CN106441272A - 一种管道清堵机器人自动快速定位系统及方法 - Google Patents

一种管道清堵机器人自动快速定位系统及方法 Download PDF

Info

Publication number
CN106441272A
CN106441272A CN201610823213.3A CN201610823213A CN106441272A CN 106441272 A CN106441272 A CN 106441272A CN 201610823213 A CN201610823213 A CN 201610823213A CN 106441272 A CN106441272 A CN 106441272A
Authority
CN
China
Prior art keywords
signal
robot
pipeline
sensor
convolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610823213.3A
Other languages
English (en)
Other versions
CN106441272B (zh
Inventor
魏明生
宋龙进
童敏明
张春亚
王三林
张芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201610823213.3A priority Critical patent/CN106441272B/zh
Priority to CN201910030275.2A priority patent/CN109855615A/zh
Publication of CN106441272A publication Critical patent/CN106441272A/zh
Application granted granted Critical
Publication of CN106441272B publication Critical patent/CN106441272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公布一种管道清堵机器人自动快速定位系统及方法,采用无人机等快速载磁电传感器定位系统,检测管道机器人内发射的低频磁信号,采用信号相关匹配方法,实现对管道机器人的快速、自动化定位。主要有磁电传感器速度和高度检测系统、磁电传感器信号接收系统、定位信号相关识别及定位显示系统等组成。工作运行中,由管道机器人从管内发射出一低频电磁脉冲信号,可穿透管壁到达管外,供磁电传感器接收。通过对传感器接收信号的理论波形和合适的电压信号,求卷积和,判断两者的相关性,计算出GPS的即为管道机器人在xoy平面上的坐标值,实现管道清堵机器人的自动快速定位,大大提高了管道机器人的定位跟踪效率和定位精度。

Description

一种管道清堵机器人自动快速定位系统及方法
技术领域
本发明涉及一种管道清堵机器人自动快速定位系统及方法。
背景技术
管道清堵机器人是由气体、液体或管道输送介质推动,用以清理管道的专用工具,清堵机器人清理管道的工作中,在管内时常被卡堵,使管道运输存在安全隐患。因此需要对管道机器人进行跟踪定位,监测管道机器人被堵住的位置,以便进行挖掘、清堵管道。由于石油管道材质大都为一定厚度的金属壁,且埋藏在地下,常规的声、光、电信号受到屏蔽很难到达地面,目前一般采用极低频电磁波穿透管壁,实现管道机器人的定位,具体方法是在管道机器人内部放置极低频电磁发射线圈,管道外放置电磁接收装置用来对低频电磁信号的接收,实现管道机器人定位。在具体传感器布置方式上,目前主要流行两种定位方法,一是在管道交换站或管道某几个位置外侧放置低频电磁信号的接收装置,当管道机器人在管道内经过此位置时,接收装置会接收到管内发射的电磁信号,但是这种定位方式只能监测某时刻管道机器人经过与否,只能判断机器人所处的大概位置,当管道机器人被堵在管道某位置时,不能进行位置的精确定位,而且需要在管道沿线间隔的布置大量的传感器,器件成本上花费高。另一种监测方式,是管道内机器人内部电磁线圈发射低频的正弦波信号,管道机器人所处位置的管道外侧在管道轴线方向和径向方向产生不同形状的电磁强度信号,先是接收天线平行于管道接收轴向的电磁信号,判断管道机器人的大概位置,然后天线再垂直于管道,接收径向方向的电磁信号,实现管道机器人的定位,但是这种机械式方法不能自动快速实现管道机器人定位。在一些铺设的石油管道中,经常需要快速找到管道清堵机器人的堵塞位置,上述定位方法就显得无能为力。
发明内容
鉴于现有技术所存在的上述不足,本发明的目的是要提供一种管道清堵机器人智能化的自动、快速定位方法,并且实现装置结构的简易及带来良好经济效益。
本发明的目的是通过以下技术方案实现的:一种管道清堵机器人自动快速定位系统,包括地下管道内机器人,内部装有一低频电磁螺线管天线发射装置,其特征在于,还包括磁电传感器速度和高度检测系统、磁电传感器信号接收系统、定位信号相关识别及定位显示系统,传感器速度和高度检测系统包括速度传感器、高度传感器、单片机和液晶显示装置度传感系统;磁电传感器信号接收系统包括磁电传感器线圈装置、信号放大电路和滤波电路;定位信号相关识别系统包括电源、无线信号收发电路、微控制器单元、FPGA信号处理单元、GPS定位系统、无线通信装置。
磁电传感器线圈装置由0.1mm的漆包线缠绕10000圈绕成,内加增强磁场信号的铁芯,在监测过程中垂直于水平地面放置。
一种管道清堵机器人自动快速定位方法,包括以下步骤:
A、管道清堵机器人自动化、快速定位监测时,磁电传感器系统由无人机或汽车等快速机械设备承载以一定的速度运行;
B、磁电传感器速度检测系统和高度检测系统进行计算出磁电传感器系统的运动速度和离管道的高度,根据磁电传感器的速度和相对于管道机器人垂直距离,可以计算推导出接收天线理论上接收电磁信号的包络波形
C、磁电传感器信号接收系统经过磁电传感器采集外界低频电磁信号,当磁电传感器接收到的信号为管道机器人内部发射的低频电磁信号时,产生的信号和理论的包络波形高度相关,如果接收到的信号不是管道机器人内部发射的信号,没有相关性;采用FPGA进行的相关分析,来自动判断管道机器人的位置。
D、相关时,通过单片机系统,根据GPS的定位信号,自动记录管道机器人在xoy平面上的坐标位置(x,y)。
步骤C中,确定磁电传感器在平面xoy上的位置的方法是通过求解两信号的卷积运算,当采集到管道机器人内发射的磁信号时,两信号的卷积和最大,否则卷积和较小,首先根据传感器检测的无人机的高度h和速度v,求出理论上传感器输出信号,然后通过离散化,取100个离散点,具体为
同样,对传感器经过信号调理后输出的信号进行离散化,得到
然后对做卷积和计算
为采集的管道机器人内发射出的磁信号时,其卷积和为最大;
根据实验结果,设定一阈值m,当卷积和大于m时,自动定位系统默认为采集到的信号即为管道机器人内部发射出的信号,此时传感器的位置即为管道机器人的正上方,当传感器远离管道机器人时,采集的信号和理论值相关性差,两者的卷积和较小,此时的卷积和小于m,当卷积较大系统判断传感器下方为管道机器人时,此时,单片机系统读取GPS的三维坐标信息,此时的坐标即为管道机器人在水平面的坐标信息。
步骤D中,确定管道机器人在xoy平面上的坐标位置(x,y)的方法采集的信号和理论值的卷积计算由FPGA系统进行计算,具体计算过程为在FPGA中构建100组卷积计算模板,每组计算模板大小为,该模板的卷积运算是由100个乘法器和99个加法器组成,每组的计算数据主要由FPGA的寄存器给出,通过垂直方向和水平方向实现流水计算,实现卷积计算,卷积计算结果传输到单片机STM32F107,由单片机根据设定的阈值进行比较,当卷积和大于设定阈值时,此时即为检测到管道机器人的位置,读取GPS的位置信息,记下此时的坐标位置,即可以求出管道机器人在平面的位置
有益效果,由于采用了上述方案,可以实现对管道清堵机器人快速、自动化的定位:
1、在管道清堵机器人定位中,采用无人机等快速运动工具承载磁电传感器系统,可以快速寻找管道内被卡的管道清堵机器人,同时避免了不同地形对人员行走的障碍,实现管道清堵机器人的连续、快速定位;
2、采用速度检测系统检测磁电传感器运行的速度,同时高度传感器检测传感器到管道之间的距离。根据传感器和管道的相对高度和速度,在理论上计算出磁电传感器接收信号在Z方向上的电压理论波形,与传感器实际采集的信号进行相关分析,具体通过求解两函数卷积和,当两函数相关时,卷积和最大,应用中设定一阈值,当卷积和大于阈值时,即表明采集的信号为接收管道机器人内发射的磁信号转化而来的电压信号。采用此办法即可实现管道机器人自动、快速定位的目的,可以根据实际工况条件,调节相关阈值;
3、磁电传感器系统采用高通、低通、带通滤波、放大电路,有效的提高了磁电传感器采集信号的精度,抗干扰能力强、可靠性和开放性程度高、信息处理能力强。
本发明的优点:管道清堵机器人自动、快速定位方法能够快速、自动化的实现管道清堵机器人的定位。采用的低频电磁信号可以穿透管道壁,被管道外磁电传感器接收,实现管道机器人与外界的通信;采用无人机载磁电传感器,可以使磁电传感器快速沿管道行走,为快速寻找机器人提供了可能;速度传感器和高度传感器可以检测出磁电传感器行走的速度和离管道的高度,从而理论求得磁电传感器接收管道机器人内磁信号的信号波形;采用磁电传感器采集到的电压信号互相关分析,通过求两函数的卷积和,实现管道清堵机器人的快速、自动化定位。采用的高通、低通、带通滤波放大电路,可以使控制系统读取传感器接收到的信号,滤除噪声干扰。
附图说明
图1 为本发明所述的管道清堵机器人自动快速定位系统的基本结构图。
图2 为管道机器人系统与磁电传感器的位置关系图。
图3 为本发明所述传感器速度与采集信号包络波形的关系图。
图4 为管道机器人磁电传感器自动、快速定位方法流程图。
具体实施方式:
下面结合附图对本发明的实施例作详细说明:本次的具体实施是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
图1为管道清堵机器人自动快速定位系统的基本结构图,它主要包括管内低频电磁发射系统和管外磁电传感器自动快速管道机器人定位系统两大部分。工作中,地下管道内机器人内部装有一低频电磁螺线管天线发射装置,采用2051单片机产生23.5HZ的正弦低频信号,经过DAC转换芯片MAX541实现低频正弦信号数字量到模拟信号的转换,信号经过运算放大器LF353比例放大,输出电压接通到螺线管发射线圈,螺线管发射天线采用漆包线缠绕而成,所有电路系统由锂电池供电,集成并封装在管道机器人内部。管道机器人内向外发射电磁波的强度为
式中,为发射线圈的磁导率,为单位长度线圈的匝数,为磁信号发射线圈流过的电流,为线圈的长度,为在柱坐标下测试点到坐标中心的距离。
图2为管道机器人系统和管外磁电传感器的关系图,以管道机器人发射线圈中心为原点,建立坐标系,管道机器人在时间内行走的距离为,根据图2有
带入上式可以得到在磁电传感器中心点的磁场强度为
为管道离磁电传感器的高度,为传感器的速度,当上面各项参数都已经确定时,空间某点的磁场强度就已经确定。
在自动快速定位中,磁电传感器及定位系统由无人机或汽车灯快速行走的车辆工具载动。系统中安装有速度传感器SMB380和超声波高度传感器HC-SR04,速度传感器主要是测量磁电传感器行走的速度,超声波传感器主要测量磁电传感器相对于地面的高度,进而求出磁电传感器相对于管道中心的高度,根据管道机器人和磁电传感器之间的关系模型,求出磁电传感器输出电压的理论值
为传感器后续放大电路的电压放大倍数,传感器输出电压信号随时间的变化规律如3图所示。可以看出,随着传感器相对于管道机器人的速度的变化,传感器输出信号在时域内的信号宽度不同,随着传感器速度的增加,采集的电压信号在时域内呈压缩趋势。
当磁电传感器在工作中沿管道行走,实时采集空间中的磁信号。磁电传感器由0.1mm的漆包线缠绕10000圈绕成,内加增强磁场信号的铁芯,在监测过程中垂直于水平地面放置。磁电传感器输出信号传输到调理电路,经过巴特沃斯低通滤波器,双T带通滤波器和切比雪夫高通滤波器滤波,同时经过运算放大器放大,调理为合适的信号,然后传输到FPGA系统,与理论信号进行卷积求和,进而分析两者的相关性,达到自动定位的目的。当磁电传感器在管道机器人上方行走时,采集到的信号与理论信号形状上相似,即两者信号呈高度相关。
具体进行自动化识别定位过程中,通过求解两信号的卷积运算,当采集到管道机器人内发射的磁信号时,两信号的卷积和最大,否则卷积和较小,实验中首先根据传感器检测的无人机的高度h和速度v,求出理论上传感器输出信号,然后通过离散化,取100个离散点,具体为
同样,对传感器经过信号调理后输出的信号进行离散化,得到
然后对做卷积和计算
为采集的管道机器人内发射出的磁信号时,其卷积和为最大。在应用中,根据实验结果,设定一阈值m,当卷积和大于m时,自动定位系统默认为采集到的信号即为管道机器人内部发射出的信号,此时传感器的位置即为管道机器人的正上方,当传感器远离管道机器人时,采集的信号和理论值相关性差,两者的卷积和较小,此时的卷积和小于m。当卷积较大系统判断传感器下方为管道机器人时,此时,单片机系统读取GPS的三维坐标信息,此时的坐标即为管道机器人在水平面的坐标信息。
采集的信号和理论值的卷积计算由FPGA系统进行计算,具体计算过程为在FPGA中构建100组卷积计算模板,每组计算模板大小为,该模板的卷积运算是由100个乘法器和99个加法器组成,每组的计算数据主要由FPGA的寄存器给出,通过垂直方向和水平方向实现流水计算,实现卷积计算。卷积计算结果传输到单片机STM32F107,由单片机根据设定的阈值进行比较,当卷积和大于设定阈值时,此时即为检测到管道机器人的位置,读取GPS的位置信息,记下此时的坐标位置,即可以求出管道机器人在平面的位置
图4为管道机器人自动定位系统流程图,具体定位过程为:首选对系统进行初始化设置,其次,在检测过程中运用系统的速度传感器和高度传感器检测检测装置的速度和高度值。根据理论分析的大小及图像,并均匀选取图像中100个离散点存储到FPGA寄存器中。在检测过程中,系统通过磁传感器进行信号检测,获得检测信号并存储到FPGA寄存器,与进行卷积计算。卷积和的结果传输到单片机与预先设定的阈值进行比较,当卷积和结果大于阈值时,即判定检测的信号来源于管道机器人,此时系统通过GPS系统读取管道机器人的坐标信息,并通过单片机存储到系统的存储单元,然后通过无线数传系统将定位信息传输到检测中心,生成位置报告,便于后期的管道维护和维修。

Claims (6)

1.一种管道清堵机器人自动快速定位系统,包括地下管道内机器人,内部装有一低频电磁螺线管天线发射装置,其特征在于,还包括磁电传感器速度和高度检测系统、磁电传感器信号接收系统、定位信号相关识别及定位显示系统,传感器速度和高度检测系统包括速度传感器、高度传感器、单片机和液晶显示装置度传感系统;磁电传感器信号接收系统包括磁电传感器线圈装置、信号放大电路和滤波电路;定位信号相关识别系统包括电源、无线信号收发电路、微控制器单元、FPGA信号处理单元、GPS定位系统、无线通信装置。
2.根据权利要求1所述磁电传感器线圈装置由0.1mm的漆包线缠绕10000圈绕成,内加增强磁场信号的铁芯,在监测过程中垂直于水平地面放置。
3.一种管道清堵机器人自动快速定位方法,其特征在于,包括以下步骤:
A、管道清堵机器人自动化、快速定位监测时,磁电传感器系统由无人机或汽车等快速机械设备承载以一定的速度运行;
B、磁电传感器速度检测系统和高度检测系统进行计算出磁电传感器系统的运动速度和离管道的高度,根据磁电传感器的速度和相对于管道机器人垂直距离,可以计算推导出接收天线理论上接收电磁信号的包络波形
C、磁电传感器信号接收系统经过磁电传感器采集外界低频电磁信号,当磁电传感器接收到的信号为管道机器人内部发射的低频电磁信号时,产生的信号和理论的包络波形高度相关,如果接收到的信号不是管道机器人内部发射的信号,没有相关性;采用FPGA进行的相关分析,来自动判断管道机器人的位置。
4.D、相关时,通过单片机系统,根据GPS的定位信号,自动记录管道机器人在xoy平面上的坐标位置(x,y)。
5.根据权利要求3所述的一种管道清堵机器人自动快速定位方法,所述步骤C中,确定磁电传感器在平面xoy上的位置的方法是通过求解两信号的卷积运算,当采集到管道机器人内发射的磁信号时,两信号的卷积和最大,否则卷积和较小,首先根据传感器检测的无人机的高度h和速度v,求出理论上传感器输出信号,然后通过离散化,取100个离散点,具体为
同样,对传感器经过信号调理后输出的信号进行离散化,得到
然后对做卷积和计算
为采集的管道机器人内发射出的磁信号时,其卷积和为最大;
根据实验结果,设定一阈值m,当卷积和大于m时,自动定位系统默认为采集到的信号即为管道机器人内部发射出的信号,此时传感器的位置即为管道机器人的正上方,当传感器远离管道机器人时,采集的信号和理论值相关性差,两者的卷积和较小,此时的卷积和小于m,当卷积较大系统判断传感器下方为管道机器人时,此时,单片机系统读取GPS的三维坐标信息,此时的坐标即为管道机器人在水平面的坐标信息。
6.根据权利要求3所述的一种管道清堵机器人自动快速定位方法,所述步骤D中,确定管道机器人在xoy平面上的坐标位置(x,y)的方法采集的信号和理论值的卷积计算由FPGA系统进行计算,具体计算过程为在FPGA中构建100组卷积计算模板,每组计算模板大小为,该模板的卷积运算是由100个乘法器和99个加法器组成,每组的计算数据主要由FPGA的寄存器给出,通过垂直方向和水平方向实现流水计算,实现卷积计算,卷积计算结果传输到单片机STM32F107,由单片机根据设定的阈值进行比较,当卷积和大于设定阈值时,此时即为检测到管道机器人的位置,读取GPS的位置信息,记下此时的坐标位置,即可以求出管道机器人在平面的位置
CN201610823213.3A 2016-09-14 2016-09-14 一种管道清堵机器人自动快速定位系统及方法 Active CN106441272B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610823213.3A CN106441272B (zh) 2016-09-14 2016-09-14 一种管道清堵机器人自动快速定位系统及方法
CN201910030275.2A CN109855615A (zh) 2016-09-14 2016-09-14 一种管道机器人智能化自动快速定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610823213.3A CN106441272B (zh) 2016-09-14 2016-09-14 一种管道清堵机器人自动快速定位系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910030275.2A Division CN109855615A (zh) 2016-09-14 2016-09-14 一种管道机器人智能化自动快速定位系统

Publications (2)

Publication Number Publication Date
CN106441272A true CN106441272A (zh) 2017-02-22
CN106441272B CN106441272B (zh) 2019-02-12

Family

ID=58167915

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910030275.2A Pending CN109855615A (zh) 2016-09-14 2016-09-14 一种管道机器人智能化自动快速定位系统
CN201610823213.3A Active CN106441272B (zh) 2016-09-14 2016-09-14 一种管道清堵机器人自动快速定位系统及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910030275.2A Pending CN109855615A (zh) 2016-09-14 2016-09-14 一种管道机器人智能化自动快速定位系统

Country Status (1)

Country Link
CN (2) CN109855615A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107016844A (zh) * 2017-05-19 2017-08-04 曲阜师范大学 基于gprs的智能备用电缆管道故障检测及清理系统
CN107271539A (zh) * 2017-07-03 2017-10-20 中国船舶重工集团公司第七六研究所 一种海底油气管道漏磁/甚低频接收检测定位方法及装置
CN109613580A (zh) * 2019-02-18 2019-04-12 广州普远励源石化科技有限公司 一种管道内检测器的地上追踪装置
CN110805784A (zh) * 2019-10-11 2020-02-18 南京博阳科技有限公司 一种基于视觉传感器的管道机器人
WO2022117128A3 (zh) * 2022-03-09 2023-01-19 国机传感科技有限公司 一种基于极低频磁传感的二维控制方法及系统
CN117406759A (zh) * 2023-12-14 2024-01-16 深圳天溯计量检测股份有限公司 一种管道机器人爬行校准方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345284B (zh) * 2020-11-26 2021-07-27 吉林大学 一种磁场驱动无缆管道机器人往复运动动态性能测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601300A (zh) * 2004-10-13 2005-03-30 大连理工大学 管道内移动微型机器人的超声波在线定位方法
CN101201626A (zh) * 2007-12-10 2008-06-18 华中科技大学 机器人自主定位系统
CN101886743A (zh) * 2010-06-30 2010-11-17 东北大学 一种定位海底管道机器人方法及装置
CN202527426U (zh) * 2012-01-12 2012-11-14 浙江理工大学 管道清洁机器人的自主导航系统
CN204086546U (zh) * 2014-09-26 2015-01-07 广东埃彼咨管道技术有限公司 一种北斗卫星油气管道检测定位装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679165B (zh) * 2012-04-27 2013-12-18 东北大学 一种用于海底管道中内检测器定位的装置及方法
CN103470959B (zh) * 2013-09-16 2016-04-27 北京埃彼咨石化科技有限公司 基于多模组合定位的油气管道智能内检测装置
CN105004787B (zh) * 2015-06-26 2017-12-26 广东电网有限责任公司电力科学研究院 电力金属部件清扫探伤机器人控制系统及方法
CN105805563B (zh) * 2016-05-10 2018-03-27 广州丰谱信息技术有限公司 基于随路内窥式管道泄漏及堵塞的超声检测装置与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601300A (zh) * 2004-10-13 2005-03-30 大连理工大学 管道内移动微型机器人的超声波在线定位方法
CN101201626A (zh) * 2007-12-10 2008-06-18 华中科技大学 机器人自主定位系统
CN101886743A (zh) * 2010-06-30 2010-11-17 东北大学 一种定位海底管道机器人方法及装置
CN202527426U (zh) * 2012-01-12 2012-11-14 浙江理工大学 管道清洁机器人的自主导航系统
CN204086546U (zh) * 2014-09-26 2015-01-07 广东埃彼咨管道技术有限公司 一种北斗卫星油气管道检测定位装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
魏明生等: "管道机器人无线电磁自适应定位技术", 《光学精密工程》 *
魏明生等: "管道清堵机器人电磁定位系统", 《工矿自动化》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107016844A (zh) * 2017-05-19 2017-08-04 曲阜师范大学 基于gprs的智能备用电缆管道故障检测及清理系统
CN107271539A (zh) * 2017-07-03 2017-10-20 中国船舶重工集团公司第七六研究所 一种海底油气管道漏磁/甚低频接收检测定位方法及装置
CN109613580A (zh) * 2019-02-18 2019-04-12 广州普远励源石化科技有限公司 一种管道内检测器的地上追踪装置
CN110805784A (zh) * 2019-10-11 2020-02-18 南京博阳科技有限公司 一种基于视觉传感器的管道机器人
WO2022117128A3 (zh) * 2022-03-09 2023-01-19 国机传感科技有限公司 一种基于极低频磁传感的二维控制方法及系统
CN117406759A (zh) * 2023-12-14 2024-01-16 深圳天溯计量检测股份有限公司 一种管道机器人爬行校准方法和系统
CN117406759B (zh) * 2023-12-14 2024-04-05 深圳天溯计量检测股份有限公司 一种管道机器人爬行校准方法和系统

Also Published As

Publication number Publication date
CN109855615A (zh) 2019-06-07
CN106441272B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN106441272A (zh) 一种管道清堵机器人自动快速定位系统及方法
US8949042B1 (en) AUV pipeline inspection using magnetic tomography
CN104655714B (zh) 基于宽频磁波反射通路参数辨识的检测与成像方法及装置
CN108397692B (zh) 基于噪声信号时域分段频谱分析的管道泄漏识别方法
CN112525201B (zh) 一种基于电磁场特征多信息融合的水下目标跟踪方法
CN103196991B (zh) 连续诊断管体金属腐蚀与缺陷的全覆盖瞬变电磁检测方法
CN103629534A (zh) 一种基于综合信号的输油管道泄漏检测和定位方法
CN109063849A (zh) 一种管道内检测器的实时跟踪与分级定位系统及方法
CN203299373U (zh) 一种无线电磁自适应清管器及其定位系统
CN109799279A (zh) 一种铁磁管道应力检测与监测方法
CN109613580A (zh) 一种管道内检测器的地上追踪装置
CN114721037A (zh) 一种智能声学技术对管道内特征的检测、定位与识别方法
CN117420507A (zh) 一种堤坝白蚁巢穴的定位方法、装置、设备及存储介质
CN103615962A (zh) 一种滑坡体地表位移测量方法
CN110488299A (zh) 一种城市内涝下水道堵塞检测系统及检测方法
CN115452670A (zh) 一种流动水体中泥沙含量的测定方法及装置
CN106404161B (zh) 一种对隧道施工振动位置精确定位的计算方法
CN111189926B (zh) 一种基于全域搜索辨识结构空洞位置的方法及系统
CN105353415A (zh) 一种导线探测方法及系统
CN209542845U (zh) 一种管道内检测器的地上追踪装置
CN105372710A (zh) 一种导线探测方法及系统
Kai et al. The positioning receiver system of pipeline inner detector based on extremely low frequency electromagnetic signal
CN105629313A (zh) 海洋移动目标的磁通探测方法
CN112835109A (zh) 一种长输管道内检测器管道弱磁定位方法
CN105181047A (zh) 一种沿海水流量高频声学监测系统及其监测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant