CN106440656B - 一种二氧化碳预冷双级氮膨胀的天然气液化系统 - Google Patents
一种二氧化碳预冷双级氮膨胀的天然气液化系统 Download PDFInfo
- Publication number
- CN106440656B CN106440656B CN201610952137.6A CN201610952137A CN106440656B CN 106440656 B CN106440656 B CN 106440656B CN 201610952137 A CN201610952137 A CN 201610952137A CN 106440656 B CN106440656 B CN 106440656B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- nitrogen
- low
- natural gas
- pressure nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 395
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 216
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 195
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 170
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 110
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 110
- 239000003345 natural gas Substances 0.000 title claims abstract description 86
- 238000001816 cooling Methods 0.000 claims abstract description 46
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 20
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 20
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 59
- 239000003949 liquefied natural gas Substances 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 19
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 14
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052753 mercury Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000002737 fuel gas Substances 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 24
- 239000001294 propane Substances 0.000 description 16
- 238000007667 floating Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0095—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0205—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0207—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as at least a three level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
- F25J1/0267—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明公开了一种二氧化碳预冷双级氮膨胀的天然气液化系统,其包括:天然气输送管、二氧化碳预冷循环装置、脱重烃装置、双级氮气冷却循环装置、BOG换热器、第一节流阀、第二节流阀、LNG节流阀、气液分离装置、LNG泵和LNG储罐,本发明通过二氧化碳实现预冷却以及通过氮气实现深度冷却,并对二氧化碳预冷双级氮膨胀液化系统的工艺流程进行了优化设计,不仅提高了工艺灵活性,还减少了液化系统的能量消耗,提高了安全性,能够实现不同海域、不同气质条件下海上液化天然气稳定、高效、持续的生产需求。
Description
技术领域
本发明涉及天然气液化领域,具体而言,涉及一种二氧化碳预冷双级氮膨胀的天然气液化系统。
背景技术
天然气资源广泛分布在全球的陆地及海洋中,从陆地到海洋是世界油气勘探开发的必然趋势。FLNG(Floating Liquefied Natural Gas)是近年来海洋工程界提出的、集液化天然气的生产、储存和装卸为一体的新型海上装置,对于海上气田的开采具有投资成本低、建造周期短、开发风险小,便于迁移等特点。
海上作业需考虑台风、波浪、空间限制等不利因素,使得浮式液化工艺的技术难度高于陆上。作为FLNG的核心技术,液化工艺的合理性对工程项目的投资成本、运行费用、运营可靠性以及生产安全至关重要。针对海上工况的特殊性,研究后发现氮膨胀液化流程具有突出的海上适应性。
图1为现有浮式液化技术丙烷预冷双氮膨胀天然气液化系统示意图;图1中的代号含义如下:11为高温氮循环膨胀机,12为低温氮循环膨胀机,2为丙烷压缩机,31、32均为高温氮循环压缩机,41、42均为低温氮循环压缩机,51-56均为水冷却器,61-63均为J/T阀,71-73均为气液分离器,8为精馏塔,74为气液分离器。
图1为现有的浮式液化技术丙烷预冷双氮膨胀天然气液化系统,其中采用丙烷作为制冷剂,并且使用量较大,由于丙烷的沸点低、易汽化,因而于开停车操作时,设备和管线中存在大量丙烷会导致压力升高,增大丙烷泄放或泄漏的风险。一旦发生泄漏,由于丙烷的密度大于空气,会造成可燃气体的积聚,并且FLNG上部甲板空间有限、设备紧凑,扩散条件差,极易发生燃烧、爆炸等事故。对于浮式天然气液化系统,减少和避免丙烷的使用能够提高安全性,降低安全设施的投资。
海上气田天然气的产量和组分不断改变,外部环境始终在变化,并且FLNG装置具有可迁移性,这就要求浮式天然气液化系统具有可调节性,可以根据具体情况实现预冷段、液化段负荷的调节,减少换热温差,降低液化功耗。现有技术中高温氮循环和低温氮循环压力相同,流程设计无法调节不同温区的换热温差,可调节性差,造成FLNG装置的环境适应性和原料气适应性降低,不利于稳定高效的生产。
经膨胀机增压机和压缩机增压后,氮气压力高达5MPa以上,设备和管线的压力等级高,壁厚增大,工艺设备的重量增加,造成管架等支撑结构的载重增加,并对船体结构的强度等提出更高要求,上部工艺模块和船体的造价大幅上升,使得浮式天然气液化装置的投资增大、经济性降低。
综上可知,现有的浮式天然气液化技术存在安全性低、可调节性差、能耗高、经济性差的缺点。
发明内容
本发明提供一种二氧化碳预冷双级氮膨胀的天然气液化系统,用以提高天然气液化系统的海上适应性和工艺灵活性,实现海上液化天然气稳定、高效、持续的生产需求。
为了达到上述目的,本发明提供了一种二氧化碳预冷双级氮膨胀的天然气液化系统,其包括:天然气输送管、二氧化碳预冷循环装置、脱重烃装置、双级氮气冷却循环装置、BOG换热器、第一节流阀、第二节流阀、LNG节流阀、气液分离装置、LNG泵和LNG储罐,其中:
所述二氧化碳预冷循环装置包括多级预冷主低温换热器、多级二氧化碳压缩机和多级二氧化碳压缩机水冷器,所述多级预冷主低温换热器与所述天然气输送管连通,二氧化碳压缩机与二氧化碳压缩机水冷器的数目相等,并且每一二氧化碳压缩机的后端均设有一二氧化碳压缩机水冷器,二氧化碳经过多级二氧化碳压缩机增压及多级二氧化碳压缩机水冷器冷却后降温至第一设定温度,该第一设定温度的二氧化碳经过所述BOG换热器、所述第一节流阀和所述第二节流阀后分别输送至多级预冷主低温换热器,以对天然气输送管中流过的天然气进行预冷,对天然气进行预冷后的二氧化碳再次经过多级二氧化碳压缩机及多级二氧化碳压缩机水冷器,以实现循环预冷;
所述脱重烃装置设置在所述二氧化碳预冷循环装置的后端,将经过预冷的天然气分离为液态的重烃组分和气态的轻烃组分;
所述双级氮气冷却循环装置包括多级深冷主低温换热器、低压氮气预冷模块、高压氮气预冷模块、高压氮气膨胀机和低压氮气膨胀机,多级深冷主低温换热器与所述脱重烃装置连通,以对从所述脱重烃装置输出的天然气进行深度冷却,所述低压氮气预冷模块包括一低压氮气膨胀机增压机、一低压氮气膨胀机增压机水冷器、多级低压氮气压缩机和多级低压氮气压缩机水冷器,所述高压氮气预冷模块包括一高压氮气膨胀机增压机、一高压氮气膨胀机增压机水冷器、多级高压氮气压缩机和多级高压氮气压缩机水冷器,低压氮气压缩机和低压氮气压缩机水冷器的数目相等,高压氮气压缩机和高压氮气压缩机水冷器的数目相等,所述高压氮气预冷模块将氮气压缩至第一预定压强后分为两路,其中一路经过所述多级预冷主低温换热器进行冷却,另一路经过第一级深冷主低温换热器进行冷却,两路冷却后的氮气汇合后经过所述高压氮气膨胀机进行膨胀,膨胀后的低温低压氮气返流至多级深冷主低温换热器除了最后一级以外的部分,以冷却天然气、低压氮气和部分高压氮气,所述低压氮气预冷模块将氮气压缩至第二预定压强后经过除了最后一级以外其他级别的深冷主低温换热器进行冷却后再输入所述低压氮气膨胀机进行膨胀降温,膨胀后的低温低压氮气返流至最后一级深冷主低温换热器;
所述LNG节流阀连接在所述双级氮气冷却循环装置和所述气液分离装置之间,所述气液分离装置将液化天然气闪蒸产生的BOG输送至所述BOG换热器,以使节流闪蒸产生的BOG进一步冷却二氧化碳,所述BOG换热器进一步将BOG输出至燃料气系统;
所述LNG泵连接在所述气液分离装置与所述LNG储罐之间,用于将液化天然气输送到所述LNG储罐进行储存。
在本发明的一实施例中,所述天然气输送管之前依次连通有天然气脱固体颗粒装置、天然气脱酸气装置、天然气脱水装置、天然气脱苯装置和天然气脱汞装置,以将进入其内的天然气中的固体颗粒、酸性气体、水、苯和汞依次滤除。
在本发明的一实施例中,二氧化碳压缩机水冷器将经过前一级二氧化碳压缩机压缩后的二氧化碳冷却至35℃,经过多级二氧化碳压缩机后二氧化碳的压强增加至8.5MPa,经过BOG换热器和第一节流阀后二氧化碳的温度降为-16℃,经过第二节流阀后二氧化碳的温度降为-53℃,压强降为0.6MPa。
在本发明的一实施例中,所述第一预定压强为4MPa。
在本发明的一实施例中,所述第二预定压强为2.5MPa。
在本发明的一实施例中,多级预冷主低温换热器和多级深冷主低温换热器均采用流体均布构件。
在本发明的一实施例中,低压氮气预冷模块中,低压氮气膨胀机增压机水冷器和多级低压氮气压缩机水冷器将经过前一级低压氮气膨胀机增压机或低压氮气压缩机压缩后的氮气冷却至35℃。
在本发明的一实施例中,高压氮气预冷模块中,高压氮气膨胀机增压机水冷器和多级高压氮气压缩机水冷器将经过前一级高压氮气膨胀机增压机或高压氮气压缩机压缩后的氮气冷却至35℃。
在本发明的一实施例中,预冷主低温换热器为两级,二氧化碳压缩机增压和二氧化碳压缩机水冷器为两级。
在本发明的一实施例中,低压氮气压缩机、低压氮气压缩机水冷器、高压氮气压缩机和高压氮气压缩机水冷器均为两级。
本发明提供的二氧化碳预冷双级氮膨胀的天然气液化系统具有以下优点:
(1)对二氧化碳预冷双级氮膨胀液化系统的工艺流程进行了优化设计,对高压氮气压力、低压氮气压力、二氧化碳压力、二氧化碳预冷温度、高压氮气膨胀前温度、低压氮气膨胀前温度等参数进行了优化,提高了工艺灵活性。
(2)减少了液化系统的能量消耗,可以根据原料气的组成、温度、压力、项目建设地点环境温度的变化、海上的晃荡工况,合理分配预冷循环和主循环的热负荷,提高了液化系统的海上适应性,具有重要的工程价值,能够实现不同海域、不同气质条件下海上液化天然气稳定、高效、持续的生产需求。
(3)对不同的气质条件和海洋环境,液化率能够达到96%,相比于双氮膨胀液化工艺功耗降低约10%,与丙烷预冷双氮膨胀液化工艺的比功耗相当,液化能耗大大降低。
(4)相比于现有的丙烷预冷双氮膨胀液化工艺,本发明避免了丙烷的使用,提高了安全性,减少了安全设施的投资;降低了氮气系统的压力等级,从而减少了工艺模块和船体的投资成本,提高了浮式天然气液化装置的经济性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的浮式液化技术丙烷预冷双氮膨胀天然气液化系统的示意图;
图2为本发明一实施例的二氧化碳预冷双级氮膨胀的天然气液化系统的示意图;
图3为本发明一实施例中换热部分的流道布置示意图。
