CN106444860A - 一种太阳光热发电定日镜角度计算及控制方法 - Google Patents

一种太阳光热发电定日镜角度计算及控制方法 Download PDF

Info

Publication number
CN106444860A
CN106444860A CN201610993058.XA CN201610993058A CN106444860A CN 106444860 A CN106444860 A CN 106444860A CN 201610993058 A CN201610993058 A CN 201610993058A CN 106444860 A CN106444860 A CN 106444860A
Authority
CN
China
Prior art keywords
heliostat
sun
formula
azimuth
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610993058.XA
Other languages
English (en)
Other versions
CN106444860B (zh
Inventor
仇韬
吴敏军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Jiang Xin Ling Energy Technology Co Ltd
Northwest Electric Power Design Institute of China Power Engineering Consulting Group
Original Assignee
Jiangyin Jiang Xin Ling Energy Technology Co Ltd
Northwest Electric Power Design Institute of China Power Engineering Consulting Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangyin Jiang Xin Ling Energy Technology Co Ltd, Northwest Electric Power Design Institute of China Power Engineering Consulting Group filed Critical Jiangyin Jiang Xin Ling Energy Technology Co Ltd
Priority to CN201610993058.XA priority Critical patent/CN106444860B/zh
Publication of CN106444860A publication Critical patent/CN106444860A/zh
Application granted granted Critical
Publication of CN106444860B publication Critical patent/CN106444860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

本发明一种太阳光热发电定日镜角度计算及控制方法,所述方法包含有以下步骤:步骤1、将定日镜和聚光靶的地理位置信息输入处理器中;该地理位置信息包含经度、维度和海拔;步骤2、通过空间三维坐标系和空间球面参考坐标系进行定日镜的方位角和高度角计算:步骤3、根据步骤2获取的定日镜的方位角和高度角调整定日镜。本发明一种太阳光热发电定日镜角度计算及控制方法,具有精度高的优点。

Description

一种太阳光热发电定日镜角度计算及控制方法
技术领域
本发明涉及一种太阳光热发电系统中对定日镜的角度进行计算及控制的方法,特别是涉及一种基于光学反射原理及空间模型推导的光热塔式聚光定日镜角度计算及控制方法,用于定日镜根据其地理坐标位置、聚光靶位位置、太阳位置进行计算反射光斑准确聚光的水平、方位角度,进而通过电机驱动定日镜角度完成定日镜追踪聚光。
背景技术
目前,塔式光热电站根据太阳能光热发电原理采用“光-热-电”的发电方式,成千上万的定日镜把太阳光反射到位于太阳塔顶的吸热器表面,形成800℃以上的高温;通过导热介质产生500℃以上的蒸汽(导热介质可以为水、气体或融盐等,若采用融盐作为导热介质,则需加装热交换器,但融盐储能能力较好),推动蒸汽轮机发电;因此,塔式光热电站的聚光系统由数以千计带有双轴太阳追踪系统的平面镜(称为定日镜)和一座(或数座)中央集热塔构成;
塔式光热电站的具体结构多种多样,单块定日镜的面积从1.2㎡至120 ㎡不等,塔高也从几十米到几百米不等,聚光倍数则可以达到数百倍甚至上千倍;
塔式光热电站的主要优势在于它的工作温度较高(可达800~1000℃),使其年度发电效率可以达到17%~20%,并且由于管路循环系统较槽式系统简单得多,提高效率和降低成本的潜力都比较大;塔式光热电站采用湿冷却的用水量也略少于槽式系统,若需要采用干式冷却,其对性能和运行成本的影响也较低。
但是,塔式光热的缺点也是明显的:为了将阳光准确汇聚到集热塔顶的接收器上,对每一块定日镜的双轴跟踪系统都要进行单独控制,并且对算法、控制精度、聚光效果等要求很高,而槽式系统的单轴追踪系统在结构上和控制上都要简单得多;因此,塔式光热电站若缺乏精确的定日镜计算及控制方法,将导致发电效率的大幅下降;为此,亟需一种基于光学反射原理及空间模型推导算法用于实现太阳塔式光热发电系统中定日镜角度的精确计算及控制的方法。
发明内容
本发明的目的在于克服上述不足,提供一种精度高的太阳光热发电定日镜角度计算及控制方法,其能够根据时间、定日镜位置、靶位位置、太阳位置进行定日镜水平、方位角度计算并进行控制,实现太阳光经定日镜反射后的光斑精确位于靶位中心位置。
本发明的目的是这样实现的:
一种太阳光热发电定日镜角度计算及控制方法,其特征在于:
所述方法包含有以下步骤:
步骤1、将定日镜和聚光靶的地理位置信息输入处理器中;该地理位置信息包含经度、维度和海拔;
步骤2、通过空间三维坐标系和空间球面参考坐标系进行定日镜的方位角和高度角计算:
步骤3、根据步骤2获取的定日镜的方位角和高度角调整定日镜。
本发明一种太阳光热发电定日镜角度计算及控制方法,所述步骤2包含有以下步骤:
步骤2.1、以步骤1中定日镜中心所处的定日镜位置为原点,以正东为X正向、正南为Y正向、正上为Z正向建立空间三维坐标系,此时定日镜中心的坐标为O(0,0,0),记聚光靶中心所处的聚光靶位中心位置为标记点二B,该标记点二B的坐标为(XB,YB,ZB);
步骤2.2、以定日镜位置到靶聚光靶位中心位置的距离OB为半径R建立辅助球面,其中:
;┄┄┄┄┄┄┄┄┄┄式①
步骤2.3、获取当前时刻太阳相对于定日镜的太阳高度角SUN_H、方位角SUN_A;太阳高度角SUN_H、方位角SUN_A由步骤1中的定日镜经纬度和海拔信息、结合SPA太阳位置计算方法即可计算出;
步骤2.4、以真实太阳位置发出光线与辅助球面的交点作为参考太阳位置,记参考太阳位置为标记点一A,该标记点一A相对于定日镜的入射光线是等效的;标记点一A点坐标为(XA,YA,ZA),其中:
XA=Rcos(SUN_A)cos(SUN_H);
YA=Rsin(SUN_A)cos(SUN_H);
ZA=Rsin(SUN_H);┄┄┄┄┄┄┄┄┄式②
步骤2.5、记聚光靶位中心位置点到参考太阳位置之间连线的中点为标记点三C,即标记点一A与标记点二B连线的中点为标记点三C;由矢量分析知:的角平分线,因此为定日镜的镜面法线;对于此时的时候t,标记点三C的坐标为(Xi,Yi,Zi),其中:
;┄┄┄┄┄┄┄┄┄式③
步骤2.6、将式②代入式③得到:
;┄┄┄┄┄┄┄┄┄式④
步骤2.7、记法线相对于空间球面参考坐标系中的高度角记为Normal_H、方位角记为Normal_A;则:
; ┄┄┄┄┄┄┄┄式⑤
步骤2.8、根据式⑤可得:
(Xi>0);
(Xi<0);
;┄┄┄┄┄┄┄┄式⑥
步骤2.9、将式①代入式④后,再将式④代入式⑥即可求得定日镜镜面法线向量高度角Normal_H、方位角Normal_A;
记定日镜方位角为Heliostat_A、高度角为Heliostat_H,由于定日镜镜面与法线的垂直关系,可计算得到:
;┄┄┄┄┄┄┄┄式⑦。
本发明一种太阳光热发电定日镜角度计算及控制方法,步骤3、处理器根据步骤2中的式⑦获取的当前时刻的定日镜方位角Heliostat_A和高度角Heliostat_H,调整定日镜,从而使得定日镜将太阳光反射至聚光靶上。
本发明一种太阳光热发电定日镜角度计算及控制方法,所述方法还包含有步骤4:
步骤4、间隔一预定时间后,跳转至步骤2.3计算下一时刻的定日镜的方位角Heliostat_A和高度角Heliostat_H。
与现有技术相比,本发明的有益效果是:
本发明系统运行时,定日镜就地控制柜,实时检测镜面角度,当系统运算目标角度与实际镜面角度有差时,就地控制柜立即驱动电机进行调整,实现镜面角度闭环控制。应用到镜场中不同的定日镜,均可输入各自定日镜的地理坐标位置参数,根据各自定日镜与靶位、太阳的位置关系进行计算镜面角度,能够实现精确将反射光线投射到聚光靶位中心,实现多个镜面的聚光发电。
附图说明
图1为本发明一种太阳光热发电定日镜角度计算及控制方法中的太阳光热发电系统的示意图。
图2为本发明一种太阳光热发电定日镜角度计算及控制方法中的太阳光热发电系统的示意图。
图3为本发明一种太阳光热发电定日镜角度计算及控制方法中建立的三维坐标系的示意图。
图4为本发明一种太阳光热发电定日镜角度计算及控制方法中建立的空间球面参考系的示意图。
其中:
真实太阳位置1、定日镜位置2、聚光靶位中心位置3、空间球面参考坐标系4、参考太阳位置5、辅助球面6。
具体实施方式
参见图1~4,本发明涉及的一种太阳光热发电定日镜角度计算及控制方法,所述方法包含有以下步骤:
步骤1、将定日镜和聚光靶的地理位置信息输入处理器中;该地理位置信息包括经度、维度和海拔,可通过高精度经纬仪获取;
步骤2、定日镜的方位角和高度角计算:
步骤2.1、以步骤1中定日镜中心所处的定日镜位置2为原点,以正东为X正向、正南为Y正向、正上为Z正向建立空间三维坐标系,此时定日镜中心的坐标为O(0,0,0),记聚光靶中心所处的聚光靶位中心位置3为标记点二B,该标记点二B的坐标为(XB,YB,ZB);聚光靶位中心位置3在施工时即为确定值,只需将其转换为以定日镜位置2为原点的三维坐标系坐标值即可;
步骤2.2、以定日镜位置2到靶聚光靶位中心位置3的距离OB为半径R建立辅助球面6,其中:
;┄┄┄┄┄┄┄┄┄┄式①
步骤2.3、获取当前时刻太阳相对于定日镜的太阳高度角SUN_H、方位角SUN_A;太阳高度角SUN_H、方位角SUN_A由步骤1中的定日镜经纬度和海拔信息、结合SPA太阳位置计算方法即可计算出;
步骤2.4、以真实太阳位置1发出光线与辅助球面6的交点作为参考太阳位置5,记参考太阳位置5为标记点一A,该标记点一A相对于定日镜的入射光线是等效的;标记点一A点坐标为(XA,YA,ZA),其中:
XA=Rcos(SUN_A)cos(SUN_H);
YA=Rsin(SUN_A)cos(SUN_H);
ZA=Rsin(SUN_H);┄┄┄┄┄┄┄┄┄式②
步骤2.5、记聚光靶位中心位置3点到参考太阳位置5之间连线的中点为标记点三C,即标记点一A与标记点二B连线的中点为标记点三C;由矢量分析知:的角平分线,因此为定日镜的镜面法线;对于此时的时候t,标记点三C的坐标为(Xi,Yi,Zi),其中:
;┄┄┄┄┄┄┄┄┄式③
步骤2.6、将式②代入式③得到:
;┄┄┄┄┄┄┄┄┄式④
步骤2.7、记法线相对于空间球面参考坐标系4中的高度角记为Normal_H、方位角记为Normal_A;则:
;┄┄┄┄┄┄┄┄式⑤
步骤2.8、根据式⑤可得:
(Xi>0);
(Xi<0);
;┄┄┄┄┄┄┄┄式⑥
步骤2.9、将式①代入式④后,再将式④代入式⑥即可求得定日镜镜面法线向量高度角Normal_H、方位角Normal_A;
记定日镜方位角为Heliostat_A、高度角为Heliostat_H,由于定日镜镜面与法线的垂直关系,可计算:
;┄┄┄┄┄┄┄┄式⑦
步骤3、处理器根据步骤2中的式⑦获取当前时刻的定日镜方位角Heliostat_A和高度角Heliostat_H,调整定日镜,从而使得定日镜将太阳光反射至聚光靶上;
步骤4、间隔一预定时间后,跳转至步骤2.3计算下一时刻的定日镜的方位角Heliostat_A和高度角Heliostat_H;
本发明,塔式光热发电镜场镜面聚光是由镜场内的多个定日镜根据自身相对太阳不同的位置调整各自镜面的角度姿态保证其反射光斑都汇聚于聚光塔靶位中心,本发明根据定日镜聚光角度的计算方法,以单个定日镜跟太阳、靶位的相对关系为基础结合光学反射原理,推导出定日镜角度并对其进行控制。
另外:需要注意的是,上述具体实施方式仅为本专利的一个优化方案,本领域的技术人员根据上述构思所做的任何改动或改进,均在本专利的保护范围之内。

Claims (4)

1.一种太阳光热发电定日镜角度计算及控制方法,其特征在于:
所述方法包含有以下步骤:
步骤1、将定日镜和聚光靶的地理位置信息输入处理器中;该地理位置信息包含经度、维度和海拔;
步骤2、通过空间三维坐标系和空间球面参考坐标系进行定日镜的方位角和高度角计算:
步骤3、根据步骤2获取的定日镜的方位角和高度角调整定日镜。
2.如权利要求1所述一种太阳光热发电定日镜角度计算及控制方法,其特征在于:所述步骤2包含有以下步骤:
步骤2.1、以步骤1中定日镜中心所处的定日镜位置(2)为原点,以正东为X正向、正南为Y正向、正上为Z正向建立空间三维坐标系,此时定日镜中心的坐标为O(0,0,0),记聚光靶中心所处的聚光靶位中心位置(3)为标记点二(B),该标记点二(B)的坐标为(XB,YB,ZB);
步骤2.2、以定日镜位置(2)到靶聚光靶位中心位置(3)的距离OB为半径R建立辅助球面(6),其中:
;┄┄┄┄┄┄┄┄┄┄式①
步骤2.3、获取当前时刻太阳相对于定日镜的太阳高度角SUN_H、方位角SUN_A;太阳高度角SUN_H、方位角SUN_A由步骤1中的定日镜经纬度和海拔信息、结合SPA太阳位置计算方法即可计算出;
步骤2.4、以真实太阳位置(1)发出光线与辅助球面(6)的交点作为参考太阳位置(5),记参考太阳位置(5)为标记点一(A),该标记点一(A)相对于定日镜的入射光线是等效的;标记点一(A)点坐标为(XA,YA,ZA),其中:
XA=Rcos(SUN_A)cos(SUN_H);
YA=Rsin(SUN_A)cos(SUN_H);
ZA=Rsin(SUN_H);┄┄┄┄┄┄┄┄┄式②
步骤2.5、记聚光靶位中心位置(3)点到参考太阳位置(5)之间连线的中点为标记点三(C),即标记点一(A)与标记点二(B)连线的中点为标记点三(C);由矢量分析知:的角平分线,因此为定日镜的镜面法线;对于此时的时候t,标记点三(C)的坐标为(Xi,Yi,Zi),其中:
;┄┄┄┄┄┄┄┄┄式③
步骤2.6、将式②代入式③得到:
;┄┄┄┄┄┄┄┄┄式④
步骤2.7、记法线相对于空间球面参考坐标系(4)中的高度角记为Normal_H、方位角记为Normal_A;则:
; ┄┄┄┄┄┄┄┄式⑤
步骤2.8、根据式⑤可得:
(Xi>0);
(Xi<0);
;┄┄┄┄┄┄┄┄式⑥
步骤2.9、将式①代入式④后,再将式④代入式⑥即可求得定日镜镜面法线向量高度角Normal_H、方位角Normal_A;
记定日镜方位角为Heliostat_A、高度角为Heliostat_H,由于定日镜镜面与法线的垂直关系,可计算得到:
;┄┄┄┄┄┄┄┄式⑦。
3.如权利要求2所述一种太阳光热发电定日镜角度计算及控制方法,其特征在于:步骤3、处理器根据步骤2中的式⑦获取的当前时刻的定日镜方位角Heliostat_A和高度角Heliostat_H,调整定日镜,从而使得定日镜将太阳光反射至聚光靶上。
4.如权利要求3所述一种太阳光热发电定日镜角度计算及控制方法,其特征在于:所述方法还包含有步骤4:
步骤4、间隔一预定时间后,跳转至步骤2.3计算下一时刻的定日镜的方位角Heliostat_A和高度角Heliostat_H。
CN201610993058.XA 2016-11-11 2016-11-11 一种太阳光热发电定日镜角度计算及控制方法 Active CN106444860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610993058.XA CN106444860B (zh) 2016-11-11 2016-11-11 一种太阳光热发电定日镜角度计算及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610993058.XA CN106444860B (zh) 2016-11-11 2016-11-11 一种太阳光热发电定日镜角度计算及控制方法

Publications (2)

Publication Number Publication Date
CN106444860A true CN106444860A (zh) 2017-02-22
CN106444860B CN106444860B (zh) 2019-12-13

Family

ID=58206886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610993058.XA Active CN106444860B (zh) 2016-11-11 2016-11-11 一种太阳光热发电定日镜角度计算及控制方法

Country Status (1)

Country Link
CN (1) CN106444860B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062265A (zh) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN109828613A (zh) * 2019-03-08 2019-05-31 合肥工业大学 一种分布感测光伏板追日系统
CN110209209A (zh) * 2019-05-28 2019-09-06 中国神华能源股份有限公司 优化太阳能定日镜场的方法和装置及机器可读存储介质
CN111338386A (zh) * 2019-12-20 2020-06-26 武汉理工大学 一种风荷载作用下定日镜聚光效率评估方法
CN111459194A (zh) * 2020-04-10 2020-07-28 中国电力工程顾问集团西北电力设计院有限公司 一种基于定日镜实测光斑的太阳能热发电瞄准点确定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242352A1 (en) * 2009-06-09 2010-09-30 Sundrop Fuels, Inc. Systems and methods for reactor and receiver control of flux profile
CN201983486U (zh) * 2011-02-18 2011-09-21 南京科远自动化集团股份有限公司 塔式太阳能热发电站的定日镜跟踪控制装置
CN102968104A (zh) * 2012-11-22 2013-03-13 宁夏光合能源科技有限公司 一种基于镜间关联特征参数构建的定日镜子群通讯方法
CN103034244A (zh) * 2012-11-22 2013-04-10 宁夏光合能源科技有限公司 一种定日镜高精度投射光斑的方法与装置
CN103644665A (zh) * 2013-12-23 2014-03-19 中国科学院电工研究所 定日镜跟踪控制系统及定日镜跟踪方法
CN104679035A (zh) * 2015-03-24 2015-06-03 常州工学院 一种定日镜自适应追日装置
CN105425833A (zh) * 2015-12-21 2016-03-23 中国电力工程顾问集团西北电力设计院有限公司 一种高效的定日镜追日跟踪方法
CN105972840A (zh) * 2016-06-28 2016-09-28 东方电气集团东方锅炉股份有限公司 一种定日镜跟踪控制装置及其跟踪控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242352A1 (en) * 2009-06-09 2010-09-30 Sundrop Fuels, Inc. Systems and methods for reactor and receiver control of flux profile
CN201983486U (zh) * 2011-02-18 2011-09-21 南京科远自动化集团股份有限公司 塔式太阳能热发电站的定日镜跟踪控制装置
CN102968104A (zh) * 2012-11-22 2013-03-13 宁夏光合能源科技有限公司 一种基于镜间关联特征参数构建的定日镜子群通讯方法
CN103034244A (zh) * 2012-11-22 2013-04-10 宁夏光合能源科技有限公司 一种定日镜高精度投射光斑的方法与装置
CN103644665A (zh) * 2013-12-23 2014-03-19 中国科学院电工研究所 定日镜跟踪控制系统及定日镜跟踪方法
CN104679035A (zh) * 2015-03-24 2015-06-03 常州工学院 一种定日镜自适应追日装置
CN105425833A (zh) * 2015-12-21 2016-03-23 中国电力工程顾问集团西北电力设计院有限公司 一种高效的定日镜追日跟踪方法
CN105972840A (zh) * 2016-06-28 2016-09-28 东方电气集团东方锅炉股份有限公司 一种定日镜跟踪控制装置及其跟踪控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭志萍: "一种塔式太阳能热发电系统中定日镜跟踪控制装置及其控制方法", 《仪器仪表标准化与计量》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062265A (zh) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN109062265B (zh) * 2018-08-29 2021-12-14 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN109828613A (zh) * 2019-03-08 2019-05-31 合肥工业大学 一种分布感测光伏板追日系统
CN109828613B (zh) * 2019-03-08 2021-10-29 合肥工业大学 一种分布感测光伏板追日系统
CN110209209A (zh) * 2019-05-28 2019-09-06 中国神华能源股份有限公司 优化太阳能定日镜场的方法和装置及机器可读存储介质
CN111338386A (zh) * 2019-12-20 2020-06-26 武汉理工大学 一种风荷载作用下定日镜聚光效率评估方法
CN111459194A (zh) * 2020-04-10 2020-07-28 中国电力工程顾问集团西北电力设计院有限公司 一种基于定日镜实测光斑的太阳能热发电瞄准点确定方法
CN111459194B (zh) * 2020-04-10 2023-09-12 中国电力工程顾问集团西北电力设计院有限公司 一种基于定日镜实测光斑的太阳能热发电瞄准点确定方法

Also Published As

Publication number Publication date
CN106444860B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN106444860A (zh) 一种太阳光热发电定日镜角度计算及控制方法
US20130021471A1 (en) Reflective Surface Orientating with Multiple View Ports
CN102242980B (zh) 定日镜跟踪控制装置及跟踪控制方法
Roldán Serrano et al. Concentrating solar thermal technologies
CN105425833B (zh) 一种高效的定日镜追日跟踪方法
CN102331793A (zh) 一种塔式太阳能热发电站中的定日镜场调度方法
JP2010038370A (ja) マルチタワービームダウン式集光システムにおける太陽光の集光方法
CN105320156A (zh) 一种塔式太阳能热发电定日镜自动跟踪方法
CN109062265B (zh) 一种太阳光热发电定日镜安装误差校正方法
CN106352566A (zh) 一种塔式太阳能热发电追日分析系统
CN104699116A (zh) 一种定日镜跟踪误差校正方法
CN109557947A (zh) 一种塔式定日镜的双闭环跟踪控制方法
Hu et al. A novel sun-tracking and target-aiming method to improve the concentration efficiency of solar central receiver systems
CN202160132U (zh) 自动跟踪焦点式太阳能聚光光伏发电系统
CN110030741B (zh) 一种塔式太阳能二次反射系统中二次反射镜的校正方法
Rahimoon et al. Design of parabolic solar dish tracking system using arduino
JP2013190158A (ja) 太陽光集光装置のヘリオスタットの鏡面角度制御方法およびその装置
CN102830715A (zh) 一种光斑实时可调的定日镜及其调节方法
CN105605806B (zh) 一种太阳跟踪装置
Vician et al. Determination of optimal position of solar trough collector
Elgeziry et al. Designing a Dual-axis Open-loop solar tracker for CPV applications
Tchao et al. An Implementation of an optimized dual-axis solar tracking algorithm for concentrating solar power plants deployment
Tsai et al. A sensor-based sun-tracking energy harvest system
Bulárka et al. Hybrid-loop controlled solar tracker for hybrid solar energy harvester
Mahboob et al. Structural design of heliostat for solar thermal power plant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant