束成型后,将试样进行脱模,然后放入自蔓延高温反应炉中,在试样上放置C-Ti引燃剂,自蔓延高温合成反应由置在试样上端的Ti-C反应产生的热量引发,而Ti和C反应则通过一根钨丝引发;
抽真空后,充入1.5MPa的纯氩气条件下,点火引燃试样发生自蔓延高温合成反应,而后待炉温降至室温后,关闭电源,开启炉门,将物料取出。对烧成的物料进行粉碎、研磨,即得含有AlB2晶须的AlB2-Al2O3复合粉体。
对实施例1制备的AlB2-Al2O3复合粉体进行了XRD及SEM分析,参见图2和3,说明实施例1制备的AlB2-Al2O3复合粉体含有AlB2晶须,该纳米晶须的长度约为5~20μm,直径约为120~237nm。经检测,本实施例制备得到的AlB2-Al2O3复合粉体所含的成分包括氧化铝(Al2O3)、铝(Al) 和二硼化铝(AlB2)。
实施例2:
本实施例与实施例1不同的是:按质量百分比计,原料中铝粉为44.6%,原料氧化硼为46.4%,原料中铝镁合金为9%。
对实施例2制备的AlB2-Al2O3复合粉体进行了XRD及扫描电镜(SEM) 分析,参见图4和5,说明实施例2制备的XRD含有AlB2纳米晶须,该纳米晶须的长度约为1~38μm,直径约为50~350nm。经检测,本实施例制备得到的AlB2-Al2O3复合粉体所含的成分包括氧化铝(Al2O3)、铝(Al) 和二硼化铝(AlB2)。
实施例3:
本实施例与实施例1不同的是:按质量百分比计,原料中铝粉为41.6%,原料氧化硼为46.4%,原料中铝镁合金为12%。
对实施例3制备的AlB2-Al2O3复合粉体进行了XRD及SEM分析,参见图6和7,说明实施例3制备的AlB2-Al2O3复合粉体含有AlB2纳米晶须,该纳米晶须的长度约为10~20μm、直径约为100~300nm。经检测,本实施例制备得到的AlB2-Al2O3复合粉体所含的成分包括氧化铝(Al2O3)、铝 (Al)和二硼化铝(AlB2)。

Claims (9)

1.一种含有AlB2晶须的AlB2-Al2O3复合粉体,其特征在于,所述的AlB2-Al2O3复合粉体中含有AlB2晶须,AlB2晶须的长度为1~38μm,AlB2晶须的直径为50~350nm;
含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法:包括以铝粉和氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成方法进行含有AlB2晶须的AlB2-Al2O3复合粉体的制备。
2.权利要求1所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,包括以铝粉和氧化硼粉为原料,铝镁合金为添加剂,采用自蔓延高温合成方法进行含有AlB2晶须的AlB2-Al2O3复合粉体的制备。
3.如权利要求2所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,按质量百分比计,铝粉为41.6%~50.6%,氧化硼为46.4%,铝镁合金为3%~12%,铝粉、氧化硼和铝镁合金质量百分比之和为100%。
4.如权利要求2所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,按质量百分比计,铝粉为50.6%,氧化硼为46.4%,铝镁合金为3%。
5.如权利要求2所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,按质量百分比计,铝粉为44.6%,氧化硼为46.4%,铝镁合金为9%。
6.如权利要求2所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,按质量百分比计,铝粉为41.6%,氧化硼为46.4%,铝镁合金为12%。
7.如权利要求2、3、4、5或6所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,所述的自蔓延高温合成方法包括将铝粉与氧化硼粉按Al-B2O3相图进行配料,配料中加入铝镁合金混匀后干压成型得到试样,通过引燃剂引发试样进行自蔓延高温合成反应,反应后的试样进行粉碎研磨即得含有AlB2晶须的AlB2-Al2O3复合粉体。
8.如权利要求7所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,将铝粉与氧化硼粉按Al-B2O3相图配料,配料中加入铝镁合金混匀后干压成相对理论密度为70%、直径为20mm和高为15mm的圆柱形试样进行自蔓延高温合成反应。
9.如权利要求7所述的含有AlB2晶须的AlB2-Al2O3复合粉体的制备方法,其特征在于,所述的引燃剂包括C-Ti引燃剂,所述的C-Ti引燃剂是将碳粉和钛粉按摩尔比为1:1的用量混配制得。
CN201610850563.9A 2016-09-26 2016-09-26 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法 Active CN106518094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610850563.9A CN106518094B (zh) 2016-09-26 2016-09-26 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610850563.9A CN106518094B (zh) 2016-09-26 2016-09-26 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN106518094A CN106518094A (zh) 2017-03-22
CN106518094B true CN106518094B (zh) 2018-06-12

Family

ID=58344247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610850563.9A Active CN106518094B (zh) 2016-09-26 2016-09-26 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN106518094B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077246A (en) * 1990-06-04 1991-12-31 Apollo Concepts, Inc. Method for producing composites containing aluminum oxide, aluminum boride and aluminum, and composites resulting therefrom
CN102503501A (zh) * 2011-11-15 2012-06-20 山东大学 原位生长二硼化锆晶须增韧陶瓷刀具材料及其一体化制备工艺
CN102849738A (zh) * 2012-09-21 2013-01-02 西安工程大学 一种纳米碳化硅晶须的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077246A (en) * 1990-06-04 1991-12-31 Apollo Concepts, Inc. Method for producing composites containing aluminum oxide, aluminum boride and aluminum, and composites resulting therefrom
CN102503501A (zh) * 2011-11-15 2012-06-20 山东大学 原位生长二硼化锆晶须增韧陶瓷刀具材料及其一体化制备工艺
CN102849738A (zh) * 2012-09-21 2013-01-02 西安工程大学 一种纳米碳化硅晶须的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
添加剂Mg对燃烧合成AlB2-Al2O3复合粉体物相组成的影响;殷汉青等;《人工晶体学报》;20160229;第45卷(第2期);第497页至第502页 *
铝粉粒度对自蔓延高温合成AlB2-Al2O3复合粉体的影响;张立等;《人工晶体学报》;20160131;第45卷(第1期);第295页至第299页 *

Also Published As

Publication number Publication date
CN106518094A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN101244940B (zh) 钢包渣线用金属复合低碳镁碳砖及其制备方法
CN101774818B (zh) 钢包包衬用铝/锌复合超低碳镁铝碳砖
CN103539467B (zh) 一种机压无碳刚玉尖晶石钢包衬砖及其制备方法
CN104177099B (zh) 一种微闭孔轻量刚玉耐火骨料及其制备方法
CN107879753A (zh) 一种碳化硅‑镁铝尖晶石复合耐火材料
Zhu et al. Formation of hollow MgO-rich spinel whiskers in low carbon MgO–C refractories with Al additives
CN107892575A (zh) 一种碳化硅‑六铝酸钙复合耐火材料
CN108751957A (zh) 一种精炼钢包用的无碳高纯铝镁机压砖及其制备方法
CN103664199B (zh) 以聚碳硅烷为结合剂制备碳化硅耐火材料的方法
CN102718514A (zh) 一种微孔高强刚玉-六铝酸钙复合耐火原料及其制备方法
CN110128154A (zh) 一种添加碳氮化钛的低碳镁碳砖及制备方法
CN103011862A (zh) 环保无碳中间包干式料
CN102765953A (zh) 一种含复合防氧化剂的镁碳砖及其制备方法
CN104261848A (zh) 一种含氧化铬的莫来石砖及其制备方法
CN107473756A (zh) 一种多用途含低维碳的陶瓷/炭复合材料及其生产方法
CN103464764A (zh) 一种金属基耐磨耐蚀表面涂层复合材料及其制备方法
CN101555150B (zh) 一种含纳米氧化锌的低碳镁碳砖
CN107602099A (zh) 一种含改性石墨转炉挡渣用低碳滑板砖及其制备方法
CN105084916B (zh) 一种耐腐蚀镁铝质耐火材料及其制备方法
CN101367669B (zh) 含B4C-C复合粉体和纳米TiC粉体的低碳镁碳砖及其制备方法
CN108751948A (zh) 一种含改性石墨中温预处理低碳镁质滑板砖及其制备方法
CN102180681B (zh) 一种高炉出铁口填充铝质炮泥及其制备方法
CN106518094B (zh) 一种含有AlB2晶须的AlB2-Al2O3复合粉体及其制备方法
CN105152663B (zh) 一种氮化硅结合氮化硅铁材料的制备方法
CN103159449A (zh) 一种利用高炉重矿渣制备的耐热混凝土

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant