CN106442743B - 一种考虑声波在两种介质界面折射情况下的声发射源定位方法 - Google Patents

一种考虑声波在两种介质界面折射情况下的声发射源定位方法 Download PDF

Info

Publication number
CN106442743B
CN106442743B CN201610801985.7A CN201610801985A CN106442743B CN 106442743 B CN106442743 B CN 106442743B CN 201610801985 A CN201610801985 A CN 201610801985A CN 106442743 B CN106442743 B CN 106442743B
Authority
CN
China
Prior art keywords
acoustic emission
point
source
refraction
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610801985.7A
Other languages
English (en)
Other versions
CN106442743A (zh
Inventor
周子龙
周静
陈卫军
赵源
柯昌涛
杜雪明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610801985.7A priority Critical patent/CN106442743B/zh
Publication of CN106442743A publication Critical patent/CN106442743A/zh
Application granted granted Critical
Publication of CN106442743B publication Critical patent/CN106442743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

一种考虑声波在两种介质界面折射情况下的声发射源定位方法,利用声波折射定律建立声源和测点的时空关系方程组,根据已知传感器所在位置的坐标值和声波信号到时差以及声波在两种介质中传播的速度,可获得声发射源的位置坐标。本发明考虑了不同介质界面声波折射的情况,可用于声发射传感器和声源不在同一种介质中的情况,比如围压力学测试实验中的声发射源定位等一些特殊的情况。

Description

一种考虑声波在两种介质界面折射情况下的声发射源定位 方法
技术领域
本发明涉及一种考虑声波在两种介质界面折射情况下的声发射源定位方法。
背景技术
如何准确得出声发射源的位置是声发射技术中的重要部分,目前的定位方法考虑的都是单一介质,不考虑声波在传播过程中的折反射,因为在大多数情况下探头可以置于声源所在介质,在这种情况下对于单一介质可以达到相应的定位精度,然后对于一些特殊的情况,如探头无法置于声源所在介质的时候,这种情况下探头接收到的信号就穿过了两种不同的介质,波速不再是定值,也不再是沿直线传播,如果不考虑声波在传播过程中的折射就无法准确得到其声源的位置,比如在岩石围压测试实验中,声发射源产生于试件中,但声发射传感器置于实验装置外部,此时声发射传感器接收到的信号穿过了两种不同的介质,已有的声发射源定位方法就不再适用。
发明内容
本发明针对现有技术的不足而提供了一种针对声波在传播过程中遇到不同介质时发生折射的情况,避免因为使用平均波速以及按照直线路径传播所带来误差的一种考虑声波在两种介质界面折射情况下的声发射源定位方法。
本发明采用如下技术方案实现:一种考虑声波在两种介质界面折射情况下的声发射源定位方法,分为两种情况:
A:二维定位方法:
首先在介质2中放置M个不处于同一直线位置的声发射传感器,M个声发射传感器的二维位置坐标已知,分别为(x1,y1),(x2,y2),……,(xM,yM),M大于等于3;
置于介质1中的声发射源产生应力波后,M个声发射传感器感应到声发射源的时刻:t1,t2,……,tM
设声发射源坐标为(x,y),在两种介质中传播的速度分别为c1,c2,入射角为θ1,折射角为θ2
折射定律:
设任意两个声发射传感器的位置为A点和B点,声发射源的位置为O点,声波到达A点和B点的时间分别为Ti和Tj,A点和B点坐标分别为(xi,yi)和(xj,yj),声发射源产生的声波从介质1经过介质2传播到两个声发射传感器的折射点分别为M(ai,bi)和N(aj,bj),其中i,j为1,2,...,M,且i≠j,则
声源O到折射点M的距离LOM为:
折射点M到声发射传感器A的距离LAM为:
声源O到折射点N的距离为LON为:
折射点N到声发射传感器B的距离LBN为:
声源传播到声发射传感器A和B的时间差ΔTij为:
设Tmin为声发射传感器接收到的第一个信号所用的最短时间,
对于每一组观测值(xi,yi;xj,yj),假设一个声发射源所在空间内的初始声源坐标(x0,y0),代入式(1)、(6)和(7)可确定一个计算值ΔTij,计算值ΔTij与实际测得的值Δtij=ti-tj之间存在一个差值,这个差值即是误差,采用最优化解法通过最小化误差的平方和,即可得出声发射源初始声源坐标(x,y)。
B:三维定位方法
首先在介质2中放置M个不处于同一直线位置的声发射传感器,M个声发射传感器的三维位置坐标已知,分别为(x1,y1,z1),(x2,y2,z2),……,(xM,yM,zM),M大于等于4;
置于介质1中的声发射源产生应力波后,M个声发射传感器感应到声发射源的时刻:t1,t2,……,tM
设声发射源坐标为(x,y,z),在两种介质中传播的速度分别为c1,c2,入射角为θ1,折射角为θ2
折射定律:
设任意两个声发射传感器的位置为A点和B点,声发射源的位置为O点,声波到达A点和B点的时间分别为Ti和Tj,A点和B点坐标分别为(xi,yi,zi)和(xj,yj,zj),声发射源产生的声波从介质1经过介质2传播到两个声发射传感器的折射点分别为M(ai,bi,ci)和N(aj,bj,cj),其中i,j为1,2,...,M,且i≠j,则
声源O到折射点M的距离LOM为:
折射点M到探头A的距离LAM为:
声源O到折射点N的距离LON为:
折射点N到探头B的距离LBN为:
声源传播到声发射传感器A和B的时间差ΔTij为:
设Tmin为声发射传感器接收到的第一个信号所用的最短时间,
对于每一组观测值(xi,yi,zi;xj,yj,zj),假设一个声发射源所在空间内的初始声源坐标(x0,y0,z0),代入式(8)、(13)和(14)可确定一个计算值ΔTij,计算值ΔTij与实际测得的值Δtij=ti-tj之间存在一个差值,这个差值即是误差,采用最优化解法通过最小化误差的平方和,即可得出声发射源初始声源坐标(x,y,z)。
有益效果:本发明利用折射定律以及声发射传感器接收到的第一个信号符合最短到时,从而通过已知到时差、声发射传感器坐标值以及声速,得到声发射源的位置坐标。二维时,声发射传感器最少需要3个,此时未知量为声源坐标,折射点的坐标,通过已知3个到时差方程,3个折射方程,3个最短路径方程,即有5个未知数,9个方程,因此可以保证得出的声发射源的唯一性,三维时,声发射传感器最少需要4个,此时未知量有声源坐标,折射点坐标,已知有6个到时差方程,4个折射定律方程,4个最短到时方程,即有11个未知数,14个方程,因此可以保证得出的声发射源的唯一性。
本发明突破了以往单一介质的情况,即声波沿直线传播的方法,考虑了声波在传播过程中遇到不同介质会发生折射的情况,可用于声发射传感器和声源不在同一种介质中的情况,比如围压力学测试实验中的声发射源定位等一些特殊的情况。
附图说明
图1为二维情况下声发射折射路径示意图。
图2为三维情况下声发射折射路径示意图。
具体实施方式
以下结合附图和具体实施方式对本发明做进一步的说明。
实施例1:
预设一声发射源的位置为(0,0),三个传感器的坐标(x1,y1)、(x2,y2)、(x3,y3)分别为(-3000,2000)、(1000,2000)、(-4000,-2000);介质分层位置为y=1000和y=-1000;声发射源传到三个传感器时触发传感器记录的时刻分别为984.8μs,629.3μs,1199.4μs。声波在两种介质中传播的速度分别为c1=2978m/s,c2=4356m/s。以本例对二维定位问题进行详细说明,实际定位时,已知量为三个传感器的坐标以及传感器触发记录的时刻,声发射源的位置是未知量,在此给出是为了利用本专利提出的方法进行验证。具体实施步骤如下:
1、将三个传感器布置在待测对象附近,保证其不在同一直线上,坐标分别为(-3000,2000)、(1000,2000)、(-4000,-2000);三个传感器对应触发的时刻分别为984.8μs,629.3μs,1199.4μs;波速c1=2978m/s,c2=4356m/s。
2、利用发明内容中所提出的二维定位方法,将已知数据代入公式,假设一个声发射源的初始值,然后可以得到折射点的坐标,以及到时差,当误差平方和最小时假设的声发射源的坐标即为实际的声源坐标。此时的折射点坐标分别为(-795.6,1000)、(384.1,1000)、(-858.6,1000),定位结果为(0,0),可见定位结果与预设的坐标(0,0)吻合较好,定位精度高。
实施例2:
预设一声发射源的位置为(2000,2000,6000),四个传感器的坐标(0,0,11000)、(4000,2000,9000)、(4000,4000,2000)、(0,2000,0);介质分层位置为z=4000和z=8000;声发射源传到四个传感器时触发传感器记录的时刻分别为1554.6μs,1075.2μs,1372.9μs,1673μs。以本例对三维定位问题进行详细说明,实际定位时,已知量为四个传感器的坐标以及传感器触发记录的时刻,声发射源的位置是未知量,在此给出是为了利用本专利提出的方法进行验证。具体实施步骤如下:
1、将四个传感器布置在待测对象附近,保证其不在一个平面内,坐标分别为(0,0,11000)、(4000,2000,9000)、(4000,4000,2000)、(0,2000,0);四个传感器对应触发的时刻分别为1554.6,1075.2,1372.9 1673;两种介质中波速分别为c1=2978m/s,c2=4356m/s。
2、利用发明内容中所提出的三维定位方法,将已知数据代入公式,假设一个声发射源的初始值,然后可以得到折射点的坐标,以及到时差,当误差平方和最小时假设的声发射源的坐标即为实际的声源坐标。
此时的折射点坐标分别为(1418.9,1418.9,8 000)、(3059.9,2000,8000)、(2727.3,2727.3,4000)和(1504.2,2000,4000),定位结果为(2000,2000,6000),可见定位结果与预设的坐标(2000,2000,6000)吻合较好,定位精度高。

Claims (1)

1.一种考虑声波在两种介质界面折射情况下的声发射源定位方法,其特征在于:分为两种情况:
A:二维定位方法:
首先在介质2中放置M个不处于同一直线位置的声发射传感器,M个声发射传感器的二维位置坐标已知,分别为(x1,y1),(x2,y2),……,(xM,yM),M大于等于3;
置于介质1中的声发射源产生应力波后,M个声发射传感器感应到声发射源的时刻:t1,t2,……,tM
设声发射源坐标为(x,y),在两种介质中传播的速度分别为c1,c2,入射角为θ1,折射角为θ2
折射定律:
设任意两个声发射传感器的位置为A点和B点,声发射源的位置为O点,声波到达A点和B点的时间分别为Ti和Tj,A点和B点坐标分别为(xi,yi)和(xj,yj),声发射源产生的声波从介质1经过介质2传播到两个声发射传感器的折射点分别为M(ai,bi)和N(aj,bj),其中i,j为1,2,...,M,且i≠j,则
声源O到折射点M的距离LOM为:
折射点M到声发射传感器A的距离LAM为:
声源O到折射点N的距离为LON为:
折射点N到声发射传感器B的距离LBN为:
声源传播到声发射传感器A和B的时间差ΔTij为:
设Tmin为声发射传感器接收到的第一个信号所用的最短时间,
对于每一组观测值(xi,yi;xj,yj),假设一个声发射源所在空间内的初始声源坐标(x0,y0),代入式(1)、(6)和(7)可确定一个计算值ΔTij,计算值ΔTij与实际测得的值Δtij=ti-tj之间存在一个差值,这个差值即是误差,采用最优化解法通过最小化误差的平方和,即可得出声发射源初始声源坐标(x,y);
B:三维定位方法
首先在介质2中放置M个不处于同一直线位置的声发射传感器,M个声发射传感器的三维位置坐标已知,分别为(x1,y1,z1),(x2,y2,z2),……,(xM,yM,zM),M大于等于4;
置于介质1中的声发射源产生应力波后,M个声发射传感器感应到声发射源的时刻:t1,t2,……,tM
设声发射源坐标为(x,y,z),在两种介质中传播的速度分别为c1,c2,入射角为θ1,折射角为θ2
折射定律:
设任意两个声发射传感器的位置为A点和B点,声发射源的位置为O点,声波到达A点和B点的时间分别为Ti和Tj,A点和B点坐标分别为(xi,yi,zi)和(xj,yj,zj),声发射源产生的声波从介质1经过介质2传播到两个声发射传感器的折射点分别为M(ai,bi,ci)和N(aj,bj,cj),其中i,j为1,2,...,M,且i≠j,则
声源O到折射点M的距离LOM为:
折射点M到探头A的距离LAM为:
声源O到折射点N的距离LON为:
折射点N到探头B的距离LBN为:
声源传播到声发射传感器A和B的时间差ΔTij为:
设Tmin为声发射传感器接收到的第一个信号所用的最短时间,
对于每一组观测值(xi,yi,zi;xj,yj,zj),假设一个声发射源所在空间内的初始声源坐标(x0,y0,z0),代入式(8)、(13)和(14)可确定一个计算值ΔTij,计算值ΔTij与实际测得的值Δtij=ti-tj之间存在一个差值,这个差值即是误差,采用最优化解法通过最小化误差的平方和,即可得出声发射源初始声源坐标(x,y,z)。
CN201610801985.7A 2016-09-05 2016-09-05 一种考虑声波在两种介质界面折射情况下的声发射源定位方法 Active CN106442743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610801985.7A CN106442743B (zh) 2016-09-05 2016-09-05 一种考虑声波在两种介质界面折射情况下的声发射源定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610801985.7A CN106442743B (zh) 2016-09-05 2016-09-05 一种考虑声波在两种介质界面折射情况下的声发射源定位方法

Publications (2)

Publication Number Publication Date
CN106442743A CN106442743A (zh) 2017-02-22
CN106442743B true CN106442743B (zh) 2019-01-22

Family

ID=58164374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610801985.7A Active CN106442743B (zh) 2016-09-05 2016-09-05 一种考虑声波在两种介质界面折射情况下的声发射源定位方法

Country Status (1)

Country Link
CN (1) CN106442743B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107145740A (zh) * 2017-05-08 2017-09-08 段皓严 定位实物的位置的方法及装置
CN107727744B (zh) * 2017-10-19 2020-08-14 中南大学 用于岩石力学三轴试验的声发射源定位方法及系统
CN109374748A (zh) * 2018-10-30 2019-02-22 上海市特种设备监督检验技术研究院 声发射源时反定位成像方法
CN111398433B (zh) * 2020-04-17 2020-12-25 中南大学 一种基于线性加权最小二乘法的声发射源定位方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136754A (en) * 1976-06-17 1979-01-30 Compagnie General De Geophysique Process for seismic exploration by means of a directive source
CN101806882A (zh) * 2010-03-11 2010-08-18 沈阳化工学院 一种发射源的定位方法
CN102129063A (zh) * 2010-12-23 2011-07-20 中南大学 一种微震源或声发射源的定位方法
CN102435980A (zh) * 2011-09-15 2012-05-02 中南大学 一种基于解析求解的声发射源或微震源定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136754A (en) * 1976-06-17 1979-01-30 Compagnie General De Geophysique Process for seismic exploration by means of a directive source
CN101806882A (zh) * 2010-03-11 2010-08-18 沈阳化工学院 一种发射源的定位方法
CN102129063A (zh) * 2010-12-23 2011-07-20 中南大学 一种微震源或声发射源的定位方法
CN102435980A (zh) * 2011-09-15 2012-05-02 中南大学 一种基于解析求解的声发射源或微震源定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
二层水平介质中震源的精确定位;张向东等;《岩土工程学报》;20140630;第36卷(第6期)
探地雷达成像中多层介质界面折射点确定;张明新等;《中国民航学院学报》;20021231;第20卷(第6期);第20-24页

Also Published As

Publication number Publication date
CN106442743A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106442743B (zh) 一种考虑声波在两种介质界面折射情况下的声发射源定位方法
CN102129063B (zh) 一种微震源或声发射源的定位方法
CN110133715B (zh) 一种基于初至时差和波形叠加的微地震震源定位方法
Jacob et al. Ground‐penetrating radar velocity determination and precision estimates using common‐midpoint (CMP) collection with hand‐picking, semblance analysis and cross‐correlation analysis: A case study and tutorial for archaeologists
GB2440032A (en) Deriving acoustic propagation velocity model from acoustic ranging data
CN105510880A (zh) 一种基于双差法的微地震震源定位方法
Dong et al. An analytical solution for acoustic emission source location for known P wave velocity system
CN106443776B (zh) 一种基于时间切片法的海底地震仪重定位方法
CN103630931B (zh) 从近场测量和建模假想特征计算假想源特征的方法和系统
CN104199109A (zh) 确定钻井目标层位的视倾角的方法和设备
CN103852785B (zh) 地层各向异性的评价方法
RU2416103C2 (ru) Способ определения траектории и скорости объекта
Zhang et al. A technique to eliminate the azimuth ambiguity in single-well imaging
CN105022032A (zh) 长基线导航定位系统绝对测阵测距修正方法
CN109991658A (zh) 一种基于“震源-台站”速度模型的微地震事件定位方法
CN113671443A (zh) 基于掠射角声线修正的水声传感器网络深海目标定位方法
Heckman et al. An acoustic navigation technique
JP5941283B2 (ja) 受発振点レイアウトおよび弾性波探査方法
CN106501860B (zh) 一种应用于海洋物探的全局解算定位方法
CN110531417A (zh) 一种基于极化偏移的超前多层速度精细建模方法
US4706223A (en) Method for determining the position of a subterranean reflector from a traveltime curve
CN104502913B (zh) 揭煤巷道与煤层距离的测量方法及装置
Borodin et al. Recording seismoacoustic signals of a surface vessel with a two-coordinate strainmeter
US2148422A (en) Method of determining the dips of geological strata with substantially vertical reflections
Li et al. A high-precision method for extracting polarization angle under the condition of subsurface wavefield aliasing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant