CN106441459B - A kind of energy conservation and environmental protection electric device maintenance instrument - Google Patents

A kind of energy conservation and environmental protection electric device maintenance instrument Download PDF

Info

Publication number
CN106441459B
CN106441459B CN201611170521.7A CN201611170521A CN106441459B CN 106441459 B CN106441459 B CN 106441459B CN 201611170521 A CN201611170521 A CN 201611170521A CN 106441459 B CN106441459 B CN 106441459B
Authority
CN
China
Prior art keywords
battery pack
super capacitor
value
power
capacitor group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611170521.7A
Other languages
Chinese (zh)
Other versions
CN106441459A (en
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Longze Environmental Technology Co., Ltd.
Original Assignee
Taizhou Longze Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Longze Environmental Technology Co Ltd filed Critical Taizhou Longze Environmental Technology Co Ltd
Priority to CN201611170521.7A priority Critical patent/CN106441459B/en
Publication of CN106441459A publication Critical patent/CN106441459A/en
Application granted granted Critical
Publication of CN106441459B publication Critical patent/CN106441459B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Abstract

The present invention provides a kind of energy conservation and environmental protection electric device maintenance instrument, including detector ontology, temperature inductor, humidity sensor, the detector ontology includes that detection host module and instrument board, the detection host module connect one to one with temperature inductor, humidity sensor, instrument board respectively.Beneficial effects of the present invention are:Temperature and humidity in environment can be detected, while corresponding data can be shown that structure is simple, it is easy to use.

Description

A kind of energy conservation and environmental protection electric device maintenance instrument
Technical field
The present invention relates to electric power testing equipment fields, and in particular to a kind of energy conservation and environmental protection electric device maintenance instrument.
Background technique
In the related technology, substation is the place for changing voltage, in order to which electrical energy transportation that power plant is issued is to farther out Place, it is necessary to voltage is increased, high-voltage electricity is become, to user nearby voltage is reduced as needed again, this buck/boost Work is completed by substation, and substation is in equipment such as power transformer, liquid immersed reactor, gas insulated metal enclosed swit chgear, breakers In field-mounted process, there is higher requirement to environment, if temperature and humidity is controlled, job specfication is to relevant environment Factor has specific quantitative requirement, and real-time on-site is needed to detect, and corresponding temperature and humidity needs different detection devices to carry out It completes, existing detection technique is all carried out separately, not only bad for the accuracy of data, and when wasting a large amount of Between.
In addition, electric power resource has spread to each corner, and it is also more and more frequent for the maintenance of power equipment, for Have a power failure due to electrical equipment fault, in maintenance, then the equipment that there are many problems, such as detection, maintenance etc. needs electricity Source, and be then difficult to continue after having a power failure.
Summary of the invention
In view of the above-mentioned problems, the present invention is intended to provide a kind of energy conservation and environmental protection electric device maintenance instrument.
The purpose of the present invention is realized using following technical scheme:
Provide a kind of energy conservation and environmental protection electric device maintenance instrument, including detector ontology, temperature inductor, humidity inductive Device, the detector ontology include detection host module and instrument board, the detection host module respectively with temperature inductor, humidity sense Device, instrument board is answered to connect one to one.
Beneficial effects of the present invention are:Temperature and humidity in environment can be detected, while can will be corresponding Data are shown that structure is simple, easy to use.
Detailed description of the invention
The present invention will be further described with reference to the accompanying drawings, but the embodiment in attached drawing is not constituted to any limit of the invention System, for those of ordinary skill in the art, without creative efforts, can also obtain according to the following drawings Other attached drawings.
Fig. 1 is structure connection diagram of the invention;
Fig. 2 is the structure connection diagram of detector ontology of the present invention.
Appended drawing reference:
Detector ontology 1, humidity sensor 3, alarm 4, detection host module 5, instrument board 6, is answered at temperature inductor 2 Close energy-storage module 7.
Specific embodiment
The invention will be further described with the following Examples.
Referring to Fig. 1, Fig. 2, a kind of energy conservation and environmental protection electric device maintenance instrument of the present embodiment, including detector ontology 1, temperature Inductor 2, humidity sensor 3, the detector ontology 1 include that detection host module 5 and instrument board 6, the detection host module 5 divide It does not connect one to one with temperature inductor 2, humidity sensor 3, instrument board 6.
Preferably, which further includes the composite energy storage mould all connecting with detection host module 5 and instrument board 6 Block 7.
Preferably, which further includes the alarm 4 connecting with detection host module 5.
The above embodiment of the present invention can detect the temperature and humidity in environment, while can be by corresponding data It being shown, structure is simple, and it is easy to use, it is additionally provided with composite energy storage module 7, can be electric device maintenance instrument after power failure Power supply, energy conservation and environmental protection.
Preferably, the composite energy storage module 7 include super capacitor group, battery pack, two-way dc/dc converter, first switch, Second switch, first diode and the second diode, wherein the high-voltage end of two-way dc/dc converter is connect with super capacitor group, The low-pressure end of two-way dc/dc converter is connect with battery pack, and super capacitor group passes through first switch and first diode in parallel It is connected with load, battery pack is connected by second switch and the second diode in parallel and load.Preferably, the two-way dc/dc Converter be the two-way dc/dc converter of half-bridge structure, wherein super capacitor group is made of multiple supercapacitors, battery pack by Multiple lithium battery groups at.This preferred embodiment using super capacitor group and battery pack as the component part of composite energy storage module 7, So that composite energy storage module 7 is had the function of composite energy storage, constantly can provide power for detector ontology 1, guarantee power equipment The normal operation of detector, energy conservation and environmental protection.
Preferably, which is the two-way dc/dc converter of half-bridge structure.
Preferably, the parameter of the super capacitor group of the composite energy storage module 7 and battery pack uses the side of parameter matching and optimization Method selection, specifically includes:
(1) select the optimization aim of the parameter matching and optimization of composite energy storage module 7 for:The gross mass of composite energy storage module 7, Capacity, total volume, loss, battery pack average charge-discharge magnification;
(2) select optimized variable for:Battery pack parallel connection lithium battery quantity, the power limit of battery pack;
(3) answering in the scheme of the power limit composition of each battery pack parallel connection lithium battery quantity and battery pack is calculated separately Close the average charge-discharge magnification of the gross mass of energy-storage module 7, capacity, total volume, loss, battery pack;
(4) be set separately gross mass, capacity, total volume, loss, battery pack each parameter of average charge-discharge magnification threshold Value, it is corresponding to the scheme of the power limit composition of the battery pack parallel connection lithium battery quantity and battery pack beyond each parameter threshold Data are rejected;
(5) side formed when being j as the power limit value of i and battery pack is set by battery pack parallel connection lithium battery quantity value The gross mass of the energy resource supply module 4 of case is Rij, total volume Sij, loss be Eij, battery pack average charge-discharge magnification be Fij And the capacity of energy resource supply module 4 is Gij, wherein the value range of battery pack parallel connection lithium battery quantity is set as [2,10], if The value range for determining the power limit of battery pack is [0,100kw], carries out nondimensionalization processing according to the following formula to remaining data:
In formula, i=2,3 ..., 10, j=0,10 ..., 100, wherein i, j neither consider the data rejected in value;
Wherein, A1ijIt indicates to RijCarrying out nondimensionalization, treated as a result, A2ijIt indicates to SijCarry out nondimensionalization processing Afterwards as a result, A3ijIt indicates to EijCarrying out nondimensionalization, treated as a result, A4ijIt indicates to FijCarrying out nondimensionalization, treated As a result, A5ijIt indicates to GijCarry out nondimensionalization treated result;
Wherein, min (R) is the minimum of the gross mass R of energy resource supply module 4, and min (S) is the total of energy resource supply module 4 The minimum of volume, min (E) are the minimum of the loss of energy resource supply module 4, and min (F) is being averaged for energy resource supply module 4 The minimum of charge-discharge magnification, min (G) are the minimum of the capacity of energy resource supply module 4;
(6) value optimization is carried out to the power limit of battery pack parallel connection lithium battery quantity and battery pack.
This preferred embodiment is realized in the degree of variation and interactional information for guaranteeing to retain above-mentioned 5 optimization aims Under the premise of carry out data pretreatment and nondimensionalization processing, further ensure the super capacitor group of composite energy storage module 7 With the precision of the parameter optimization of battery pack, composite energy storage module 7 is enabled to be more efficiently detection host module 5 and instrument Dial plate 6 provides required power, makes electric device maintenance instrument energy conservation and environmental protection.
Preferably, for realize by battery set charge/discharge power limit in a certain range, to reach raising composite energy storage The purpose in the service life of 7 efficiency of module, extension battery pack, the composite energy storage module 7 is according to improved electrical power distribution strategy to electricity The power of pond group and super capacitor group carries out optimum allocation, and wherein the improved electrical power distribution strategy includes:
(1) the power demand R of the load of current time δ is determineddFThe voltage U of (δ) and super capacitor groupSUP, when calculating δ+1 The prediction bearing power limit value at quarter;
(2) power distribution is carried out according to following bearing power allocation rule;
1) work as RdF(δ+1)>RdF(δ)>When 0, then currently by the electrical power of super capacitor group output 25%;
2) work as RdF(δ)>RdF(δ+1)>0 and USUP≥UTWhen, then 75% electrical power is currently exported by super capacitor group, Wherein UTFor the voltage rating of super capacitor group;
3) work as RdF(δ+1)>0 and RdF(δ)<0 and USUP<UTWhen, then it improves and the voltage of super capacitor group is maintained to arrive UT
4) work as RdF(δ+1)>0 and RdF(δ)<0 and USUP≥UTWhen, then currently by super capacitor group output 10% Electrical power;
5) work as RdF(δ+1)<0 and RdF(δ)>0 and USUP<UTWhen, then improve the power of super capacitor group output;
6) work as RdF(δ+1)<0 and RdF(δ)>0 and USUP>UTWhen, then it reduces and the voltage of super capacitor group is maintained to arrive UT
7) work as RdF(δ+1)<0 and RdF(δ)<0, then balance the regenerative power of current super capacitance group and battery pack.
This preferred embodiment is designed electrical power distribution strategy, has formulated bearing power allocation rule, has made to battery The distribution of the power of group and super capacitor group is more accurate, extends the service life of battery pack, guarantees detection host module 5 and instrument The power supply of disk 6 is broken down in terms of power supply when preventing electric device maintenance instrument from working, and ensures electric device maintenance instrument Working efficiency when detection.
Inventor has carried out a series of tests using the present embodiment, is the experimental data tested below:
Electric device maintenance situation Working efficiency raising degree Power supply failure rate
Power equipment continues amount detection:10 5% 0%
Power equipment continues amount detection:20 6% 0%
Power equipment continues amount detection:30 5% 0%
Power equipment continues amount detection:40 7% 0%
Power equipment continues amount detection:50 8% 0%
As another preferred embodiment, which includes:
(1) it setsFor in subsequent timePrediction bearing power limit value, XdF' for the battery that selects after parameter optimization The power limit of group,To be likely to occur subsequent timeBearing power,For subsequent timeBearing powerThe probability of appearance determines prediction bearing power limit value according to the following formula:
1)When
2)When
(2) when the electrical power of loading demand is less than prediction bearing power limit value, electric device maintenance is provided by battery pack The electrical power of instrument demand;When the electrical power of loading demand is more than prediction bearing power limit value, battery pack is provided within limit value Power, the part more than prediction bearing power limit value are provided by super capacitor group.
This preferred embodiment is designed electrical power distribution strategy, is determining battery pack in the power limit of current time j The power limit and prediction bearing power limit value for considering the battery pack selected after parameter optimization when value simultaneously, improve battery pack The accuracy in computation of power limit keeps the distribution of the power to battery pack and super capacitor group more accurate, further increases multiple 7 efficiency of energy-storage module is closed, and extends the service life of battery pack, to ensure the working efficiency when detection of electric device maintenance instrument.
Preferably, the power limit to battery pack parallel connection lithium battery quantity and battery pack carries out value optimization, tool Body executes:
In formula, i, j neither consider the data rejected, Q in valueijFor battery pack parallel connection lithium battery quantity value be i, Optimal value when the power limit parameter value of battery pack is j, AkijIt indicates in { A1ij,A2ij,A3ij,A4ij,A5ijIn it is corresponding with k Value, k=1 ..., 5;
In addition, τkFor corresponding Akij, using expert estimation method obtain weighting coefficient, ωkFor corresponding Akij, using history Empirically determined weighting coefficient, and
Selecting final optimized variable parameter is QijWhen for minimum corresponding battery pack parallel connection lithium battery quantity value with And the power limit value of battery pack.
This preferred embodiment optimizes choosing to the power limit parameter of battery pack parallel connection lithium battery quantity and battery pack It selects, can more precisely optimize the selection of variable parameter, guarantee the power supply of detection host module 5 and instrument board 6 While further increase the working efficiency of composite energy storage module 7.
Finally it should be noted that the above embodiments are merely illustrative of the technical solutions of the present invention, rather than the present invention is protected The limitation of range is protected, although explaining in detail referring to preferred embodiment to the present invention, those skilled in the art are answered Work as understanding, it can be with modification or equivalent replacement of the technical solution of the present invention are made, without departing from the reality of technical solution of the present invention Matter and range.

Claims (2)

1. a kind of energy conservation and environmental protection electric device maintenance instrument, it is characterized in that:Including detector ontology, temperature inductor, humidity inductive Device, the detector ontology include detection host module and instrument board, the detection host module respectively with temperature inductor, humidity sense Device, instrument board is answered to connect one to one;The detector ontology further include with detection host module and instrument board all connect it is compound Energy-storage module;It further include the alarm being connect with detection host module;The composite energy storage module includes super capacitor group, battery Group, two-way dc/dc converter, first switch, second switch, first diode and the second diode, wherein two-way dc/dc is converted The high-voltage end of device is connect with super capacitor group, and the low-pressure end of two-way dc/dc converter is connect with battery pack, and super capacitor group passes through First switch and first diode and load in parallel connects, and battery pack passes through second switch and the second diode in parallel and negative Carry connection;The super capacitor group of the composite energy storage module and the parameter of battery pack use the method choice of parameter matching and optimization, tool Body includes:
(1) select the optimization aim of the parameter matching and optimization of composite energy storage module for:The gross mass of composite energy storage module, capacity, Total volume, loss, battery pack average charge-discharge magnification;
(2) select optimized variable for:Battery pack parallel connection lithium battery quantity, the power limit of battery pack;
(3) the compound storage in the scheme of the power limit composition of each battery pack parallel connection lithium battery quantity and battery pack is calculated separately Can the gross mass of module, capacity, total volume, loss, battery pack average charge-discharge magnification;
(4) be set separately gross mass, capacity, total volume, loss, battery pack each parameter of average charge-discharge magnification threshold value, it is right The corresponding data of scheme of the power limit composition of the battery pack parallel connection lithium battery quantity and battery pack beyond each parameter threshold It is rejected;
(5) scheme formed when being j as the power limit value of i and battery pack is set by battery pack parallel connection lithium battery quantity value The gross mass of energy resource supply module is Rij, total volume Sij, loss be Eij, battery pack average charge-discharge magnification be FijAnd The capacity of energy resource supply module is Gij, wherein the value range for setting battery pack parallel connection lithium battery quantity sets electricity as [2,10] The value range of the power limit of pond group is [0,100kw], carries out nondimensionalization processing according to the following formula to remaining data:
In formula, i=2,3 ..., 10, j=0,10 ..., 100, wherein i, j neither consider the data rejected in value;
Wherein, A1ijIt indicates to RijCarrying out nondimensionalization, treated as a result, A2ijIt indicates to SijCarrying out nondimensionalization, treated As a result, A3ijIt indicates to EijCarrying out nondimensionalization, treated as a result, A4ijIt indicates to FijCarry out nondimensionalization treated knot Fruit, A5ijIt indicates to GijCarry out nondimensionalization treated result;
Wherein, min (R) is the minimum of the gross mass R of energy resource supply module, and min (S) is the total volume of energy resource supply module Minimum, min (E) are the minimum of the loss of energy resource supply module, and min (F) is the average charge and discharge times of energy resource supply module The minimum of rate, min (G) are the minimum of the capacity of energy resource supply module;
(6) value optimization is carried out to the power limit of battery pack parallel connection lithium battery quantity and battery pack, it is specific to execute:
In formula, i, j neither consider the data rejected, Q in valueijIt is i for battery pack parallel connection lithium battery quantity value, battery Optimal value when the power limit parameter value of group is j, AkijIt indicates in { A1ij,A2ij,A3ij,A4ij,A5ijIn corresponding with k take Value, k=1 ..., 5;
In addition, τkFor corresponding Akij, using expert estimation method obtain weighting coefficient, ωkFor corresponding Akij, using historical experience Determining weighting coefficient, and
Selecting final optimized variable parameter is QijCorresponding battery pack parallel connection lithium battery quantity value and electricity when for minimum The power limit value of pond group.
2. a kind of energy conservation and environmental protection electric device maintenance instrument according to claim 1, it is characterized in that:The composite energy storage module Optimum allocation is carried out according to power of the improved electrical power distribution strategy to battery pack and super capacitor group;The improved electrical power Allocation strategy includes:
(1) the power demand R of the load of current time δ is calculateddFThe voltage U of (δ) and super capacitor groupSUP, calculate+1 moment of δ Predict bearing power limit value;
(2) power distribution is carried out according to following bearing power allocation rule;
1) work as RdF(δ+1)>RdF(δ)>When 0, then currently by the electrical power of super capacitor group output 25%;
2) work as RdF(δ)>RdF(δ+1)>0and USUP≥UTWhen, then currently by the electrical power of super capacitor group output 75%, wherein UTFor the voltage rating of super capacitor group;
3) work as RdF(δ+1)>0and RdF(δ)<0and USUP<UTWhen, then it improves and maintains the voltage of super capacitor group to UT
4) work as RdF(δ+1)>0and RdF(δ)<0and USUP≥UTWhen, then currently by the electrical power of super capacitor group output 10%;
5) work as RdF(δ+1)<0and RdF(δ)>0and USUP<UTWhen, then improve the power of super capacitor group output;
6) work as RdF(δ+1)<0and RdF(δ)>0and USUP>UTWhen, then it reduces and maintains the voltage of super capacitor group to UT
7) work as RdF(δ+1)<0and RdF(δ)<0, then balance the regenerative power of current super capacitance group and battery pack.
CN201611170521.7A 2016-12-16 2016-12-16 A kind of energy conservation and environmental protection electric device maintenance instrument Active CN106441459B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611170521.7A CN106441459B (en) 2016-12-16 2016-12-16 A kind of energy conservation and environmental protection electric device maintenance instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611170521.7A CN106441459B (en) 2016-12-16 2016-12-16 A kind of energy conservation and environmental protection electric device maintenance instrument

Publications (2)

Publication Number Publication Date
CN106441459A CN106441459A (en) 2017-02-22
CN106441459B true CN106441459B (en) 2018-11-23

Family

ID=58217377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611170521.7A Active CN106441459B (en) 2016-12-16 2016-12-16 A kind of energy conservation and environmental protection electric device maintenance instrument

Country Status (1)

Country Link
CN (1) CN106441459B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730189A (en) * 2011-03-29 2012-10-17 郑鹏 Marine flying lifesaving method and device
CN103336877A (en) * 2013-07-25 2013-10-02 哈尔滨工业大学 Satellite lithium ion battery residual life prediction system and method based on RVM (relevance vector machine) dynamic reconfiguration
CN103792495A (en) * 2014-01-29 2014-05-14 北京交通大学 Method for evaluating battery performance based on Delphi method and grey relation theory

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960119B (en) * 2006-11-22 2011-05-11 中国科学院电工研究所 Autonomic micro system integrated from photovoltaic - temperature difference micro energy sources and network nodes of radio sensors
CN102647007A (en) * 2012-04-20 2012-08-22 上海电机学院 Battery pack balanced management system
CN203511533U (en) * 2013-10-10 2014-04-02 郑州宇通客车股份有限公司 Storage battery power supply system based on solar energy, vehicle hybrid power system and vehicle
DE102014203030B4 (en) * 2014-02-19 2021-06-02 Vitesco Technologies GmbH Method for the controlled connection of several on-board network branches of a vehicle, control unit for executing the method and vehicle on-board network
CN104199427B (en) * 2014-09-17 2017-02-01 河北泽宏科技股份有限公司 Distribution-type environment monitoring and control system and method
CN104648166A (en) * 2014-12-12 2015-05-27 江苏大学 Vehicle-mounted composite power supply regenerative braking energy recovery system and method
CN105939034B (en) * 2016-03-29 2019-03-26 武汉理工大学 Lithium battery group active equalization system and method based on super capacitor energy-storage transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730189A (en) * 2011-03-29 2012-10-17 郑鹏 Marine flying lifesaving method and device
CN103336877A (en) * 2013-07-25 2013-10-02 哈尔滨工业大学 Satellite lithium ion battery residual life prediction system and method based on RVM (relevance vector machine) dynamic reconfiguration
CN103792495A (en) * 2014-01-29 2014-05-14 北京交通大学 Method for evaluating battery performance based on Delphi method and grey relation theory

Also Published As

Publication number Publication date
CN106441459A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
Stecca et al. A comprehensive review of the integration of battery energy storage systems into distribution networks
Huang et al. Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system
Zand et al. Energy management strategy for solid‐state transformer‐based solar charging station for electric vehicles in smart grids
Ahmad Hamidi et al. Modeling and management of batteries and ultracapacitors for renewable energy support in electric power systems–an overview
CN102088244B (en) Maximum power point tracking converter and maximum power point tracking method
CN102104257B (en) Energy storage system of apartment building, integrated power management system, and method of controlling the system
Samanta et al. Active cell balancing of lithium-ion battery pack using dual DC-DC converter and auxiliary lead-acid battery
JP6491347B2 (en) Flow battery system charge state monitoring and measurement method, flow battery based on redundant design of SOC detection device, flow battery actual capacity determination method and device, flow battery AC side input / output characteristics estimation method and method system
Thomas et al. Development of a modular high-power converter system for battery energy storage systems
CN103023351B (en) Electric automobile charging/discharging/storing integral station power flow three-level converter
CN104993602A (en) Modular energy storage system
Gladwin et al. Viability of “second-life” use of electric and hybridelectric vehicle battery packs
CN102324582A (en) Intelligent maintenance device of multifunctional lead-acid battery and capacity prediction method
CN109917298A (en) A kind of cell charge state prediction method and system
CN115065053B (en) Station area harmonic responsibility qualitative assessment method and system based on source-load equivalent admittance
Astero et al. Improvement of RES hosting capacity using a central energy storage system
CN115940224A (en) Charge-discharge control method, device, equipment and medium of energy storage system
Sugumaran et al. A comprehensive review of various topologies and control techniques for dc-dc converter-based lithium-ion battery charge equalization
CN111381174A (en) Fuel cell test and lithium ion battery formation capacity-sharing coupling system and method
CN109768626A (en) A kind of energy stream implementation method of energy-accumulating power station plug and play
CN106441459B (en) A kind of energy conservation and environmental protection electric device maintenance instrument
CN204835716U (en) Modular energy storage system
CN114330938B (en) Distributed energy storage planning method and system for power distribution network
Pattnaik et al. A review on characterization of supercapacitors and its efficiency analysis for different charging methods and applications
CN106625705B (en) A kind of intelligent medical service robot

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181012

Address after: 225400 the south side of Wenchang Road, Taixing hi tech Industrial Development Zone, Taizhou, Jiangsu.

Applicant after: Taizhou Longze Environmental Technology Co., Ltd.

Address before: 518000 room 809, Chuang Sheng building, sunny industrial district, Xili street, Nanshan District, Shenzhen, Guangdong.

Applicant before: Shenzhen United Automation Control Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant