CN106469994B - 电功率变换器和包括这种变换器的mri系统 - Google Patents

电功率变换器和包括这种变换器的mri系统 Download PDF

Info

Publication number
CN106469994B
CN106469994B CN201610658846.3A CN201610658846A CN106469994B CN 106469994 B CN106469994 B CN 106469994B CN 201610658846 A CN201610658846 A CN 201610658846A CN 106469994 B CN106469994 B CN 106469994B
Authority
CN
China
Prior art keywords
bridge
switch
current
bias current
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610658846.3A
Other languages
English (en)
Other versions
CN106469994A (zh
Inventor
A.W.H.J.德里伊斯森
N.J.H.斯拉亚特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puzhuo Technology Innovation Service Co.,Ltd.
Original Assignee
Lipaite Pu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lipaite Pu Technology Co Ltd filed Critical Lipaite Pu Technology Co Ltd
Publication of CN106469994A publication Critical patent/CN106469994A/zh
Application granted granted Critical
Publication of CN106469994B publication Critical patent/CN106469994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3852Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及电功率变换器和包括这种变换器的MRI系统,其中所述电功率变换器包括:至少一组4个可控功率开关,被布置在H‑桥中或包括连接到电压源的两个串联开关的两个开关桥臂的功能上等同的电路中,每一个功率开关包括反并联二极管;控制器,被配置为用消隐时间来控制开关,并具有针对负载电流的反馈回路;其特征在于第一偏置电流注入电路,被耦合到所述H‑桥的第一桥臂的中心点;以及第二偏置电流注入电路,被耦合到所述H‑桥的第二桥臂的中心点。本发明还涉及一种用于驱动梯度线圈的MRI扫描机。

Description

电功率变换器和包括这种变换器的MRI系统
技术领域
本发明涉及一种电功率变换器并涉及一种包括这种变换器的磁共振成像(MRI)系统。具体地,本发明涉及一种电功率变换器,被配置为补偿所谓的消隐时间误差。消隐时间补偿一般适用于用于驱动MRI系统中的梯度线圈的功率变换器。
背景技术
MRI系统中的梯度线圈用于提供用于执行成像测量的磁场,并需要必须受控的高电压和高电流。该电压一般为大约2000V以及以上。所需的峰值电流为大约600A以及以上。为了获得详细的MRI图像,电流必须精确地且重复地遵循参考。用于为梯度线圈供电的电压和电流由功率电子电路提供,功率电子电路包括在所谓的开关桥臂中布置的开关元件,它们一起形成H-桥。具有开关桥臂的这些功率电子电路需要消隐时间(即其中桥臂的所有开关同时打开的时间),这造成在低输出电流处精确地跟踪参考的问题。
为了生成高输出电压和高输出电流,一般使用具有输出滤波器的单H-桥或堆叠H-桥多层功率变换器。可以使用例如具有反向并联二极管的IGBT开关的单H-桥或代之以基本上具有并联二极管的任意电子受控开关。开关被用适用于H-桥的脉冲宽度调制方案(例如单极或双极PWM)控制。具有输出滤波器的堆叠H-桥由与输出滤波器串联放置的多个H-桥组成。其中每一个H-桥单元可以是如上所述的基本的H-桥,但也可以是由连接到电压源的两个串联开关的两个开关桥臂构成的任何功能上等同的电路。这种功能上等同的电路是dV/dt滤波的H-桥。在本专利说明书的剩余部分,流经负载的变换器的输出电流将被称为负载电流。
开关的脉冲宽度调制方案也包括消隐时间(停滞时间)。该消隐时间是顶部开关和底部开关(换言之:一个桥臂的所有开关)被指令关断的时间。添加该消隐时间以防止由于开关接通和关断延迟而导致对电压源短路(直通)。由于消隐时间上所需的边界,存在单个开关桥臂的顶部开关和底部开关两者均关断的时刻,在该时间期间,H-桥的输出电压由每一个开关桥臂中的电流的符号确定,因为这确定哪些并行二极管将导通。这种取决于电流的输出电压对变换器输出信号质量具有负面效果。该效果特别是在低负载电流处还响应于改变控制信号上的输出电压/电流生成死区(dead-band)。当使用更多H-桥单元时,消隐时间的效果变得更大,因为每一个H-桥单元需要特定消隐时间。为了向MRI应用中的梯度线圈提供所需的输出质量(电压/电流波形),负载电流一般受控于具有反馈电路的闭环中。测量负载电流并与参考信号进行比较;基于误差,改变开关信号以减小误差。由于在低输出电流处的死区,输出电流难以控制,提供在负载电流和参考信号之间具有大误差的差输出质量。
该问题在现有技术中得到解决,例如在国际专利申请WO2013/046099中,提出了通过所计算的补偿来补偿消隐时间误差的方法,而国际专利申请WO2012/020363建议在线自适应模型仿真。在美国专利US6535402中,对于开关信号所需的补偿是基于所测量的输出电流的符号来确定的。所提出的方法提供基于模型和测量的补偿,该基于模型和测量的补偿依赖于测量和知晓可变寄生元件参数,从而限制了这些方法的性能。
发明内容
本发明的目的是提供克服现有技术中的以上缺陷的电功率变换器和包括这种变换器的MRI系统。另外,本发明提出了一种电功率变换器,该电功率变换器包括:至少一组四个可控功率开关,被布置在H-桥中或包括连接到电压源的两个串联开关的两个开关桥臂的功能上等同的电路中;控制器,被配置为用消隐时间控制开关并具有针对负载电流的反馈回路;第一偏置电流注入电路,耦合到H-桥的第一开关桥臂的中心点;以及第二偏置电流注入电路,耦合到H-桥的第二开关桥臂的中心点。优选地,每一个功率开关包括反并联二极管。
因为本发明涉及用于强制H-桥的每一个开关桥臂的电流的方向的偏置电流注入电路,所以不需要测量或准确知晓寄生组件参数。通过强制H-桥的每一个开关桥臂的已知电流方向,在低负载电路处没有消隐时间误差,导致零死区和在低负载电流处的良好控制。因为偏置电流的有限幅度,消隐时间误差平移到更高负载电流幅度(正和负两者)。然而,因为系统增益在更高电流处增加,所以这是没有问题的,并且闭环反馈控制系统因此可以补偿误差。
在一个实施例中,电功率变换器包括dV/dt滤波器,所述滤波器包括:第一电感器,所述第一电感器耦合在H-桥的第一桥臂的中心点之间;以及第二电感器,所述第二电感器耦合在H-桥的第二桥臂的中心点之间。dV/dt滤波器还可以包括至少一个滤波器电容器和/或在H-桥配置中布置的四个二极管。
在一个优选实施例中,第一电流注入电路和第二电流注入电路被配置为将已知偏置电流注入相应的桥臂。可以控制电流源的偏置电流,使得桥臂开关时刻在低负载电流处的消隐时间期间被限定。
基本上,利用电流源连接到H-桥中的两个开关的串联连接(开关桥臂)的中心点(开关节点)来构建注入电路。因此,每一个H-桥需要两个电流源来补偿每一个开关桥臂。电流源的输出电流被配置使得开关时刻在低负载电流处的消隐时间期间被限定。桥臂电流被定义为流入桥臂的电流。利用低负载电流,偏置电流和桥臂电流的总和在从导通底部开关向导通顶部开关转换处为负,并且在从导通顶部开关向导通底部开关转换处为正。为了简化电流源的实现,电流源还可以分为两个电流源,其中每一个提供单极输出电流。
电流源的偏置电流优选地被控制使得偏置电流和从经由H-桥施加于负载的电压所得到的电流的总和在从导通底部开关向导通顶部开关转换处为负,并且在从导通顶部开关向导通底部开关转换处为正。
在一个实际的实施例中,电流源可以包括正电流源和负电流源的串联连接,其中心点耦合到H-桥的对应桥臂的中心点。
利用电路元件的电流源的可能实现可以包括串联开关加到每一个电流源的输出以通过电流源中所使用的开关中的反并联二极管来防止供应电压UDC的短路。开关节点电压上的补偿器可以用于确定正和负电流源之间的开关时刻。续流二极管加到电流源的输出,以当电流源的串联开关关断时提供路径。通过应用所提出的偏置电流注入,在低输出电流处移除了消隐时间误差和由消隐时间引发的死区,简化了高精度放大器的闭环反馈控制。在更高输出电压处,误差可以由闭环反馈控制系统补偿,导致整体增加的输出质量,例如负载电流和参考信号之间更少的差异。此外,这减少了滤波器电流纹波,并继而减少了放大器的电流纹波和负载电压。当放大器用在用于驱动梯度线圈的MRI应用中时,图像质量可以得到改进。
附图说明
现在将参考附图更详细地阐述本发明,在附图中:
-图1示出了根据现有技术的状态的H-桥;
-图2示出了根据现有技术的状态的具有LC输出滤波器和负载的堆叠H-桥;
-图3示出了根据现有技术的状态的具有dV/dt滤波器的H-桥;
-图4示出了根据现有技术的状态的控制系统;
-图5示出了根据本发明的第一实施例的H-桥;
-图6示出了与根据图5的H-桥相对应的波形;
-图7示出了根据本发明的第二实施例的H-桥;
-图8示出了与根据图7的H-桥相对应的波形;
-图9示出了电流源的可能实现;
-图10示出了与根据图7的H-桥相对应的在零负载电流处的波形;以及
-图11示出了与根据图7的H-桥相对应的在高负载电流处的波形。
具体实施方式
图1示出了根据现有技术的状态的具有并联二极管D1至D4的IGBT开关的单H-桥1。开关用S1至S4指示。桥连接到由UDC指示的电压源。开关被用适用于H-桥的脉冲宽度调制方案(例如单极或双极PWM)控制。开关是具有并联二极管的IGBT开关,但可以代之以使用基本上具有并联二极管的任何电子受控开关。
图2示出了具有输出滤波器的堆叠H-桥2,该堆叠H-桥2由与包括Lf1、Lf2和Cf的输出滤波器串联放置的多个H-桥单元1', 1''–1'''构成。其中每一个H-桥单元可以是如图1中所示的以上描述的基本H-桥,但还可以是由连接到电压源的两个串联开关的两个开关桥臂构成的任何功能上等同的电路。
图3示出了这种功能上等同的H-桥单元3是dV/dt滤波H-桥。变换器的输出连接端U1、U2由圆圈与穿过该圆圈的对角线指示,这些输出连接连接到由“L”和“R”的串联连接表示的负载。
图4示出了MRI应用中向梯度线圈提供所需的输出质量(电压/电流波形)的用于控制闭环中的负载电流的反馈电路4。测量负载电流并与参考信号进行比较;基于误差,改变开关信号以减小误差。由于在低输出电流处的死区,输出电流难以控制,提供在负载电流和参考信号之间具有大误差的差输出质量。
图5示出了根据本发明的电功率变换器5,电功率变换器5包括布置在H-桥中的至少一组四个可控功率开关S1-S4(每一个功率开关包括反并联二极管D1-D4)、具有消隐时间的控制器、针对负载电流Ia、Ib的反馈回路、耦合到H-桥的第一桥臂的中心点的第一偏置电流注入电路Iinj,a、和耦合到H-桥的第二桥臂的中心点的第二偏置电流注入电路Iinj,b
图6示出了针对电流源的示例性波形6,并且图7示出了电流源的简化实现7,该电流源分为两个电流源,每一个提供单极输出电流。
图8给出了针对图7中所示的电路的示例性电流波形8。电流源的偏置电流是受控的,使得偏置电流和从经由H-桥施加于负载的电压所得到的电流的总和在从导通底部开关(S2或S4)向导通顶部开关(S1或S3)转换处为负,并且在从导通顶部开关向导通底部开关转换处为正。
图9示出了电流源的可能实现9a、9b,其中“a”、“b”和“c”指示电流源的终端,“a”连接到总线电压的正侧,“b”连接到开关节点并且“c”连接到总线电压的负侧。电流源包括串联开关(SN和SP),该串联开关加到每一个电流源的输出以通过电流源中所使用的开关中的反并联二极管来防止供应电压UDC的短路。开关节点电压(Usn)上的比较器用于确定正和负电流源之间的开关时刻。续流二极管(DN和DP)加到电流源的输出,以当电流源的串联开关关断时提供路径。电流源中的辅助电压源(VP+、VP-、VN+、VN-)是提供足够电压以生成所需注入电流的低电压源。
图10示出了当 H-桥正以零负载电流工作时根据图9的电路的所得到的波形10。
图11示出了当以高负载电流工作时根据图9的电路的波形11。
附加示例
1. 电功率变换器,包括:
至少一组可控功率开关,被布置在H-桥中或包括连接到电压源的两个串联开关的两个开关桥臂的功能上等同的电路中;
控制器,被配置为用消隐时间来控制开关并具有针对负载电流的反馈回路;
其特征在于
第一偏置电流注入电路,被耦合到所述H-桥的第一桥臂的中心点;以及
第二偏置电流注入电路,被耦合到所述H-桥的第二桥臂的中心点。
2. 根据示例1所述的电功率变换器,其中所述第一和第二电流注入电路被配置为:将已知偏置电流注入到相应桥臂中。
3. 根据示例2所述的电功率变换器,其中所述电流源的偏置电流被控制使得所述偏置电流和从经由所述H-桥施加于负载的电压所得到的电流的总和在从导通底部开关向导通顶部开关转换处为负,并且在从导通顶部开关向导通底部开关转换处为正。
4. 根据前述示例中任一项所述的电功率变换器,其中每一个偏置电流注入电路包括正电流源和负电流源的串联连接,其中心点耦合到所述H-桥的对应桥臂的中心点。
5. 根据前述示例中任一项所述的电功率变换器,包括多个堆叠H-桥。
6. 用于驱动梯度线圈的MRI系统,其被提供有根据前述示例中任一项的电功率变换器。

Claims (4)

1.电功率变换器,包括:
至少一组可控功率开关,被布置在H-桥中或功能上等同的电路中,所述功能上等同的电路包括具有连接到电压源的两个串联开关的两个开关桥臂;
控制器,被配置为用消隐时间来控制开关并具有针对所述电功率变换器的输出电流的反馈回路;
第一偏置电流注入电路,被耦合到所述H-桥的第一桥臂或两个开关桥臂中的一个桥臂的中心点;以及
第二偏置电流注入电路,被耦合到所述H-桥的第二桥臂或两个开关桥臂中的另一桥臂的中心点;以及
其中所述第一和第二偏置电流注入电路被配置为:将已知偏置电流注入到相应桥臂中;
其特征在于:第一和第二偏置电流注入电路的偏置电流被控制使得所述偏置电流和从经由所述H-桥或所述等同的电路施加于负载的电压所得到的电流的总和在从导通底部开关向导通顶部开关转换处为负,并且在从导通顶部开关向导通底部开关转换处为正。
2.根据权利要求1所述的电功率变换器,其中每一个偏置电流注入电路包括正电流源和负电流源的串联连接,其中心点耦合到所述H-桥的对应桥臂的中心点。
3.根据前述权利要求中任一项所述的电功率变换器,包括多个堆叠H-桥。
4.用于驱动梯度线圈的MRI系统,其被提供有根据前述权利要求中任一项的电功率变换器。
CN201610658846.3A 2015-08-13 2016-08-12 电功率变换器和包括这种变换器的mri系统 Active CN106469994B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2015303A NL2015303B1 (en) 2015-08-13 2015-08-13 Electric power converter and MRI system comprising such converter.
NL2015303 2015-08-13

Publications (2)

Publication Number Publication Date
CN106469994A CN106469994A (zh) 2017-03-01
CN106469994B true CN106469994B (zh) 2019-04-16

Family

ID=55077583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610658846.3A Active CN106469994B (zh) 2015-08-13 2016-08-12 电功率变换器和包括这种变换器的mri系统

Country Status (5)

Country Link
US (1) US10234519B2 (zh)
KR (1) KR102603514B1 (zh)
CN (1) CN106469994B (zh)
DE (1) DE102016114430A1 (zh)
NL (1) NL2015303B1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3039076C (en) * 2016-10-19 2020-03-24 Imalog Inc. Hybrid rectifier
CN108107388B (zh) * 2017-12-25 2020-07-24 徐维正 一种基于电感应线圈的电流合成电路
CN108418406B (zh) * 2018-03-13 2019-08-13 上海东软医疗科技有限公司 一种梯度放大器及核磁共振成像设备
NL2022622B1 (en) 2019-02-22 2020-08-31 Prodrive Tech Bv Electric power converter with inductively coupled parallel power stacks
CN111092551A (zh) * 2019-12-30 2020-05-01 杭州意能电力技术有限公司 一种模块级联高压直流斩波器
CN113114136B (zh) * 2021-04-19 2022-11-25 重庆大学 一种基于自适应预测控制的梯度功率放大器及其设计方法
TWI812472B (zh) * 2022-09-19 2023-08-11 茂達電子股份有限公司 採用閉迴路的電感電流仿真電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467907A (zh) * 2002-07-12 2004-01-14 台达电子工业股份有限公司 逆变器及转换器停滞时间适应性补偿的方法及装置
CN101010862A (zh) * 2004-08-31 2007-08-01 Abb技术有限公司 电压源转换器
CN103069714A (zh) * 2010-08-13 2013-04-24 皇家飞利浦电子股份有限公司 切换模式的供电设备和方法
US8482319B1 (en) * 2007-04-09 2013-07-09 Marvell International Ltd. Current switch for high voltage process
CN103827687A (zh) * 2011-09-27 2014-05-28 皇家飞利浦有限公司 具有针对死时间和正向电压的补偿的梯度放大器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ260599A0 (en) * 1999-09-02 1999-09-23 Transgrid Partial discharge monitoring system for transformers
US7532012B2 (en) * 2006-07-07 2009-05-12 Ambient Corporation Detection and monitoring of partial discharge of a power line
US7286375B1 (en) * 2007-01-23 2007-10-23 Gm Global Technology Operations, Inc. Dead-time compensation method for electric drives
US7676333B2 (en) * 2007-11-06 2010-03-09 General Electric Company Method and apparatus for analyzing partial discharges in electrical devices
WO2014038421A1 (ja) * 2012-09-10 2014-03-13 株式会社東芝 画像診断装置、及び、画像診断装置の電力制御方法
EP2800265A1 (en) * 2013-05-03 2014-11-05 ALSTOM Technology Ltd Converter
US9436196B2 (en) * 2014-08-20 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Voltage regulator and method
JP6476669B2 (ja) * 2014-09-05 2019-03-06 株式会社デンソー 高周波icおよび無線通信用モジュール
US9460760B2 (en) * 2015-01-23 2016-10-04 Globalfoundries Inc. Data-dependent self-biased differential sense amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467907A (zh) * 2002-07-12 2004-01-14 台达电子工业股份有限公司 逆变器及转换器停滞时间适应性补偿的方法及装置
CN101010862A (zh) * 2004-08-31 2007-08-01 Abb技术有限公司 电压源转换器
US8482319B1 (en) * 2007-04-09 2013-07-09 Marvell International Ltd. Current switch for high voltage process
CN103069714A (zh) * 2010-08-13 2013-04-24 皇家飞利浦电子股份有限公司 切换模式的供电设备和方法
CN103827687A (zh) * 2011-09-27 2014-05-28 皇家飞利浦有限公司 具有针对死时间和正向电压的补偿的梯度放大器

Also Published As

Publication number Publication date
CN106469994A (zh) 2017-03-01
DE102016114430A1 (de) 2017-02-16
KR20170020235A (ko) 2017-02-22
KR102603514B1 (ko) 2023-11-17
US20170045596A1 (en) 2017-02-16
US10234519B2 (en) 2019-03-19
NL2015303B1 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
CN106469994B (zh) 电功率变换器和包括这种变换器的mri系统
CN106998155B (zh) 抑制与全桥逆变器配合的变压器偏磁的方法
CN108880311B (zh) 一种多电平逆变器的箝位调制方法、装置及逆变器
US8576581B2 (en) Circuit for controlling the current in an electrical control member or the voltage across the terminals of said electrical control member
CN101553977A (zh) 用于转换电流的装置
JP2010268584A (ja) インバータ
KR20130048139A (ko) 멀티레벨 인버터용 데드타임을 제어하는 전류벡터
US20230116269A1 (en) Determination of filter parameters in an inverter
CN102510233A (zh) 多功能电流脉冲发射机及控制方法
Xiao et al. Study on a highly stabilized pulsed power supply for high magnetic fields
Zhang Investigation of approaches for improving the performance and fault tolerance of permanent magnet synchronous machine drives using current-source inverters
CA2016479C (en) Corrective device for inverter output voltage error
Schmitt et al. A novel modulation scheme for a modular multiphase multilevel converter in a power hardware-in-the-loop emulation system
Schellekens et al. Elimination of zero-crossing distortion for high-precision amplifiers
CN105785295B (zh) 一种基于多级耦合电感优化设计的梯度功率放大器
TW202046623A (zh) 直流脈衝電源裝置
JP2008005636A (ja) 電力変換装置
US11621650B2 (en) Method for current limitation in the event of transient voltage variations at an AC output of a multi-level inverter and a multi-level inverter
Changizian et al. A novel FPGA control scheme to improve power factor and reduce the harmonic distortion in a three phase VIENNA rectifier
TW202110052A (zh) 直流脈衝電源裝置
CN110572068A (zh) 一种附加控制信号的电流源接入装置
NL2022622B1 (en) Electric power converter with inductively coupled parallel power stacks
WO2012176178A2 (en) Multi-level inverter
Reiff et al. Investigation on blanking time effects regarding cross currents in time-staggered switching mode
Li et al. Digital controlled MOSFET gradient amplifier for magnetic resonance imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211029

Address after: Holland Enmusang

Patentee after: Puzhuo Technology Innovation Service Co.,Ltd.

Address before: Holland Enmusang

Patentee before: Prodrive Technologies B.V.

TR01 Transfer of patent right