CN106405615A - 一种高灵敏探测放射性气体核素活度的装置及方法 - Google Patents

一种高灵敏探测放射性气体核素活度的装置及方法 Download PDF

Info

Publication number
CN106405615A
CN106405615A CN201610743509.4A CN201610743509A CN106405615A CN 106405615 A CN106405615 A CN 106405615A CN 201610743509 A CN201610743509 A CN 201610743509A CN 106405615 A CN106405615 A CN 106405615A
Authority
CN
China
Prior art keywords
detector
gamma
ray
beta
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610743509.4A
Other languages
English (en)
Inventor
李奇
王世联
樊元庆
赵允刚
贾怀茂
刘蜀疆
张新军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING RADIONUCLIDE LOBOROTARY
Original Assignee
BEIJING RADIONUCLIDE LOBOROTARY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING RADIONUCLIDE LOBOROTARY filed Critical BEIJING RADIONUCLIDE LOBOROTARY
Priority to CN201610743509.4A priority Critical patent/CN106405615A/zh
Publication of CN106405615A publication Critical patent/CN106405615A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种高灵敏探测放射性气体核素活度的装置,以解决宇宙射线在符合测量系统产生符合本底计数的难题。该装置包括充气式β探测器、γ探测器、反宇宙射线探测器组和数字符合电路;β探测器和γ探测器设置在铅屏蔽内,β探测器的底部朝下放置在γ探测器上;反宇宙射线探测器组用于屏蔽宇宙射线在β探测器和γ探测器中产生的符合信号;反宇宙射线探测器组由5个反宇宙射线探测器组成,分别设置在铅屏蔽的顶部和四周;反宇宙射线探测器的输出信号、β探测器的输出信号以及γ探测器的输出信号分别送入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β‑γ符合谱及反宇宙射线β‑γ符合谱。本发明能大幅提高放射性气体核素探测的灵敏度。

Description

一种高灵敏探测放射性气体核素活度的装置及方法
技术领域
本发明涉及一种高灵敏探测放射性气体核素活度的装置及方法,能大幅提高放射性气体核素的探测灵敏度。
背景技术
高灵敏探测放射性放射性气体活度,对大气环境放射性监测具有重要意义。文献“CTBT惰性气体氙样品中放射性氙同位素活度测量方法”(核电子学与探测技术,2011,第31卷第2期)介绍了采用塑料闪烁体β探测器和NaI(Tl)γ探测器符合测量氙同位素活度的方法,但由于NaI(Tl)探测器能量分辨率差,能量容易随温度漂移等缺点,使得样品中各同位素之间相互干扰,从而造成探测灵敏度和准确度下降,核素识别能力弱。专利“一种痕量放射性气体核素活度测量方法及装置”介绍了采用塑料闪烁体β探测器和HPGeγ探测器符合测量放射性气体样品活度的方法,解决了氙同位素干扰问题,提高了气体样品活度测量的准确度和灵敏度,然而,由于宇宙射线会在塑料闪烁体β探测器和HPGeγ探测器中同时产生计数,从而增加符合谱本底。如果能建立一种反宇宙射线屏蔽的符合测量方法,可进一步提高放射性气体核素的探测灵敏度。
发明内容
本发明目的是提供一种高灵敏放射性气体核素活度的测量装置及方法,其解决了宇宙射线在符合测量系统产生符合本底计数的难题,可进一步大幅提高放射性气体核素探测的灵敏度。
本发明的技术解决方案是:
一种高灵敏探测放射性气体核素活度的装置,包括充气式β探测器、γ探测器和数字符合电路;β探测器和γ探测器设置在铅屏蔽内,β探测器的底部朝下放置在γ探测器上;其特殊之处在于:还包括设置在铅屏蔽外、用于屏蔽宇宙射线在β探测器和γ探测器中产生的符合信号的反宇宙射线探测器组;所述反宇宙射线探测器组由5个反宇宙射线探测器组成,分别设置在铅屏蔽的顶部和四周;
反宇宙射线探测器的输出信号、β探测器的输出信号以及γ探测器的输出信号分别送入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱。
上述γ探测器为HPGe探测器。
上述充气式β探测器包括底部、筒体、光电倍增管、充气管路及阀门;底部和光电倍增管分别位于筒体两端并与筒体共同形成一密闭容器;底部和筒体均由探测材料制成;充气管路设置在筒体侧壁上,与筒体相连通;阀门设置在充气管路上。
上述数字符合电路包括并联设置的三个支路;
第一路由第一前置放大器组、单道分析器组、“或”逻辑相加电路和第一数字信号采集器依次串联组成;第一前置放大器组和单道分析器组分别由5个并联设置的第一前置放大器和5个并联设置的单道分析器组成;反宇宙射线探测器的探测信号经各自的前置放大器和单道分析器后进入“或”逻辑相加电路,“或”逻辑相加电路的输出信号进入第一数字信号采集器,第一数字信号采集器产生反符合信号;
第二路由第二前置放大器、第一主放大器和第二数字信号采集器依次串联组成;β探测器的探测信号依次经第二前置放大器和第一主放大器后进入第二数字信号采集器,第二数字信号采集器产生符合信号;
第三路由第三前置放大器、第二主放大器和第三数字信号采集器依次串联组成;γ探测器的探测信号依次经第三前置放大器和第二主放大器后进入第三数字信号采集器,第三数字信号采集器不作任何处理,得到γ探测器原始谱。
上述反宇宙射线探测器组安装在位于铅屏蔽外的支架上,反宇宙射线探测器组和铅屏蔽位于支架的一端;支架上设置有两组平行导轨,位于支架端部且同时位于铅屏蔽侧方的一个反宇宙射线探测器固定,其余反宇宙射线探测器可沿导轨平移。
本发明同时提供了一种采用上述高灵敏探测放射性气体核素活度的装置探测放射性气体核素活度的方法,其特殊之处在于:包括以下步骤:
1)将放射性气体充入充气式β探测器中,样品发出的β射线由充气式β探测器测量,样品发出的γ射线由γ探测器探测,宇宙射线由反宇宙射线探测器探测;
2)调节数字符合电路的参数,卡掉噪声确保信号正常,并使宇宙射线信号、β信号以及γ信号在时间上一致;
3)宇宙射线信号、β信号和γ信号同时输入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱;
4)用反宇宙射线β-γ符合谱计算放射性气体核素活度A:
上述公式(1)中,
Nγc为样品的反宇宙射线β-γ符合谱中γ峰计数;
Pβγ为β-γ射线符合发射几率;
εβ和εγ分别为β和γ射线探测效率;
tl和tr分别为能谱获取的活时间和时钟时间;
λ为待测样品的衰变常数;
kV为反宇宙射线探测器偶然符合引起的样品计数损失因子。
上述探测放射性气体核素活度的方法还包括步骤5):计算最小可探测活度MDA:
上述公式(2)中,Nbc为本底的反宇宙射线β-γ符合谱中γ峰感兴趣区本底计数,其余参数含义与公式(1)中相同。
本发明具有的有益效果:
1、本发明将充气式β探测器和γ探测器相对放置,采用β-γ符合技术测量放射性气体核素活度,在此基础上增加反宇宙射线屏蔽,进一步屏蔽宇宙射线在符合谱中产生的符合本底,从而大幅度降低系统的本底,极大地提高了探测灵敏度。
2、本发明能够同时得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱。
附图说明
图1为本发明装置的示意图;
图2为本发明装置的电子学线路示意图;
图3为利用本发明测量131mXe气体样品所得到的样品能谱图;
图4为利用本发明测量系统的本底所得到的本底的能谱图;
其中1-充气式β探测器;2-HPGe探测器;3-反宇宙射线探测器组;3-1~3-5-反宇宙射线探测器;4-铅屏蔽;5-支架;6-1~6-5-第一前置放大器;7-1~7-5-单道分析器;8-“或”逻辑相加电路;9-1-第一数字信号采集器;9-2-第二数字信号采集器;9-3-第三数字信号采集器;10-第二前置放大器;11-第一主放大器;12-第三前置放大器;13-第二主放大器;B-131mXe原始γ能谱;C-131mXe反宇宙射线γ能谱、D-131mXeβ-γ符合谱;E-131mXe反宇宙射线β-γ符合谱。
具体实施方式
图1为本发明的装置及组成部件的结构示意图,本发明所提供的探测放射性气体核素活度的装置为反宇宙射线β-γ符合测量系统,该测量系统包括充气式β探测器1、HPGe探测器2、由五块反宇宙射线探测器组成的反宇宙射线探测器组3、铅屏蔽4和支架5。
充气式β探测器包括底部、筒体、光电倍增管、充气管路及阀门;底部和光电倍增管分别位于筒体两端并与筒体共同形成一密闭容器;底部和筒体均由探测材料制成;充气管路设置在筒体侧壁上,与筒体相连通;阀门设置在充气管路上。
充气式β探测器的底部朝下放置在HPGe探测器上。
反宇宙射线探测器3-1~3-5均设置在铅屏蔽外,分别位于铅屏蔽的顶部和四个侧面,用于屏蔽宇宙射线在β探测器和HPGe探测器中产生的符合信号。
反宇宙射线探测器组3和铅屏蔽4安装在位于铅屏蔽外的支架5上,反宇宙射线探测器组和铅屏蔽靠近支架的一个端部;支架上设置有两组平行导轨,为方便打开铅屏蔽室,位于支架端部且同时位于铅屏蔽侧方的反宇宙射线探测器固定安装,其余四个反宇宙射线探测器可沿导轨平移,如图1所示,通过转动摇把可将四个反宇宙射线探测器右移。
数字符合电路包括并联设置的三个支路:
第一路由第一前置放大器组、单道分析器组、“或”逻辑相加电路8和第一数字信号采集器9-1依次连接组成,其中,第一前置放大器组由第一前置放大器6-1~6-5组成,单道分析器组由单道分析器7-1~7-5组成;
第二路由第二前置放大器10、第一主放大器11和第二数字信号采集器9-2依次连接组成;
第三路由第三前置放大器12、第二主放大器13和第三数字信号采集器9-3依次连接组成。
下面结合图2对本发明的工作原理进行说明:
样品(放射性气体)充入β探测器中,样品发出的β射线由β探测器测量,样品发出的γ射线由HPGe探测器测量,反宇宙射线探测器探测宇宙射线信号。
反宇宙射线探测器3-1~3-5的探测信号经各自的前置放大器和单道分析器后进入“或”逻辑相加电路(即任何一路反宇宙射线探测器有信号输出,该“或”逻辑相加电路就输出信号),然后进入第一数字信号采集器9-1,作为反符合信号;
β探测器1的探测信号依次经第二前置放大器10和第一主放大器11后进入第二数字信号采集器9-2,作为符合信号;
HPGe探测器2的探测信号依次经第三前置放大器12和第二主放大器13后进入第三数字信号采集器9-3,第三数字信号采集器对其不作任何处理,得到γ探测器原始谱。
对上面所获取的信号进行离线处理:
1、对HPGe探测器探测的γ信号不做任何处理即得到γ原始能谱;
2、以反宇宙射线探测器信号对HPGe探测器探测的γ信号进行反符合处理即得到了反宇宙射线γ能谱;
3、以β探测器信号对HPGe探测器探测的γ信号进行符合处理,即得到了β-γ符合谱;
4、以反宇宙射线探测器对HPGe探测器探测的γ信号做反符合、β探测器信号对HPGe探测器探测的γ信号做符合处理,即得到了反宇宙射线β-γ符合能谱。
基于上述装置,本发明同时公开了一种探测放射性气体核素活度的方法,包括以下步骤:
1)将放射性气体充入充气式β探测器中,样品发出的β射线由充气式β探测器测量,样品发出的γ射线由γ探测器探测,宇宙射线由反宇宙射线探测器探测;
2)调节数字符合电路的参数,卡掉噪声确保信号正常,并使宇宙射线信号、β信号以及γ信号在时间上一致;
3)宇宙射线信号、β信号和γ信号同时输入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱;
4)由反宇宙射线β-γ谱计算放射性气体核素活度A:
上述公式(1)中,
Nγc为样品的反宇宙射线β-γ符合谱中γ峰计数;
Pβγ为β-γ射线符合发射几率;
εβ和εγ分别为β和γ射线探测效率;
tl和tr分别为能谱获取的活时间和时钟时间;
λ为待测样品的衰变常数;
kV为反宇宙射线探测器偶然符合引起的样品计数损失因子。
5)计算最小可探测活度MDA:
上述公式(2)中,Nbc为本底的反宇宙射线β-γ符合谱中γ峰感兴趣区本底计数,其余参数含义与公式(1)中相同。
最后,通过图3和图4对本发明的探测灵敏度进行说明:
利用本发明测量131mXe气体样品,所测得的该样品的γ原始能谱B、反宇宙射线γ能谱C、β-γ符合谱D以及反宇宙射线β-γ符合谱E示于图3。
利用本发明测量反宇宙射线β-γ符合测量系统的本底,本底的γ原始能谱(Original)、反宇宙射线γ能谱(anti-cosmic)、β-γ符合谱(β-γcoincidence)以及反宇宙射线β-γ符合谱(anti-cosmic&β-γcoincidence)示于图4。
从图3看出,采用反符合和/或符合对γ能谱进行处理,峰计数基本没有损失,利用γ原始能谱、反宇宙射线γ能谱、β-γ符合谱以及反宇宙射线β-γ符合谱得到的131mXe活度仅差1.3%,验证了本发明测量气体样品活度的准确性。另外,从图4还能看出,反宇宙射线β-γ符合谱本底大大降低。

Claims (7)

1.一种高灵敏探测放射性气体核素活度的装置,包括充气式β探测器、γ探测器和数字符合电路;β探测器和γ探测器设置在铅屏蔽内,β探测器的底部朝下放置在γ探测器上;其特征在于:还包括设置在铅屏蔽外、用于屏蔽宇宙射线在β探测器和γ探测器中产生的符合信号的反宇宙射线探测器组;所述反宇宙射线探测器组由5个反宇宙射线探测器组成,分别设置在铅屏蔽的顶部和四周;
反宇宙射线探测器的输出信号、β探测器的输出信号以及γ探测器的输出信号分别送入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱。
2.根据权利要求1所述的高灵敏探测放射性气体核素活度的装置,其特征在于:所述γ探测器为HPGe探测器。
3.根据权利要求1所述的高灵敏探测放射性气体核素活度的装置,其特征在于:所述充气式β探测器包括底部、筒体、光电倍增管、充气管路及阀门;底部和光电倍增管分别位于筒体两端并与筒体共同形成一密闭容器;底部和筒体均由探测材料制成;充气管路设置在筒体侧壁上,与筒体相连通;阀门设置在充气管路上。
4.根据权利要求1或2或3所述的高灵敏探测放射性气体核素活度的装置,其特征在于:所述数字符合电路包括并联设置的三个支路;
第一路由第一前置放大器组、单道分析器组、“或”逻辑相加电路和第一数字信号采集器依次串联组成;第一前置放大器组和单道分析器组分别由5个并联设置的第一前置放大器和5个并联设置的单道分析器组成;反宇宙射线探测器的探测信号经各自的前置放大器和单道分析器后进入“或”逻辑相加电路,“或”逻辑相加电路的输出信号进入第一数字信号采集器,第一数字信号采集器产生反符合信号;
第二路由第二前置放大器、第一主放大器和第二数字信号采集器依次串联组成;β探测器的探测信号依次经第二前置放大器和第一主放大器后进入第二数字信号采集器,第二数字信号采集器产生符合信号;
第三路由第三前置放大器、第二主放大器和第三数字信号采集器依次串联组成;γ探测器的探测信号依次经第三前置放大器和第二主放大器后进入第三数字信号采集器,第三数字信号采集器不作任何处理,得到γ探测器原始谱。
5.根据权利要求4所述的高灵敏探测放射性气体核素活度的装置,其特征在于:所述反宇宙射线探测器组安装在位于铅屏蔽外的支架上,反宇宙射线探测器组和铅屏蔽位于支架的一端;支架上设置有两组平行导轨,位于支架端部且同时位于铅屏蔽侧方的一个反宇宙射线探测器固定,其余反宇宙射线探测器可沿导轨平移。
6.采用权利要求4所述的高灵敏探测放射性气体核素活度的装置探测放射性气体核素活度的方法,其特征在于:包括以下步骤:
1)将放射性气体充入充气式β探测器中,样品发出的β射线由充气式β探测器测量,样品发出的γ射线由γ探测器探测,宇宙射线由反宇宙射线探测器探测;
2)调节数字符合电路的参数,卡掉噪声确保信号正常,并使宇宙射线信号、β信号以及γ信号在时间上一致;
3)宇宙射线信号、β信号和γ信号同时输入数字符合电路,得到γ探测器原始谱、反宇宙射线γ谱、β-γ符合谱及反宇宙射线β-γ符合谱;
4)用反宇宙射线β-γ符合谱计算放射性气体核素活度A:
A = N γ c P β γ · ϵ β · ϵ γ · t 1 · λ · t r 1 - e - λ · t r · k V - - - ( 1 )
上述公式(1)中,
Nγc为样品的反宇宙射线β-γ符合谱中γ峰计数;
Pβγ为β-γ射线符合发射几率;
εβ和εγ分别为β和γ射线探测效率;
tl和tr分别为能谱获取的活时间和时钟时间;
λ为待测样品的衰变常数;
kV为反宇宙射线探测器偶然符合引起的样品计数损失因子。
7.根据权利要求6所述的探测放射性气体核素活度的方法,其特征在于:还包括步骤5):计算最小可探测活度MDA:
M D A = N b c P β γ · ϵ β · ϵ γ · t 1 · λ · t r 1 - e - λ · t r · k V - - - ( 2 )
上述公式(2)中,Nbc为本底的反宇宙射线β-γ符合谱中γ峰感兴趣区本底计数,其余参数含义与公式(1)中相同。
CN201610743509.4A 2016-08-26 2016-08-26 一种高灵敏探测放射性气体核素活度的装置及方法 Pending CN106405615A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610743509.4A CN106405615A (zh) 2016-08-26 2016-08-26 一种高灵敏探测放射性气体核素活度的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610743509.4A CN106405615A (zh) 2016-08-26 2016-08-26 一种高灵敏探测放射性气体核素活度的装置及方法

Publications (1)

Publication Number Publication Date
CN106405615A true CN106405615A (zh) 2017-02-15

Family

ID=58003067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610743509.4A Pending CN106405615A (zh) 2016-08-26 2016-08-26 一种高灵敏探测放射性气体核素活度的装置及方法

Country Status (1)

Country Link
CN (1) CN106405615A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152846A (zh) * 2017-12-05 2018-06-12 中国原子能科学研究院 一种数字化放射性惰性气体133Xe活度符合测量装置
CN108802792A (zh) * 2017-04-28 2018-11-13 北京市射线应用研究中心 放射性惰性气体的测量装置及方法
CN108802793A (zh) * 2018-05-31 2018-11-13 南华大学 一种新型水中氡浓度测量系统及方法
CN109637681A (zh) * 2018-12-28 2019-04-16 南华大学 核燃料破损检测装置及检测方法
CN109975862A (zh) * 2019-04-04 2019-07-05 中国科学院高能物理研究所 宇宙射线探测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083026A (en) * 1990-02-12 1992-01-21 Danev Elbaum Method, apparatus and applications of the quantitation of multiple gamma-photon producing isotopes with increased sensitivity
KR20010086670A (ko) * 2000-03-02 2001-09-15 이종훈 다기능 방사성 감마핵종분석기 및 측정방법
CN104536031A (zh) * 2014-12-26 2015-04-22 北京放射性核素实验室 一种痕量放射性气体核素活度测量方法及装置
CN104570035A (zh) * 2014-12-26 2015-04-29 北京放射性核素实验室 一种放射性气体核素β射线自吸收校正方法
CN104597473A (zh) * 2014-12-26 2015-05-06 北京放射性核素实验室 一种用于放射性气体核素测量的充气式β探测器
CN104820232A (zh) * 2015-04-24 2015-08-05 中国船舶重工集团公司第七一九研究所 一种在线式能谱分析反符合测量探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083026A (en) * 1990-02-12 1992-01-21 Danev Elbaum Method, apparatus and applications of the quantitation of multiple gamma-photon producing isotopes with increased sensitivity
KR20010086670A (ko) * 2000-03-02 2001-09-15 이종훈 다기능 방사성 감마핵종분석기 및 측정방법
CN104536031A (zh) * 2014-12-26 2015-04-22 北京放射性核素实验室 一种痕量放射性气体核素活度测量方法及装置
CN104570035A (zh) * 2014-12-26 2015-04-29 北京放射性核素实验室 一种放射性气体核素β射线自吸收校正方法
CN104597473A (zh) * 2014-12-26 2015-05-06 北京放射性核素实验室 一种用于放射性气体核素测量的充气式β探测器
CN104820232A (zh) * 2015-04-24 2015-08-05 中国船舶重工集团公司第七一九研究所 一种在线式能谱分析反符合测量探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JONG IN BYUN ET AL.: "An anticoincidence-shielded gamma-ray spectrometer for analysis of lowlevel environmental radionuclides", 《APPLIED RADIATION AND ISOTOPES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108802792A (zh) * 2017-04-28 2018-11-13 北京市射线应用研究中心 放射性惰性气体的测量装置及方法
CN108802792B (zh) * 2017-04-28 2024-04-26 北京市射线应用研究中心有限公司 放射性惰性气体的测量装置及方法
CN108152846A (zh) * 2017-12-05 2018-06-12 中国原子能科学研究院 一种数字化放射性惰性气体133Xe活度符合测量装置
CN108802793A (zh) * 2018-05-31 2018-11-13 南华大学 一种新型水中氡浓度测量系统及方法
CN109637681A (zh) * 2018-12-28 2019-04-16 南华大学 核燃料破损检测装置及检测方法
CN109975862A (zh) * 2019-04-04 2019-07-05 中国科学院高能物理研究所 宇宙射线探测装置

Similar Documents

Publication Publication Date Title
CN104536031B (zh) 一种痕量放射性气体核素活度测量方法及装置
CN105980885B (zh) 基于SiPM的辐射检测系统和方法
CN106405615A (zh) 一种高灵敏探测放射性气体核素活度的装置及方法
US7683334B2 (en) Simultaneous beta and gamma spectroscopy
US20070290136A1 (en) Pulse shape discrimination method and apparatus for high-sensitivity radioisotope identification with an integrated neutron-gamma radiation detector
US20070051892A1 (en) Detection of Coincident Radiations in a Single Transducer by Pulse Shape Analysis
CN104597478B (zh) 环境γ能谱连续监测系统的工作方法
KR101975787B1 (ko) 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
RU2008152191A (ru) Устройство и способ регистрации гамма-излучения
KR101962370B1 (ko) 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
Xie et al. Single channel beta–gamma coincidence system for radioxenon measurement using well-type HPGe and plastic scintillator detectors
Srinivas et al. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India–a comparative study of dose rates estimated by AGRS and PGRS
US8110807B2 (en) Rediation detector system for locating and identifying special nuclear material in moving vehicles
CN109031388B (zh) 一种水中氡浓度绝对测量系统及方法
RU114369U1 (ru) Переносное устройство для идентификации скрытых веществ (варианты)
JPH0348791A (ja) 食品中β放射性核種含有量測定装置
JP5450356B2 (ja) 放射線検出方法
CN106125126A (zh) 采用溴化镧探测器测量环境中的钾40的方法
KR101962360B1 (ko) 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
RU2457469C1 (ru) Мобильное устройство для идентификации скрытых веществ (варианты)
JP2000088966A (ja) α放射能測定装置および方法
US5008539A (en) Process and apparatus for detecting presence of plant substances
RU2476864C1 (ru) Переносной обнаружитель опасных скрытых веществ
KR20090052428A (ko) 에너지 레벨의 측정이 가능한 방사선 검출기 및 그검출방법
Tanaka Evaluation of positioning and density profiling accuracy of muon radiography by utilizing a 15-ton steel block

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170215

WD01 Invention patent application deemed withdrawn after publication