CN106409934A - 一种cigs太阳电池吸收层的制备方法 - Google Patents

一种cigs太阳电池吸收层的制备方法 Download PDF

Info

Publication number
CN106409934A
CN106409934A CN201610333960.9A CN201610333960A CN106409934A CN 106409934 A CN106409934 A CN 106409934A CN 201610333960 A CN201610333960 A CN 201610333960A CN 106409934 A CN106409934 A CN 106409934A
Authority
CN
China
Prior art keywords
temperature
preparation
layer
absorption layer
source temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610333960.9A
Other languages
English (en)
Inventor
薛玉明
冯少君
孙海涛
宋殿友
夏丹
俞兵兵
张奥
王玉昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201610333960.9A priority Critical patent/CN106409934A/zh
Publication of CN106409934A publication Critical patent/CN106409934A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种CIGS太阳电池吸收层的制备方法,涉及一种薄膜太阳电池吸收层的制备方法,在柔性衬底上依次制备钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极,其制备方法是:采用吸收层制备工艺完成后再通过蒸发NaF进行后掺Na,然后依次在其表面依次制备各层薄膜。本发明的优点是:不仅吸收层晶体质量不受影响,吸收层薄膜晶粒尺寸不变,改善了吸收层的电学性能,能够有效提高薄膜太阳电池的电学性能,与目前同类电池比,采用该吸收层制备电池的光电转换效率可提高20%~30%,其制备方法是以钢性衬底制备柔性电池,易于实施,有利于大规模的推广应用。

Description

一种CIGS太阳电池吸收层的制备方法
技术领域
本发明涉及柔性铜铟镓硒薄膜太阳电池技术领域,是一种薄膜太阳电池吸收层的制备方法。
背景技术
铜铟镓硒材料(CIGS)属于I-III-Ⅵ族四元化合物半导体,具有黄铜矿的晶体结构。铜铟镓硒薄膜太能电池自20世纪70年代出现以来,得到非常迅速的发展,并将逐步实现产业化。此电池有以下特点:1)铜铟镓硒的禁带宽度可以在1.04eV-1.67eV范围内调整;2)铜铟镓硒是一种直接带隙半导体,对可见光的吸收系数高达105cm-1,铜铟镓硒吸收层厚度只需1.5-2.5μm,整个电池的厚度为3-4μm;3)抗辐照能力强,比较适合作为空间电源;4)转换效率高,2014年德国太阳能和氢能研究中心(ZSW)研制的小面积铜铟镓硒太阳电池转换效率已高达21.7%;5)弱光特性好。因此铜铟镓硒多晶薄膜太阳电池有望成为下一代太阳电池的主流产品之一。
CIGS薄膜中掺入0.1%的Na可使CIGS太阳电池性能提高30~50%,在传统Na-Ca玻璃(SLG)衬底CIGS太阳电池制备中,Na可由衬底向CIGS吸收层自发扩散而实现Na的掺入。但是,由于PI衬底不含Na,因此在制备中必须加入Na掺入工艺,改善CIGS薄膜的性能,进一步提高柔性PI衬底CIGS薄膜太阳电池的光电转换效率。
目前,制备铜铟镓硒薄膜太阳电池过程中,掺入Na的方法有很多种,包括:在制备Mo背电极之前先在衬底上沉积一层NaF的预置层;在Mo背电极表面沉积含Na预置层;在制备铜铟镓硒吸收层过程中共沉积Na元素(对于目前普遍采用的三步法制备铜铟镓硒,又可分为第一步掺、第二部共掺、第三步共掺)等方法。采用这些方法掺杂Na元素虽然都可以改善薄膜太阳电池的电学性能,但是通过观察其吸收层晶体结构发现,吸收层薄膜晶粒尺寸相比未掺Na的样品都有所减小,晶界增多,这在一定程度上又会对铜铟镓硒薄膜太阳电池的性能带来负面的影响。
发明内容
本发明针对上述存在问题,提供了一种后掺钠铜铟镓硒太阳电池器件及其制备方法,其结晶质量好,晶粒大,缺陷少,可提高薄膜太阳电池开路电压、短路电流、填充因子和光电转换效率。。
本发明的技术方案:
所述掺钠铜铟镓硒吸收层薄膜的制备方法,采用硒化炉薄膜制备系统和改进的共蒸发三步法制备工艺,步骤如下:
1)将待制备样品置于共蒸发系统中在本底真空为3.0×10-4Pa、衬底温度为550-595℃下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-935℃,Se蒸发源温度为520-535℃,蒸发时间为5-15min;
2)在衬底温度为550-595℃下,共蒸发In、Ga、Cu、Se,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-935℃,Cu蒸发源温度为1160-1175℃,Se蒸发源温度为520-535℃,蒸发时间为15-20min;
3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为1160-1175℃,Se蒸发源温度为520-535℃,蒸发时间为3-6min,得到稍微富Cu的铜铟镓硒p型黄铜矿结构;
4)保持衬底温度同2)、3)不变,共蒸发In、Ga、Se,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-940℃,Se蒸发源温度为520-535℃,蒸发时间为3-15min,控制Cu/(In+Ga)的原子比例为0.88-0.92;
5)将衬底温度降至450℃,蒸发NaF、Se,NaF蒸发源温度为770-820℃,蒸发时间为2-15min;
6)将衬底冷却至18-25℃即可。
附图说明
图1为本发明用真空室侧视示意图。
图2为本发明用真空室俯视示意图
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。
实施例1:
所述铜铟镓硒吸收层薄膜的制备方法,采用硒化炉薄膜制备系统和改进后的共蒸发三步法制备工艺,步骤如下:
1)将待制备样品置于共蒸发系统中,在本底真空为3.0×10-4Pa、衬底温度为550℃下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为860℃,Ga蒸发源温度为920℃,Se蒸发源温度为520℃,蒸发时间为10min;
2)在衬底温度为550℃下,共蒸发In、Ga、Cu、Se,其中In蒸发源温度为860℃,Ga蒸发源温度为920℃,Cu蒸发源温度为1160℃,Se蒸发源温度为520℃,蒸发时间为18min;
3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为1160℃,Se蒸发源温度为520℃,蒸发时间为6min,得到稍微富Cu的铜铟镓硒p型黄铜矿结构;
4)保持衬底温度同2)、3)不变,共蒸发In、Ga、Se,其中In蒸发源温度为860℃,Ga蒸发源温度为920℃,Se蒸发源温度为520℃,蒸发时间为15min,控制Cu/(In+Ga)的原子比例为0.88-0.92;
5)将衬底温度降至450℃,蒸发NaF、Se,NaF蒸发源温度为770℃,蒸发时间为15min;
6)将衬底冷却至18-25℃即可。
实施例2:
所述铜铟镓硒太阳电池吸收层的制备方法,与实施例1相同。
所述铜铟镓硒吸收层的制备方法,采用硒化炉薄膜制备系统和改进的共蒸发三步法制备工艺,步骤如下:
1)将待制备样品置于共蒸发系统中,在本底真空为3.0×10-4Pa、衬底温度为580℃下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为875℃,Ga蒸发源温度为935℃,Se蒸发源温度为530℃,蒸发时间为5min;
2)在衬底温度为580℃下,共蒸发In、Ga、Cu、Se,其中In蒸发源温度为875℃,Ga蒸发源温度为935℃,Cu蒸发源温度为1170℃,Se蒸发源温度为530℃,蒸发时间为18min;
3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为1170℃,Se蒸发源温度为530℃,蒸发时间为6min,得到稍微富Cu的铜铟镓硒p型黄铜矿结构;
4)保持衬底温度同2)、3)不变,共蒸发In、Ga、Se,其中In蒸发源温度为875℃,Ga蒸发源温度为935℃,Se蒸发源温度为530℃,蒸发时间为7min,控制Cu/(In+Ga)的原子比例为0.88-0.92;
5)将衬底温度降至450℃,蒸发NaF、Se,NaF蒸发源温度为770℃,蒸发时间为15min;
6)将衬底冷却至18-25℃即可。
采用本发明制备的薄膜太阳电池吸收层制成柔性铜铟镓硒薄膜太阳电池,其载流子浓度达到2.8×1017cm-3,开路电压和短路电流均可以提高3%~5%、填充因子则可以增加大约10%~20%,光电转换效率可提高约20%~30%。
本发明针对前掺、共掺Na等方法造成吸收层薄膜晶粒变细碎的问题,将掺Na的工艺改为在吸收层沉积完成后。经过研究发现,Na元素在铜铟镓硒中分布于晶粒边界的位置,其扩散过程也是沿晶界进行的。对于前掺、共掺Na方法,在沉积铜铟镓硒吸收层的过程中薄膜已经有Na元素存在,这些Na会在晶界处形成扩散势垒,对元素在晶粒之间的扩散起到抑制作用,从而阻碍了细碎铜铟镓硒晶粒之间的进一步融合,这就是晶粒变小的原因。本发明中后掺Na的方法,Na元素没有参与铜铟镓硒沉积过程,在掺杂之前已经形成较大的晶粒,Na元素沿晶界向吸收层内部扩散,不会破坏晶粒结构。同其它方法相比,后掺Na方法结晶质量更好,缺陷较少,可以有效的抑制界面复合,增加载流子浓度。实验证明,本发明后掺Na制备的铜铟镓硒薄膜太阳电池的开路电压(VOC)、短路电流(JSC)、填充因子(FF)和光电转换效率(η)都比目前公知的前掺、共掺Na制备的电池有所提高。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.本发明涉及一种薄膜太阳电池吸收层的制备方法,在柔性衬底上依次制备钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极,其制备方法是:采用吸收层制备工艺完成后再通过蒸发NaF进行后掺Na,然后依次在其表面依次制备各层薄膜。本发明的优点是:不仅吸收层晶体质量不受影响,吸收层薄膜晶粒尺寸不变,改善了吸收层的电学性能,能够有效提高薄膜太阳电池的电学性能,与目前同类电池比,采用该吸收层制备电池的光电转换效率可提高20%~30%。
2.根据权利要求1所述后掺钠铜铟镓硒吸收层的制备方法,其特征在于:所述铜铟镓硒吸收层薄膜的制备方法,采用硒化炉薄膜制备系统和改进的共蒸发三步法制备工艺,步骤如下:
1)将待制备样品置于共蒸发系统中,在本底真空为3.0×10-4Pa、衬底温度为550-595℃下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-935℃,Se蒸发源温度为520-535℃,蒸发时间为5-15min;
2)在衬底温度为550-595℃下,共蒸发In、Ga、Cu、Se,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-935℃,Cu蒸发源温度为1160-1175℃,Se蒸发源温度为520-535℃,蒸发时间为15-20min;
3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为1160-1175℃,Se蒸发源温度为520-535℃,蒸发时间为3-6min,得到稍微富Cu的铜铟镓硒p型黄铜矿结构;
4)保持衬底温度同2)、3)不变,共蒸发In、Ga、Se,其中In蒸发源温度为860-875℃,Ga蒸发源温度为920-940℃,Se蒸发源温度为520-535℃,蒸发时间为3-15min,控制Cu/(In+Ga)的原子比例为0.88-0.92;
5)将衬底温度降至450℃,蒸发NaF、Se,NaF蒸发源温度为770-820℃,蒸发时间为2-15min;
6)将衬底冷却至18-25℃即可。
3.根据权利要求1所述的薄膜太阳电池吸收层的制备方法,其特征在于:所述步骤1中温度可控的加热装置为内周围盘绕有加热电阻丝的氮化硼坩埚,坩埚外壁贴附有测量并控制加热温度的热偶。
CN201610333960.9A 2016-07-07 2016-07-07 一种cigs太阳电池吸收层的制备方法 Pending CN106409934A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610333960.9A CN106409934A (zh) 2016-07-07 2016-07-07 一种cigs太阳电池吸收层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610333960.9A CN106409934A (zh) 2016-07-07 2016-07-07 一种cigs太阳电池吸收层的制备方法

Publications (1)

Publication Number Publication Date
CN106409934A true CN106409934A (zh) 2017-02-15

Family

ID=58006310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610333960.9A Pending CN106409934A (zh) 2016-07-07 2016-07-07 一种cigs太阳电池吸收层的制备方法

Country Status (1)

Country Link
CN (1) CN106409934A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152728A1 (zh) * 2017-02-23 2018-08-30 海门黄海创业园服务有限公司 一种cigs薄膜太阳能电池
WO2019144565A1 (zh) * 2018-01-29 2019-08-01 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池
CN111223758A (zh) * 2018-11-27 2020-06-02 北京铂阳顶荣光伏科技有限公司 铜铟镓硒薄膜太阳能电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018152728A1 (zh) * 2017-02-23 2018-08-30 海门黄海创业园服务有限公司 一种cigs薄膜太阳能电池
WO2019144565A1 (zh) * 2018-01-29 2019-08-01 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池
CN111223758A (zh) * 2018-11-27 2020-06-02 北京铂阳顶荣光伏科技有限公司 铜铟镓硒薄膜太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
WO2021004525A1 (zh) 一种异质结电池分层氢钝化方法、氢钝化装置、电池、电池组件及太阳能供电站
CN105336800B (zh) Cigs基薄膜太阳能电池光吸收层的制备方法
CN102956752A (zh) 柔性铜铟镓硒薄膜太阳电池的制备方法
Sundaram et al. Thin film photovoltaics
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
CN103296130A (zh) 一种柔性不锈钢衬底上CIGS吸收层的Na掺杂方法
CN106409934A (zh) 一种cigs太阳电池吸收层的制备方法
CN108172643A (zh) 一种CdTe叠层太阳能电池及其制作方法
CN102956754B (zh) 薄膜太阳电池吸收层的制备方法
JP3311873B2 (ja) 半導体薄膜の製造方法
CN102214737B (zh) 太阳能电池用化合物薄膜的制备方法
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
JP3519543B2 (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
CN106229362B (zh) 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN103765604B (zh) Cigs膜的制法和使用其的cigs太阳能电池的制法
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
JP2010192690A (ja) 太陽電池の製造方法
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN103000738A (zh) 一种机械叠层碲化镉/多晶硅太阳能电池
KR101504343B1 (ko) 화합물 반도체 태양전지의 제조방법
Compaan The status of and challenges in CdTe thin-film solar-cell technology
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170215

WD01 Invention patent application deemed withdrawn after publication