附图标记说明:1-天然气输送管;2-二氧化碳预冷循环装置;3-脱重烃装置;4-双级氮气冷却循环装置;5-BOG换热器;6-第一节流阀;7-第二节流阀;8-LNG节流阀;9-气液分离装置;101-LNG泵;102-LNG储罐;11、12-预冷主低温换热器;31、32、33-二氧化碳压缩机;61、62、63-二氧化碳压缩机水冷器;13、14、15-深冷主低温换热器;401-低压氮气预冷模块;402-高压氮气预冷模块;71-高压氮气膨胀机;72-低压氮气膨胀机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明一实施例的二氧化碳预冷双级氮膨胀的天然气液化系统的示意图,如图所示,本发明提供的二氧化碳预冷双级氮膨胀的天然气液化系统包括:天然气输送管1、二氧化碳预冷循环装置2、脱重烃装置3、双级氮气冷却循环装置4、BOG换热器5、第一节流阀6、第二节流阀7、LNG节流阀8、气液分离装置9、LNG泵101和LNG储罐102,其中:
二氧化碳预冷循环装置2包括两级预冷主低温换热器(11、12)、三级二氧化碳压缩机(31、32、33)和三级二氧化碳压缩机水冷器(61、62、63),两级预冷主低温换热器11、12与天然气输送管1连通,每一二氧化碳压缩机的后端均设有一二氧化碳压缩机水冷器,即二氧化碳压缩机31的后端设有二氧化碳压缩机水冷器61,二氧化碳压缩机32的后端设有二氧化碳压缩机水冷器62,二氧化碳压缩机33的后端设有二氧化碳压缩机水冷器63,二氧化碳经过三级二氧化碳压缩机(31、32、33)增压及三级二氧化碳压缩机水冷器(61、62、63)冷却后降温至35℃,该35℃的二氧化碳经过BOG换热器5、第一节流阀6和第二节流阀7后分别输送至两级预冷主低温换热器(11、12),以对天然气输送管1中流过的天然气进行预冷,对天然气进行预冷后的二氧化碳再次经过三级二氧化碳压缩机(31、32、33)及多级二氧化碳压缩机水冷器(61、62、63),以实现循环预冷;
脱重烃装置3设置在二氧化碳预冷循环装置2的后端,将经过预冷的天然气分离为液态的重烃组分和气态的轻烃组分,脱除C4以上组分;
双级氮气冷却循环装置4包括三级深冷主低温换热器(13、14、15)、低压氮气预冷模块401、高压氮气预冷模块402、高压氮气膨胀机71和低压氮气膨胀机72,三级深冷主低温换热器(13、14、15)与脱重烃装置3连通,以对从脱重烃装置3输出的天然气进行深度冷却,低压氮气预冷模块41包括一低压氮气膨胀机增压机51、一低压氮气膨胀机增压机水冷器67、两级低压氮气压缩机(52、53)和两级低压氮气压缩机水冷器(68、69),高压氮气预冷模块402包括一高压氮气膨胀机增压机41、一高压氮气膨胀机增压机水冷器64、两级高压氮气压缩机(42、43)和两级高压氮气压缩机水冷器(65、66)。
高压氮气预冷模块402将氮气压缩至4MPa后分为两路,其中一路经过两级预冷主低温换热器(11、12)冷却至-50℃,压强变为3.95MPa,另一路经过第一级深冷主低温换热器13冷却至-50℃,两路冷却后的氮气汇合后经过高压氮气膨胀机71进行膨胀至0.72MPa,温度降为-130℃,膨胀后的低温低压氮气返流至深冷主低温换热器14、13,以冷却天然气、低压氮气和部分高压氮气。
高压氮气预冷模块402中,高压氮气膨胀机增压机水冷器64和两级高压氮气压缩机水冷器65、66将经过前一级高压氮气膨胀机增压机41或高压氮气压缩机42、43压缩后的氮气冷却至35℃。
低压氮气预冷模块401将氮气压缩至2.5MPa后经过深冷主低温换热器13冷却至-55℃,经深冷主低温换热器14冷却至-120℃,之后经低压氮气膨胀机72进行膨胀降温,压强降至0.72MPa,温度降为-163℃,膨胀后的低温低压氮气返流至最后一级深冷主低温换热器15,再经过深冷主低温换热器14、13后,温度升至32℃,然后再经低压氮气预冷模块401再次压缩至2.5MPa,如此循环往复。
低压氮气预冷模块401中,低压氮气膨胀机增压机水冷器67和两级低压氮气压缩机水冷器68、69将经过前一级低压氮气膨胀机增压51或低压氮气压缩机52、53压缩后的氮气冷却至35℃。
LNG节流阀8连接在双级氮气冷却循环装置4和气液分离装置9之间,气液分离装置9将液化天然气闪蒸产生的BOG输送至BOG换热器5,以使节流闪蒸产生的BOG进一步冷却二氧化碳,BOG换热器5进一步将BOG输出至燃料气系统;
LNG泵101连接在气液分离装置9与LNG储罐102之间,用于将液化天然气输送到LNG储罐102进行储存,等待装船外输。
在本发明中,天然气输送管之前还可以依次连通有天然气脱固体颗粒装置、天然气脱酸气装置、天然气脱水装置、天然气脱苯装置和天然气脱汞装置,以将进入其内的天然气中的固体颗粒、酸性气体、水、苯和汞依次滤除。
如图2所示,每一二氧化碳压缩机水冷器(61、62、63)均将经过前一级二氧化碳压缩机(31、32、33)压缩后的二氧化碳冷却至35℃,经过三级二氧化碳压缩机(31、32、33)后二氧化碳的压强增加至8.5MPa,经过BOG换热器5和第一节流阀6后二氧化碳的温度降为-16℃,经过第二节流阀7后二氧化碳的温度降为-53℃,压强降为0.6MPa。
图3为本发明一实施例中换热部分的流道布置示意图,如图所示,流道21、22为原料气在主低温换热器中的液化过程,流道23、24为二氧化碳节流后冷却原料气和高压氮气的过程,流道25、26为高压氮气在主低温换热器中被预冷的过程,流道27为膨胀后的高压氮气冷却原料气、低压氮气和高温的高压氮气的过程,流道28为低压氮气在主低温换热器中被预冷的过程,流道29为膨胀后的低压氮气冷却原料气、低压氮气和高压氮气的过程。主低温换热器可选择板翅式换热器和绕管式换热器,具体类型根据单线产量、项目情况分析确定。
本发明中的两级预冷主低温换热器和三级深冷主低温换热器均采用流体均布构件,以优化内部换热结构、保证换热过程稳定、高效。
本发明提供的二氧化碳预冷双级氮膨胀的天然气液化系统具有以下优点:
(1)对二氧化碳预冷双级氮膨胀液化系统的工艺流程进行了优化设计,对高压氮气压力、低压氮气压力、二氧化碳压力、二氧化碳预冷温度、高压氮气膨胀前温度、低压氮气膨胀前温度等参数进行了优化,提高了工艺灵活性。
(2)减少了液化系统的能量消耗,可以根据原料气的组成、温度、压力、项目建设地点环境温度的变化、海上的晃荡工况,合理分配预冷循环和主循环的热负荷,提高了液化系统的海上适应性和工艺灵活性,具有重要的工程价值,能够实现不同海域、不同气质条件下海上液化天然气稳定、高效、持续的生产需求。
(3)对不同的气质条件和海洋环境,液化率能够达到96%,相比于双氮膨胀液化工艺功耗降低约10%,与丙烷预冷双氮膨胀液化工艺的比功耗相当,液化能耗大大降低。
(4)相比于现有的丙烷预冷双氮膨胀液化工艺,本发明避免了丙烷的使用,提高了安全性,减少了安全设施的投资;降低了氮气系统的压力等级,从而减少了工艺模块和船体的投资成本,提高了浮式天然气液化装置的经济性。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。
Claims (10)
1.一种二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,包括:天然气输送管、二氧化碳预冷循环装置、脱重烃装置、双级氮气冷却循环装置、BOG换热器、第一节流阀、第二节流阀、LNG节流阀、气液分离装置、LNG泵和LNG储罐,其中:
所述二氧化碳预冷循环装置包括多级预冷主低温换热器、多级二氧化碳压缩机和多级二氧化碳压缩机水冷器,所述多级预冷主低温换热器与所述天然气输送管连通,二氧化碳压缩机与二氧化碳压缩机水冷器的数目相等,并且每一二氧化碳压缩机的后端均设有一二氧化碳压缩机水冷器,二氧化碳经过多级二氧化碳压缩机增压及多级二氧化碳压缩机水冷器冷却后降温至第一设定温度,该第一设定温度的二氧化碳经过所述BOG换热器、所述第一节流阀和所述第二节流阀后分别输送至多级预冷主低温换热器,以对天然气输送管中流过的天然气进行预冷,对天然气进行预冷后的二氧化碳再次经过多级二氧化碳压缩机及多级二氧化碳压缩机水冷器,以实现循环预冷;
所述脱重烃装置设置在所述二氧化碳预冷循环装置的后端,将经过预冷的天然气分离为液态的重烃组分和气态的轻烃组分;
所述双级氮气冷却循环装置包括多级深冷主低温换热器、低压氮气预冷模块、高压氮气预冷模块、高压氮气膨胀机和低压氮气膨胀机,多级深冷主低温换热器与所述脱重烃装置连通,以对从所述脱重烃装置输出的天然气进行深度冷却,所述低压氮气预冷模块包括一低压氮气膨胀机增压机、一低压氮气膨胀机增压机水冷器、多级低压氮气压缩机和多级低压氮气压缩机水冷器,所述高压氮气预冷模块包括一高压氮气膨胀机增压机、一高压氮气膨胀机增压机水冷器、多级高压氮气压缩机和多级高压氮气压缩机水冷器,低压氮气压缩机和低压氮气压缩机水冷器的数目相等,高压氮气压缩机和高压氮气压缩机水冷器的数目相等,所述高压氮气预冷模块将氮气压缩至第一预定压强后分为两路,其中一路经过所述多级预冷主低温换热器进行冷却,另一路经过第一级深冷主低温换热器进行冷却,两路冷却后的氮气汇合后经过所述高压氮气膨胀机进行膨胀,膨胀后的低温低压氮气返流至多级深冷主低温换热器除了最后一级以外的部分,以冷却天然气、低压氮气和部分高压氮气,所述低压氮气预冷模块将氮气压缩至第二预定压强后经过除了最后一级以外其他级别的深冷主低温换热器进行冷却后再输入所述低压氮气膨胀机进行膨胀降温,膨胀后的低温低压氮气返流至最后一级深冷主低温换热器;
所述LNG节流阀连接在所述双级氮气冷却循环装置和所述气液分离装置之间,所述气液分离装置将液化天然气闪蒸产生的BOG输送至所述BOG换热器,以使节流闪蒸产生的BOG进一步冷却二氧化碳,所述BOG换热器进一步将BOG输出至燃料气系统;
所述LNG泵连接在所述气液分离装置与所述LNG储罐之间,用于将液化天然气输送到所述LNG储罐进行储存。
2.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,所述天然气输送管之前依次连通有天然气脱固体颗粒装置、天然气脱酸气装置、天然气脱水装置、天然气脱苯装置和天然气脱汞装置,以将进入其内的天然气中的固体颗粒、酸性气体、水、苯和汞依次滤除。
3.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,二氧化碳压缩机水冷器将经过前一级二氧化碳压缩机压缩后的二氧化碳冷却至35℃,经过多级二氧化碳压缩机后二氧化碳的压强增加至8.5MPa,经过BOG换热器和第一节流阀后二氧化碳的温度降为-16℃,经过第二节流阀后二氧化碳的温度降为-53℃,压强降为0.6MPa。
4.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,所述第一预定压强为4MPa。
5.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,所述第二预定压强为2.5MPa。
6.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,多级预冷主低温换热器和多级深冷主低温换热器均采用流体均布构件。
7.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,低压氮气预冷模块中,低压氮气膨胀机增压机水冷器和多级低压氮气压缩机水冷器将经过前一级低压氮气膨胀机增压机或低压氮气压缩机压缩后的氮气冷却至35℃。
8.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,高压氮气预冷模块中,高压氮气膨胀机增压机水冷器和多级高压氮气压缩机水冷器将经过前一级高压氮气膨胀机增压机或高压氮气压缩机压缩后的氮气冷却至35℃。
9.根据权利要求1所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,预冷主低温换热器为两级,二氧化碳压缩机增压和二氧化碳压缩机水冷器为两级。
10.根据权利要求1-9任一项所述的二氧化碳预冷双级氮膨胀的天然气液化系统,其特征在于,低压氮气压缩机、低压氮气压缩机水冷器、高压氮气压缩机和高压氮气压缩机水冷器均为两级。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610952137.6A CN106440656B (zh) | 2016-11-02 | 2016-11-02 | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610952137.6A CN106440656B (zh) | 2016-11-02 | 2016-11-02 | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106440656A CN106440656A (zh) | 2017-02-22 |
CN106440656B true CN106440656B (zh) | 2022-02-15 |
Family
ID=58179249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610952137.6A Active CN106440656B (zh) | 2016-11-02 | 2016-11-02 | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106440656B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3379186B1 (en) * | 2017-03-23 | 2019-10-23 | Dresser-Rand SAS | System and method for liquefaction of natural gas |
US20190162468A1 (en) | 2017-11-27 | 2019-05-30 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
US20190162469A1 (en) * | 2017-11-27 | 2019-05-30 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
CN113108549B (zh) * | 2021-04-23 | 2022-05-27 | 吉林大学 | 混合制冷剂集成氮膨胀循环的海上天然气液化系统 |
CN115468380A (zh) * | 2022-11-01 | 2022-12-13 | 中国石油大学(华东) | 一种fplng预处理和液化一体化系统及工艺 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036350A2 (en) * | 1998-12-18 | 2000-06-22 | Exxonmobil Upstream Research Company | Dual refrigeration cycles for natural gas liquefaction |
CN101805649A (zh) * | 2010-03-19 | 2010-08-18 | 哈尔滨深冷气体液化设备有限公司 | 带溴化锂预冷的天然气液化工艺 |
KR101037226B1 (ko) * | 2010-10-26 | 2011-05-25 | 한국가스공사연구개발원 | 천연가스 액화공정 |
CN102093921A (zh) * | 2011-01-20 | 2011-06-15 | 中国海洋石油总公司 | 一种海上天然气液化方法及液化装置 |
CN103438661A (zh) * | 2013-08-30 | 2013-12-11 | 北京麦科直通石化工程设计有限公司 | 一种低能耗的新型天然气液化工艺 |
CN104880023A (zh) * | 2015-04-16 | 2015-09-02 | 中国海洋石油总公司 | 一种橇装的天然气液化装置 |
CN104880024A (zh) * | 2015-04-16 | 2015-09-02 | 中国海洋石油总公司 | 一种双膨胀制冷工艺的天然气液化系统 |
CN104930815A (zh) * | 2015-06-16 | 2015-09-23 | 上海交通大学 | 适用于海上的天然气液化及ngl回收系统及应用 |
CN105737516A (zh) * | 2016-04-18 | 2016-07-06 | 中国寰球工程公司 | 混合制冷剂预冷氮气膨胀的天然气液化系统及方法 |
CN206222820U (zh) * | 2016-11-02 | 2017-06-06 | 中国寰球工程有限公司 | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 |
-
2016
- 2016-11-02 CN CN201610952137.6A patent/CN106440656B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036350A2 (en) * | 1998-12-18 | 2000-06-22 | Exxonmobil Upstream Research Company | Dual refrigeration cycles for natural gas liquefaction |
CN101805649A (zh) * | 2010-03-19 | 2010-08-18 | 哈尔滨深冷气体液化设备有限公司 | 带溴化锂预冷的天然气液化工艺 |
KR101037226B1 (ko) * | 2010-10-26 | 2011-05-25 | 한국가스공사연구개발원 | 천연가스 액화공정 |
CN102093921A (zh) * | 2011-01-20 | 2011-06-15 | 中国海洋石油总公司 | 一种海上天然气液化方法及液化装置 |
CN103438661A (zh) * | 2013-08-30 | 2013-12-11 | 北京麦科直通石化工程设计有限公司 | 一种低能耗的新型天然气液化工艺 |
CN104880023A (zh) * | 2015-04-16 | 2015-09-02 | 中国海洋石油总公司 | 一种橇装的天然气液化装置 |
CN104880024A (zh) * | 2015-04-16 | 2015-09-02 | 中国海洋石油总公司 | 一种双膨胀制冷工艺的天然气液化系统 |
CN104930815A (zh) * | 2015-06-16 | 2015-09-23 | 上海交通大学 | 适用于海上的天然气液化及ngl回收系统及应用 |
CN105737516A (zh) * | 2016-04-18 | 2016-07-06 | 中国寰球工程公司 | 混合制冷剂预冷氮气膨胀的天然气液化系统及方法 |
CN206222820U (zh) * | 2016-11-02 | 2017-06-06 | 中国寰球工程有限公司 | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106440656A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106440656B (zh) | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 | |
CN204705105U (zh) | 一种橇装的天然气液化装置 | |
CN101787314B (zh) | 紧凑式天然气液化浮式生产工艺 | |
CN103363778B (zh) | 小型撬装式单阶混合制冷剂天然气液化系统及其方法 | |
CN103865601B (zh) | 丙烷预冷脱乙烷塔顶回流的重烃回收方法 | |
CN102093921A (zh) | 一种海上天然气液化方法及液化装置 | |
CN202675795U (zh) | 双循环混合冷剂的天然气液化系统 | |
CN109661535A (zh) | 用于小型lng生产的构造和方法 | |
CN104807287A (zh) | 一种小型天然气液化制冷系统及方法 | |
CN107620863B (zh) | 一种船用液化烃类bog再液化系统和工艺 | |
CN216620451U (zh) | 一种lng重整制氢和lng冷能液化氢气一体化系统 | |
CN103216998A (zh) | 一种单循环混合冷剂压缩与输送的方法和系统 | |
CN204739842U (zh) | Flng油气预处理及液化装置 | |
CN103075869A (zh) | 一种天然气的双冷剂液化系统和液化方法 | |
CN103175379B (zh) | 利用管道压力能制备液化天然气的装置及使用方法 | |
CN203310202U (zh) | 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统 | |
CN206222820U (zh) | 一种二氧化碳预冷双级氮膨胀的天然气液化系统 | |
CN103868322A (zh) | 一种用于海上天然气开采的预冷式重烃回收系统及工艺 | |
CN114518015B (zh) | 一种采用氮透平膨胀预冷的氢气液化工艺 | |
CN108106325B (zh) | 适用于海上的天然气液化系统 | |
CN114777412B (zh) | 一种具有热虹吸式氢过冷器的氢气液化装置 | |
CN202030720U (zh) | 一种海上天然气液化装置 | |
CN102304403A (zh) | 一种丙烯预冷混合冷剂液化天然气的方法及装置 | |
CN207881346U (zh) | 适用于海上的天然气液化系统 | |
CN212476630U (zh) | 一种车载移动式油田放空气回收系统中的液化单元 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |