CN106374022B - 基于多层石墨烯量子碳基材料的光源器件及其制备方法 - Google Patents

基于多层石墨烯量子碳基材料的光源器件及其制备方法 Download PDF

Info

Publication number
CN106374022B
CN106374022B CN201610908971.5A CN201610908971A CN106374022B CN 106374022 B CN106374022 B CN 106374022B CN 201610908971 A CN201610908971 A CN 201610908971A CN 106374022 B CN106374022 B CN 106374022B
Authority
CN
China
Prior art keywords
graphene quantum
layer
quantum carbon
light source
layer graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610908971.5A
Other languages
English (en)
Other versions
CN106374022A (zh
Inventor
刘萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guang Dong Dongbond Technology Co ltd
Original Assignee
Guangdong Dongbang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Dongbang Technology Co Ltd filed Critical Guangdong Dongbang Technology Co Ltd
Priority to CN201610908971.5A priority Critical patent/CN106374022B/zh
Publication of CN106374022A publication Critical patent/CN106374022A/zh
Application granted granted Critical
Publication of CN106374022B publication Critical patent/CN106374022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种基于多层石墨烯量子碳基材料的光源器件,包括半导体材料的柔性多层石墨烯量子碳基膜,所述多层石墨烯量子碳基膜形成包含多个弧形结构的采光发光层,所述多层石墨烯量子碳基膜上设置有绝缘层,所述采光发光层上设置有若干对电极,所述电极连接并部分介入所述绝缘层,所述采光发光层形成为半导体超晶格具有可控制带隙的电子状态,能够采光,以及利用采集到光能激发发光,并在所述电极通电时发热发光,且能够通过发光光谱内的放射光波长区域调节来实现调制发光。本发明能够获得可以控制带隙的光电子采光、发光设备,提供低功耗光源器件。

Description

基于多层石墨烯量子碳基材料的光源器件及其制备方法
技术领域
本发明涉及基于多层石墨烯量子碳基材料的光源器件及其制备方法。
背景技术
石墨烯具有多晶格石墨烯特征,具有非常高的电荷传输速度(大于100000cm2v-1S-1),承受高电流密度(大于10A/cm2)的能力,丹邦公司多层石墨烯量子碳基电子迁移率为0.83×103cm2v-1S-1,载流子浓度为0.67×1020,具有高电场下传输的物理过程和低电场下散射的特征,其电流饱和时的偏压增加的机制过程,表明了载体偶联与高能光电子的重要作用,电荷载体偶联的光子以及多层石墨烯量子碳基的其它光子的能量分布,在电流饱和基础,是强偶联光致模式(超电势高电场电荷传输的原因及非平衡现象)。
在高电偏压下多层石墨烯量子碳基的自由度能量分布的测量,是基于偏压多层石墨烯量子碳基的光发射特征,测得在1.3-1.4ev的范围的紫外和可见光吸收曲线(计算模拟得到的带隙,是对已知有带隙的碳基材料给出具体带隙值)。其温度Tg达到2000k的高温,另外用拉曼光谱仪测试分析,用正反两面的拉曼光谱532.17nm波长激发,测得最高峰为G峰,位于1582.6cm-1右侧,次高峰为2D双峰结构2719.8cm-1,因此,温度与电子恰好匹配。偶联光电子与多层石墨烯量子碳基晶格的其他光子模型为不平衡发光,带有弧型特征。
对聚酰亚胺膜使用高分子烧结法碳化、石墨化可制备石墨烯薄膜,是将高分子聚酰亚胺膜(H+O+N+C)结合体在1000℃、2000℃、3000℃的环境中将H、O、N原子脱离,C原子得到重新排列,通过热分解形成碳素前驱体构造,实现平面特性,得到碳原子呈六角形规律排列的二次元结构,以单原子层重叠几层、十几层重叠,获得柔性多层石墨烯形态结构。经过特殊杂化纳米过渡金属与化合物反应,生成衍生物,以共价键连接。电子云重叠时电子越过纳米势垒进入量子阱,形成量子隧道效应。石墨烯薄膜的制备方法可参见中国专利申请案201610125008.X。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种基于多层石墨烯量子碳基材料的光源器件及其制备方法,实现对多层石墨烯量子碳基膜的电子结构进行控制,获得可以控制带隙的光电子采光、发光设备,提供低功耗光源器件。
为实现上述目的,本发明采用以下技术方案:
一种基于多层石墨烯量子碳基材料的光源器件,包括半导体材料的柔性多层石墨烯量子碳基膜,所述多层石墨烯量子碳基膜形成包含多个弧形结构的采光发光层,所述多层石墨烯量子碳基膜上设置有绝缘层,所述采光发光层上设置有若干对电极,所述电极连接并部分介入所述绝缘层,所述采光发光层形成为半导体超晶格具有可控制带隙的电子状态,能够采光,以及利用采集到光能激发发光,并在所述电极通电时发热发光,且能够通过发光光谱内的放射光波长区域调节来实现调制发光。
进一步地:
所述多个弧形结构为中间形成空隙两侧相对突起的弧形结构,所述电极设置在每个弧形结构的两边。
所述若干对电极为在同一平面并排形成的复数个电极。
所述电极通过在所述绝缘层上光刻形成。
所述柔性多层石墨烯量子碳基膜为2层以上100层以下的柔性多层石墨烯量子碳基半导体。
所述柔性多层石墨烯量子碳基膜是碳原子呈六角形规律排列的平面二次元构造堆叠2~50层而形成。
所述采光发光层与所述电极形成多层结构,层数优选为5~10层以下。
一种制备所述的基于多层石墨烯量子碳基材料的光源器件的制备方法,包括:在半导体材料的柔性多层石墨烯量子碳基膜的表面加工形成具有多个弧形结构的构造层,作为采光发光层;在多层石墨烯量子碳基膜上形成平坦的绝缘层;在绝缘层上制作电极。
进一步地:
所述采光发光层的膜厚在10纳米到50纳米,材质为单晶C-C/C=C;所述绝缘层在所述多层石墨烯量子碳基膜上气相沉积SiN得到,所述电极在所述绝缘层上光刻制作得到。
将乙炔作原料气体,使用气相沉积法在多层石墨烯量子碳基膜的表面沉积SiN绝缘层,成长温度为400℃,增长时间是15分钟,形成20纳米的厚度,并进行平坦处理,再在所形成的绝缘层上通过光刻和干式蚀刻工艺加工预定的图形形状。
本发明的有益效果:
本发明提供的光源器件是一种基于多层石墨烯量子碳基材料的光源器件,通过其结构配置实现对多层石墨烯量子碳基膜的电子结构进行控制,其中具有弧形结构的采光发光层形成为半导体超晶格具有可控制带隙的电子状态,能够采光,以及利用采集到光能激发发光,并在电极通电时发热发光,且能够通过发光光谱内的放射光波长区域调节来实现调制发光,从而获得可以控制带隙的光电子采光、发光设备,可作为低功耗光源器件。
附图说明
图1为本发明基于多层石墨烯量子碳基材料的光源器件一种实施例的结构示意图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
参阅图1,在一种实施例中,一种基于多层石墨烯量子碳基材料的光源器件,包括半导体材料的柔性多层石墨烯量子碳基膜AO1。半导体材料的柔性多层石墨烯量子碳基膜AO1可以设置在绝缘体DO1上。所述多层石墨烯量子碳基膜AO1形成包含多个弧形结构的采光发光层CO1,所述多层石墨烯量子碳基膜AO1上设置有绝缘层AO2,所述采光发光层CO1上设置有若干对电极BO1、BO2,所述电极BO1、BO2连接并部分介入绝缘层AO2的对应部分,其中,所述采光发光层CO1形成为半导体超晶格具有可控制带隙的电子状态,能够采光,以及利用采集到光能激发发光,并在所述电极BO1、BO2通电时发热发光,且能够通过发光光谱内的放射光波长区域调节来实现调制发光。
在优选的实施例中,采光发光层CO1的多个弧形结构为中间形成空隙两侧相对突起的弧形结构,所述电极BO1、BO2设置在每个弧形结构的两边。
在优选的实施例中,所述若干对电极BO1、BO2为在同一平面并排形成的复数个电极BO1、BO2。
较佳地,所述电极BO1、BO2通过在所述绝缘层AO2上光刻形成。
在优选的实施例中,所述柔性多层石墨烯量子碳基膜AO1为2层以上100层以下的柔性多层石墨烯量子碳基半导体。
在优选的实施例中,所述柔性多层石墨烯量子碳基膜AO1是碳原子呈六角形规律排列的平面二次元构造堆叠2~50层而形成。
在优选的实施例中,所述采光发光层CO1与所述电极BO1、BO2形成多层结构,层数优选为5~10层以下。
在另一种实施例中,一种制备所述的基于多层石墨烯量子碳基材料的光源器件的制备方法,包括:在半导体材料的柔性多层石墨烯量子碳基膜AO1的表面加工形成具有多个弧形结构的构造层,其作为采光发光层CO1;在多层石墨烯量子碳基膜AO1上形成平坦的绝缘层AO2;在绝缘层AO2上制作电极BO1、BO2。
在优选的实施例中,所述采光发光层CO1的膜厚在10纳米到50纳米,材质为单晶C-C/C=C;所述绝缘层AO2在所述多层石墨烯量子碳基膜AO1上气相沉积SiN得到,所述电极BO1、BO2在所述绝缘层AO2上光刻制作得到。
在优选的实施例中,将乙炔作原料气体,使用气相沉积法在多层石墨烯量子碳基膜AO1的表面沉积SiN绝缘层AO2,成长温度为400℃,增长时间是15分钟,形成20纳米的厚度,并进行平坦处理,再在所形成的绝缘层AO2上通过光刻和干式蚀刻工艺加工预定的图形形状。
根据本发明的实施例,通过柔性多层石墨烯量子碳基二维半导体材料制备一种可控制光电子构造、具有可控带隙的采光、发光元件及低功耗光源器件。光源器件具备在同一平面并排形成的复数个电极,和多层石墨烯二维量子碳基构成的采光发光层CO1,电极BO1、BO2可分别在采光发光层CO1的两边,在电极BO1、BO2通电时发光层CO1会发热发光,利用发光光谱内的放射光波长区域调节可以高速调制发光。光源器件上形成的多层石墨烯为2层以上100层以下的柔性多层石墨烯量子碳基半导体,利用其柔性使其可弯曲,可以在弯曲部分形成局部的电子状态,同时,多晶格之间形成带隙。
在一些实施例中,光电子采光、发光设备具备多层石墨烯量子碳基膜和碳基膜配置电极,多层石墨烯量子碳基膜AO1上形成有一个弧形结构配置,电极直接连接插入到绝缘层AO2。作为低功耗光源器件,采光、发光装置在具有半导体多层石墨烯量子碳基膜AO1上形成,其中多层石墨烯是碳原子呈六角形规律排列的平面二次元构造以2~50层复数层堆叠而成多层。多层石墨烯量子碳基膜的超晶格子空间π道和π道是相互连接可控制电子结构,其形成半导体有带隙的电子状态,能用于制作场效应晶体管GTETs光源器件、采光发光元件。作为场效应晶体管,在一对电极中的其中一个电极BO2为源极电极,另一个电极BO1为漏极电极。基于多层石墨烯量子碳基膜的发光层CO1可弯曲,可控制电子结构,可通过弧形结构实现弯曲,形成局部的电子状态,其超晶格空间上底层和下顶层形成根据超晶格原理而得到的带隙。
多层石墨烯量子碳基膜具有高电气传导特性和热传导特性,多层石墨烯量子碳基膜通电时伴随着温度上升、光谱放射,并能将采集到的光能转化成不同波长的光发出,因此,该光源器件可以作为采光、发光元件使用,实现具有宽采光、发光光谱的采光、发光光源器件。
本发明实施例中,采光、发光得到的光可以从可视光到小于10μm的短波长的红外线,有连续的波长域。采光、发光传输的光的光线是正交配设,即光线采光、发光方向垂直于多层石墨烯量子碳基膜的表面。
根据本发明实施例的一种制作方法包括:
在多层石墨烯量子碳基膜AO1的表面上,可顺次用应气相沉积法、光刻法、干式蚀刻法进行加工。其中基于多层石墨烯量子碳基膜形成具有弧形结构的构造层作为采光发光层CO1,层的膜厚在10纳米到50纳米,材质单晶C-C/C=C;其中在多层石墨烯量子碳基膜AO1上气相沉积SiN,形成平坦的绝缘层AO2;在绝缘层AO2上光刻图形,制作出电极BO1、BO2。最终制作出发光、采光光源器件,发光、采光制作场效应晶体管。
实施例1:
按照上述制作方法,首先采用乙炔作原料气体,利用气相沉积法,在多层石墨烯量子碳基膜AO1表面气相沉积SiN绝缘层,成长温度为400℃,增长时间为15分钟,形成膜厚20纳米,并进行平坦处理,再在所形成的绝缘层AO2上光刻图形,并可通过光刻和干式蚀刻工艺进行横向15nm,深度15nm的图形形状加工。
采光发光层CO1的弧形结构可通过控制多层石墨烯量子碳基的加工工艺形成。采光发光层CO1可以采用纳米大小的物质转印的纳米转移法加工。
采光发光层CO1及电极BO1、BO2形成多层结构,层数优选5~10层以下,确保多层石墨烯量子碳基二维半导体特性不变化和丢失。
根据本实施例1的方法可得到采光、发光元件,低功耗、底电阻的光源器件,以及场效应晶体管ED设备。
具体实施例所制得器件的光特性如表1:
表1
上表所示的参数包括所制得的光源器件所具有的光反射和吸收(采光)参数以及激发发光参数。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (12)

1.一种基于多层石墨烯量子碳基材料的光源器件,其特征在于,包括半导体材料的柔性多层石墨烯量子碳基膜,所述多层石墨烯量子碳基膜形成包含多个弧形结构的采光发光层,所述多层石墨烯量子碳基膜上设置有绝缘层,所述采光发光层上设置有若干对电极,所述电极连接并部分介入所述绝缘层,所述采光发光层形成为半导体超晶格具有可控制带隙的电子状态,能够采光,以及利用采集到光能激发发光,并在所述电极通电时发热发光,且能够通过发光光谱内的放射光波长区域调节来实现调制发光。
2.如权利要求1所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述多个弧形结构为中间形成空隙两侧相对突起的弧形结构,所述电极设置在每个弧形结构的两边。
3.如权利要求1所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述若干对电极为在同一平面并排形成的复数个电极。
4.如权利要求1所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述电极通过在所述绝缘层上光刻形成。
5.如权利要求1至4任一项所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述柔性多层石墨烯量子碳基膜为2层以上100层以下的柔性多层石墨烯量子碳基半导体。
6.如权利要求5所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述柔性多层石墨烯量子碳基膜是碳原子呈六角形规律排列的平面二次元构造堆叠2~50层而形成。
7.如权利要求1至4任一项所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述采光发光层与所述电极形成多层结构。
8.如权利要求7所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述多层结构的层数为10层以下。
9.如权利要求7所述的基于多层石墨烯量子碳基材料的光源器件,其特征在于,所述多层结构的层数为5层以下。
10.一种制备如权利要求1至9任一项所述的基于多层石墨烯量子碳基材料的光源器件的制备方法,其特征在于,包括:在半导体材料的柔性多层石墨烯量子碳基膜的表面加工形成具有多个弧形结构的构造层,作为采光发光层;在多层石墨烯量子碳基膜上形成平坦的绝缘层;在绝缘层上制作电极。
11.如权利要求10所述的基于多层石墨烯量子碳基材料的光源器件的制备方法,其特征在于,所述采光发光层的膜厚在10纳米到50纳米;所述绝缘层在所述多层石墨烯量子碳基膜上气相沉积SiN得到,所述电极在所述绝缘层上光刻制作得到。
12.如权利要求10或11所述的基于多层石墨烯量子碳基材料的光源器件的制备方法,其特征在于,将乙炔作原料气体,使用气相沉积法在多层石墨烯量子碳基膜的表面沉积SiN绝缘层,成长温度为400℃,增长时间为15分钟,形成20纳米的厚度,并进行平坦处理,再在所形成的绝缘层上通过光刻和干式蚀刻工艺加工预定的图形形状。
CN201610908971.5A 2016-10-18 2016-10-18 基于多层石墨烯量子碳基材料的光源器件及其制备方法 Active CN106374022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610908971.5A CN106374022B (zh) 2016-10-18 2016-10-18 基于多层石墨烯量子碳基材料的光源器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610908971.5A CN106374022B (zh) 2016-10-18 2016-10-18 基于多层石墨烯量子碳基材料的光源器件及其制备方法

Publications (2)

Publication Number Publication Date
CN106374022A CN106374022A (zh) 2017-02-01
CN106374022B true CN106374022B (zh) 2018-07-24

Family

ID=57896505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610908971.5A Active CN106374022B (zh) 2016-10-18 2016-10-18 基于多层石墨烯量子碳基材料的光源器件及其制备方法

Country Status (1)

Country Link
CN (1) CN106374022B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449067A (zh) * 2015-12-31 2016-03-30 白德旭 一种石墨烯led芯片及其制备方法
CN105600782A (zh) * 2016-03-04 2016-05-25 深圳丹邦科技股份有限公司 柔性聚酰亚胺制备的石墨烯薄膜及其制备方法
CN105789469A (zh) * 2016-05-30 2016-07-20 京东方科技集团股份有限公司 一种发光单元及制作方法、显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904734B2 (ja) * 2010-09-16 2016-04-20 三星電子株式会社Samsung Electronics Co.,Ltd. グラフェン発光素子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449067A (zh) * 2015-12-31 2016-03-30 白德旭 一种石墨烯led芯片及其制备方法
CN105600782A (zh) * 2016-03-04 2016-05-25 深圳丹邦科技股份有限公司 柔性聚酰亚胺制备的石墨烯薄膜及其制备方法
CN105789469A (zh) * 2016-05-30 2016-07-20 京东方科技集团股份有限公司 一种发光单元及制作方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN106374022A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
Zou et al. ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties
Gu et al. Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots
KR102053240B1 (ko) 헤테로 구조 및 상기 헤테로 구조를 사용하여 제조된 전자 장치
Politano et al. Plasmon modes in graphene: status and prospect
Su et al. Inorganic 2D luminescent materials: structure, luminescence modulation, and applications
Bhattacharya et al. Electronic and optical properties of pristine and boron–nitrogen doped graphyne nanotubes
TWI401999B (zh) A soft X-ray generating device and a de-energizing device
Kumar et al. Graphene: synthesis, properties and application in transparent electronic devices
Ma et al. Ultrasensitive and broad‐spectrum photodetectors based on InSe/ReS2 heterostructure
Qurashi et al. Nanofiller graphene–ZnO hybrid nanoarchitecture: optical, electrical and optoelectronic investigation
WO2016105481A2 (en) Light emission from electrically biased graphene
Guo et al. Large‐scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip‐in piezo‐phototronic LEDs
Wen et al. ZnO-coated carbon nanotubes: an enhanced and red-shifted emission band at UV-VIS wavelength
Gautier et al. Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process
He et al. Near-infrared light-emitting devices from individual heavily Ga-doped ZnO microwires
Liu et al. Probing interlayer interactions in WSe 2-graphene heterostructures by ultralow-frequency Raman spectroscopy
Sovizi et al. Plasma processing and treatment of 2D transition metal dichalcogenides: tuning properties and defect engineering
Karpińska et al. Interlayer excitons in MoSe 2/2D perovskite hybrid heterostructures–the interplay between charge and energy transfer
Tai et al. Wavelength-shifted yellow electroluminescence of Si quantum-dot embedded 20-pair SiNx/SiOx superlattice by Ostwald ripening effect
Huang et al. Structural Engineering of Dispersed Graphene Flakes into ZnO Nanotubes on Discontinues Ultra‐Nanocrystalline Diamond Substrates for High‐Performance Photodetector with Excellent UV Light to Dark Current Ratios
Rajkumari et al. High detectivity photodetector based on WO 3 nanowires by the surface plasmonic effect of Ag nanoparticles
Behura et al. Fabrication of bi-layer graphene and theoretical simulation for its possible application in thin film solar cell
CN105551909B (zh) 场发射阴极及其制备方法和应用
Peng et al. Efficiency enhancement of organic light-emitting devices by using honeycomb metallic electrodes and two-dimensional photonic crystal arrays
CN106374022B (zh) 基于多层石墨烯量子碳基材料的光源器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200930

Address after: 518000 5th floor, danbang science and technology building, Langshan 1st Road, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN DIANBOND TECHNOLOGY Co.,Ltd.

Address before: 523808, industrial zone, Songshan Industrial Park, Songshan District, Guangdong, Dongguan

Patentee before: Guang Dong Dongbond Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220805

Address after: 523000 Songshan Lake Science and Technology Industrial Park, Dongguan City, Guangdong Province

Patentee after: GUANG DONG DONGBOND TECHNOLOGY Co.,Ltd.

Address before: 5th Floor, Danbang Science and Technology Building, Langshan 1st Road, Nanshan District, Shenzhen, Guangdong 518000

Patentee before: SHENZHEN DIANBOND TECHNOLOGY Co.,Ltd.