CN106450623A - 一种基于环形器的差分对线接口 - Google Patents

一种基于环形器的差分对线接口 Download PDF

Info

Publication number
CN106450623A
CN106450623A CN201611102463.4A CN201611102463A CN106450623A CN 106450623 A CN106450623 A CN 106450623A CN 201611102463 A CN201611102463 A CN 201611102463A CN 106450623 A CN106450623 A CN 106450623A
Authority
CN
China
Prior art keywords
differential pair
pair line
micro
microstrip
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611102463.4A
Other languages
English (en)
Other versions
CN106450623B (zh
Inventor
李霞
孙浩
胡卫东
高静
侯艳茹
袁士涛
吴莹莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sun Create Electronic Co Ltd
Original Assignee
Anhui Sun Create Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sun Create Electronic Co Ltd filed Critical Anhui Sun Create Electronic Co Ltd
Priority to CN201611102463.4A priority Critical patent/CN106450623B/zh
Publication of CN106450623A publication Critical patent/CN106450623A/zh
Application granted granted Critical
Publication of CN106450623B publication Critical patent/CN106450623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

本发明属于PCB电路设计领域,具体涉及一种基于环形器的差分对线接口。本差分对线接口包括微带混合环,微带混合环的输入端接50Ω射频端口,微带混合环的隔离端接50Ω表贴电阻;本差分对线接口还包括差分对线,构成差分对线的每根微带线的输入端口经由一个匹配巴伦连接至微带混合环:微带混合环、50Ω表贴电阻、匹配巴伦以及差分对线贴附于介质板的一侧板面处,介质板的另一侧板面覆铜;介质板上设置空气腔。本发明结构紧凑而工作可靠性高,不但可在PCB板上直接将射频信号转化为差分信号,以便于送入到所需的集成芯片上,同时还能够保证整体结构的紧凑化和简约化,进而达到产品愈加小型化和集成化的应用要求。

Description

一种基于环形器的差分对线接口
技术领域
本发明属于PCB电路设计领域,具体涉及一种基于环形器的差分对线接口。
背景技术
在传统无线收发器设计中,50Ω单端接口广泛用于射频和中频电路,而在现代收发器设计中,差分接口常用在高频电路中以获得更好的性能。单端信号是一种不平衡信号,是通过信号与固定参考点之间的差值来进行衡量的;一旦有误差源被引入信号路径,就会产生问题。因此,单端信号很容易受噪声和电磁耦合干扰的影响。差分信号则是由成对的平衡信号组成,这些信号幅度相同,相位相反;正和负平衡信号之间的差值对应于复合差分信号。如果误差被引入差分系统路径中,它将以相同的幅度同时增加到两个平衡信号上,使得差分信号链不易受噪声和干扰的影响;差分信号的上述固有的误差抵消功能还可以提供更好的共模抑制比(CMRR)和电源抑制比(PSSR)。因此,差分信号在高端电子设计领域,尤其是PCB板设计中应用越来越广泛。
有鉴于此,实际设计过程中,显然需要一套优良的转换电路,从而有效的实现50Ω单端接口与差分信号的互连问题。传统的50Ω单端接口与差分信号的互连都是采用差分放大电路或单端-差分转化器等方式来实现,该类方式一方面电路面积较大,显然已经不适用于越来越要求小型化和高度集成化的产品设计中;另一方面结构也较为复杂,随之带来制作研发成本的高昂化。如何寻求一种新型的转换结构,能够在有效解决目前50Ω单端接口与差分信号的互连问题的同时,还能够保证整体结构的紧凑化和简约化,达到产品愈加小型化和集成化的应用要求,为本领域技术人员近年来所亟待解决的技术难题。
发明内容
本发明的目的为克服上述现有技术的不足,提供一种更为高效快捷的基于环形器的差分对线接口,其结构紧凑而工作可靠性高,不但可在PCB板上直接将射频信号转化为差分信号,以便于送入到所需的集成芯片上,同时还能够保证整体结构的紧凑化和简约化,进而达到产品愈加小型化和集成化的应用要求。
为实现上述目的,本发明采用了以下技术方案:
一种基于环形器的差分对线接口,其特征在于:本差分对线接口包括微带混合环,微带混合环的输入端接50Ω射频端口,微带混合环的隔离端接50Ω表贴电阻;本差分对线接口还包括由两根彼此平行等宽且紧耦合的微带线形成的差分对线,构成差分对线的每根微带线的输入端口分别经由一个匹配巴伦连接至微带混合环的其中一个输出端处,且构成差分对线的每根微带线的输出端口连接外部差分信号接收设备:所述微带混合环、50Ω表贴电阻、匹配巴伦以及差分对线位于同一块平面微带板上且该平面微带板贴附于作为安置基体的介质板的一侧板面处,介质板的另一侧板面覆铜;介质板上的用于贴附微带混合环的一侧板面凹设有槽腔,从而使得平面微带板与该槽腔共同围合形成空气腔。
所述匹配巴伦外形为三角形渐变线状,两条匹配巴伦的相邻边彼此平行且该相邻边平行差分对线长度方向。
所述差分对线的阻抗为100Ω,构成差分对线的两根微带线的宽度为0.25mm,构成差分对线的两根微带线之间的间距为0.25mm;以差分对线长度方向为匹配巴伦长度方向,所述匹配巴伦长度为3mm。
由空气腔的槽底处垂直的向平面微带板处凸设有短路圆柱,所述短路圆柱与微带混合环彼此同轴。
以介质板厚度方向为空气腔腔体高度方向,所述空气腔腔体高度为1.3mm。
介质板所用材质为Rogers 4350板材,其介电常数为3.66,厚度为0.508mm。
贯穿平面微带板及介质板而开设有金属化通孔,所述金属化通孔的开设位置与微带混合环、50Ω表贴电阻、匹配巴伦以及差分对线间彼此避让。
本发明的有益效果在于:
1)、抛弃了传统的采用差分放大电路或单端-差分转化器等方式实现射频信号与差分信号转换,所带来的诸如构造复杂及设备体积大等诸多缺陷。本发明通过采用微带混合环将射频信号进行双端口的彼此反相转换及输出,并依靠匹配巴伦将微带混合环的双输出端平稳匹配至阻抗为100欧姆的差分对线处,再通过一对平行等宽紧耦合线所形成的差分对线来实现差分信号的可靠传输效果。50欧姆表贴电阻,作为连接至微带混合环隔离端处的负载,其作用在于将微带混合环的隔离端处的信号匹配吸收,从而提高微带混合环两输出端之间的隔离度。短路圆柱则起到匹配驻波的作用。上述各结构以平面微带板的结构而至于介质板上,整体尺寸较小,可以根据PCB布图的需要随意摆放,形式简单,结构紧凑。
综上可知,本发明结构紧凑而工作可靠性高其解决了微带板上天馈射频信号直接转换差分信号的问题,不但可直接在PCB板上将射频信号转化为差分信号,以便于送入到所需的集成芯片上,同时还能够保证整体结构的紧凑化和简约化,进而达到产品愈加小型化和集成化的应用要求。
2)、本发明由于采用了三角形渐变线状的匹配巴伦,从而可使得微带混合环输出端口处的50Ω微带线与100欧姆的差分对线实现较好的匹配状态。实际操作时,可通过调节匹配巴伦的长度,使得不同的长度值可对应实现本发明的驻波和插损。通过上述长度值的不断调节和择优选取,最终可使匹配巴伦实现最为良好的接口转换效果;其工作频段内损耗较小,VSWR较低,可普遍适用于微带板的差分对线接口转换中。
3)、微带形式的差分对线要实现100欧姆的特性阻抗,关键是通过调节构成该差分对线的两条微带线的宽度及其两线之间间距。在将两线之间间距优化值定位0.25mm的前提下,调节两条微带线的宽度。通过比较差分对线的驻波和插损的性能,最终宽度选为为0.25mm,此时驻波最好,插损最小。
附图说明
图1为本发明的模型图;
图2为微带混合环的结构原理图;
图3为发明的测试结构图;
图4本发明的损耗仿真结果;
图5本发明的驻波仿真结果;
图6为图3所示测试结构的损耗实测结果;
图7为图3所示测试结构的驻波实测结果。
附图中各标号与本发明的各部件名称对应关系如下:
a-平面微带板 b-金属化通孔 c-固定孔
10-微带混合环 20-50Ω表贴电阻 30-差分对线 40-匹配巴伦
50-介质板 51-空气腔 52-短路圆柱
具体实施方式
为便于理解,此处结合附图对本发明的具体实施结构及工作流程作以下描述:
本发明的具体结构,如图1-2所示,其包括作为承载体的介质板50。介质板50的一侧板面覆铜,而另一侧板面设置槽腔结构;在该槽腔结构上覆盖有如图1所述的平面微带板a。平面微带板a的主体结构包括微带混合环10、50Ω表贴电阻20、匹配巴伦40以及差分对线30。其中:参照图2所示,射频信号由微带混合环10的输入端也即图2中的端口④输入,转而形成等幅反相信号再由两个输出端也即图2中端口②和端口③,最后经过三角形渐变线状的匹配巴伦40转化成差分信号并进入差分对线30,最终再由差分对线30传输至外部的相应接收模块处。图1及图3中所示的短路圆柱52,则起到匹配微带混合环10的作用。匹配巴伦40为三角形渐变线状构造,通过调节匹配巴伦40的长度使之实现良好的接口转换,进而实现良好的性能指标。不同的匹配巴伦40长度值对本发明的驻波和插损影响如表1所示。通过表1可以看出匹配巴伦40长度值L=3mm时,本发明的驻波≤1.03,插损≤0.39dB。
表1
渐变线长度(mm) 驻波 插损(dB)
L=2 1.36 1.74
L=2.5 1.21 0.95
L=3 1.03 0.39
L=3.5 1.29 0.67
L=4 1.39 1.58
微带混合环10的工作原理可如图2所示,各支路的电阻20均为倍的端口输入电阻20值。当需要作等幅同相输出时,通过端口①输入的信号均经过1/4波长到达作为输出端的端口②和端口③,即可形成等幅同相的输出信号。当需要作等幅反相输出时,通过端口④输入的信号经过3/4波长到达端口②,经过1/4波长到达端口③,所以端口②和端口③输出的信号幅度相等相位相差180°,本发明所使用的即为该种输出模式。
对于微带形式的差分对线30,要实现100欧姆的特性阻抗关键是通过调节两条微带线的宽度及两线间距,在将两线间距的优化值S定位0.25mm的前提下,调节两条微带线的宽度W,通过比较差分对线30的驻波和插损的性能,最终可选定宽度W为0.25mm,此时驻波最好,插损最小。不同的宽度在两线间距为0.25mm时对差分对线30驻波和插损的影响如下表2所示:
表2
宽度W(mm) 两线间距S(mm) 驻波 插损(dB)
W=0.2 S=0.25 1.1 0.62
W=0.25 S=0.25 1.04 0.23
W=0.3 S=0.25 1.06 0.36
由于直接将单个的本发明进行测试时,往往无法有效的比对其损耗值,因此在实际进行测试时,可如图3所示,将用于实际使用的两个结构完全一致的本发明以差分对线30彼此对接的方式相连接。其中,固定孔c用于实现本发明或图3所示测试结构的固定,同时还贯穿介质板50及平面微带板a从而密布金属化通孔b。通过两个差分对线接口处输入端之间的传输系数及反射系数,可以验证本发明的工作性能,具体测试构造参照图3所示。
测试环境选择在24GHz~24.3GHz的工作频带内,由图3结构经实际测试后可知:该测试结构整体损耗为0.8dB,所以一个差分对线接口转换巴伦40的损耗为0.4dB,损耗仿真结果如图4所示。而由图5可看出,该测试结构的两个输入端在工作频段内的驻波均小于1.05,实现了较好的端口匹配。如图6所示,该测试结构在工作频带内的整体插损约为1dB左右,即单个差分对线接口转换的损耗为0.5dB,与仿真结果较为吻合。如图7所示,该测试结构在工作频带内的两个SMA端口驻波均小于1.25,因此显然实现了良好的端口匹配功能。

Claims (7)

1.一种基于环形器的差分对线接口,其特征在于:本差分对线接口包括微带混合环(10),微带混合环(10)的输入端接50Ω射频端口,微带混合环(10)的隔离端接50Ω表贴电阻(20);本差分对线接口还包括由两根彼此平行等宽且紧耦合的微带线形成的差分对线(30),构成差分对线(30)的每根微带线的输入端口分别经由一个匹配巴伦(40)连接至微带混合环(10)的其中一个输出端处,且构成差分对线(30)的每根微带线的输出端口连接外部差分信号接收设备:所述微带混合环(10)、50Ω表贴电阻(20)、匹配巴伦(40)以及差分对线(30)位于同一块平面微带板(a)上且该平面微带板(a)贴附于作为安置基体的介质板(50)的一侧板面处,介质板(50)的另一侧板面覆铜;介质板(50)上的用于贴附微带混合环(10)的一侧板面凹设有槽腔,从而使得平面微带板(a)与该槽腔共同围合形成空气腔(51)。
2.根据权利要求1所述的一种基于环形器的差分对线接口,其特征在于:所述匹配巴伦(40)外形为三角形渐变线状,两条匹配巴伦(40)的相邻边彼此平行且该相邻边平行差分对线(30)长度方向。
3.根据权利要求2所述的一种基于环形器的差分对线接口,其特征在于:所述差分对线(30)的阻抗为100Ω,构成差分对线(30)的两根微带线的宽度为0.25mm,构成差分对线(30)的两根微带线之间的间距为0.25mm;以差分对线(30)长度方向为匹配巴伦(40)长度方向,所述匹配巴伦(40)长度为3mm。
4.根据权利要求1或2或3所述的一种基于环形器的差分对线接口,其特征在于:由空气腔(51)的槽底处垂直的向平面微带板(a)处凸设有短路圆柱(52),所述短路圆柱(52)与微带混合环(10)彼此同轴。
5.根据权利要求1或2或3所述的一种基于环形器的差分对线接口,其特征在于:以介质板(50)厚度方向为空气腔(51)腔体高度方向,所述空气腔(51)腔体高度为1.3mm。
6.根据权利要求1或2或3所述的一种基于环形器的差分对线接口,其特征在于:介质板(50)所用材质为Rogers 4350板材,其介电常数为3.66,厚度为0.508mm。
7.根据权利要求1或2或3所述的一种基于环形器的差分对线接口,其特征在于:贯穿平面微带板(a)及介质板(50)而开设有金属化通孔(b),所述金属化通孔(b)的开设位置与微带混合环(10)、50Ω表贴电阻(20)、匹配巴伦(40)以及差分对线(30)间彼此避让。
CN201611102463.4A 2016-12-05 2016-12-05 一种基于环形器的差分对线接口 Active CN106450623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611102463.4A CN106450623B (zh) 2016-12-05 2016-12-05 一种基于环形器的差分对线接口

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611102463.4A CN106450623B (zh) 2016-12-05 2016-12-05 一种基于环形器的差分对线接口

Publications (2)

Publication Number Publication Date
CN106450623A true CN106450623A (zh) 2017-02-22
CN106450623B CN106450623B (zh) 2021-07-23

Family

ID=58223281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611102463.4A Active CN106450623B (zh) 2016-12-05 2016-12-05 一种基于环形器的差分对线接口

Country Status (1)

Country Link
CN (1) CN106450623B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972232A (zh) * 2017-03-28 2017-07-21 石家庄创天电子科技有限公司 功率分配器
CN115455886A (zh) * 2022-08-05 2022-12-09 上海移柯通信技术股份有限公司 Pcb板设计方法、pcb板、电子设备、存储介质及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476650A (zh) * 2000-11-28 2004-02-18 艾利森电话股份有限公司 射频放大电路
CN102804485A (zh) * 2009-05-20 2012-11-28 加利福尼亚大学董事会 利用复合右/左手相位超前/延迟线的双工器合成
DE102012107658A1 (de) * 2011-08-22 2013-02-28 Infineon Technologies Ag Koppler und Verfahren zum Umsetzen von Signalen
WO2013128795A1 (ja) * 2012-02-29 2013-09-06 パナソニック株式会社 電磁共鳴結合器
CN103390785A (zh) * 2012-05-08 2013-11-13 德克萨斯仪器股份有限公司 无终止件的功率分离器/组合器
CN204424433U (zh) * 2015-03-09 2015-06-24 中国地质大学(武汉) 一种缺陷地结构的新型演化微带巴伦
CN206271848U (zh) * 2016-12-05 2017-06-20 安徽四创电子股份有限公司 一种基于环形器的差分对线接口

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476650A (zh) * 2000-11-28 2004-02-18 艾利森电话股份有限公司 射频放大电路
CN102804485A (zh) * 2009-05-20 2012-11-28 加利福尼亚大学董事会 利用复合右/左手相位超前/延迟线的双工器合成
DE102012107658A1 (de) * 2011-08-22 2013-02-28 Infineon Technologies Ag Koppler und Verfahren zum Umsetzen von Signalen
WO2013128795A1 (ja) * 2012-02-29 2013-09-06 パナソニック株式会社 電磁共鳴結合器
CN103390785A (zh) * 2012-05-08 2013-11-13 德克萨斯仪器股份有限公司 无终止件的功率分离器/组合器
CN204424433U (zh) * 2015-03-09 2015-06-24 中国地质大学(武汉) 一种缺陷地结构的新型演化微带巴伦
CN206271848U (zh) * 2016-12-05 2017-06-20 安徽四创电子股份有限公司 一种基于环形器的差分对线接口

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘国庆: "微波通信系统中小型化混合环研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972232A (zh) * 2017-03-28 2017-07-21 石家庄创天电子科技有限公司 功率分配器
CN115455886A (zh) * 2022-08-05 2022-12-09 上海移柯通信技术股份有限公司 Pcb板设计方法、pcb板、电子设备、存储介质及终端

Also Published As

Publication number Publication date
CN106450623B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN1925211B (zh) 半模基片集成波导滤波器
CN108808224A (zh) Massive mimo天线
CN103050756B (zh) 一种端接任意复数阻抗的威尔金森功率分配器
CN105789802B (zh) 一种基于新型互联结构的超宽带巴伦
CN103928767B (zh) 一种采用基片集成同轴线馈电的双频双圆极化天线
CN103972632A (zh) 一种频率可调谐微带横跨定向耦合器
CN204103932U (zh) 幅相一致多通道射频模拟器
CN106252872A (zh) 同极化微带双工天线阵列
CN101526564A (zh) 功率与驻波比的检测装置及方法
CN109244616B (zh) 基于耦合微带线的双频不等分滤波功分器
CN103873102B (zh) 射频芯片、射频电路以及电子设备
CN206271848U (zh) 一种基于环形器的差分对线接口
CN206076497U (zh) 同极化微带双工天线阵列
CN106450623A (zh) 一种基于环形器的差分对线接口
CN209496996U (zh) 一种基于开口谐振环的差分双极化贴片天线
CN207399219U (zh) 一种应用于3.5g频段td基站天线的校准网络
CN101102003A (zh) 任意双频带3dB分支定向耦合器
CN104091993A (zh) 一种采用基片集成同轴线技术的双频枝节线耦合器
CN108470967B (zh) 一种基于介质集成悬置线的六端口网络
CN207217788U (zh) 圆极化微带双工天线
CN207200713U (zh) 一种无源互调测试系统
CN206076483U (zh) 一种天线装置和移动终端
CN206422228U (zh) 一种紧凑的椭圆环形双极化基站天线
CN209400608U (zh) 散射参数测试系统
CN205159483U (zh) 一种用于天线收发隔离的可调平行定向耦合器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant