CN106370290A - 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法 - Google Patents

一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法 Download PDF

Info

Publication number
CN106370290A
CN106370290A CN201610710933.9A CN201610710933A CN106370290A CN 106370290 A CN106370290 A CN 106370290A CN 201610710933 A CN201610710933 A CN 201610710933A CN 106370290 A CN106370290 A CN 106370290A
Authority
CN
China
Prior art keywords
elastic fiber
graphene
pvdf
piezoelectric transducer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610710933.9A
Other languages
English (en)
Other versions
CN106370290B (zh
Inventor
侯成义
刘宇飞
时秋伟
李耀刚
王宏志
张青红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610710933.9A priority Critical patent/CN106370290B/zh
Publication of CN106370290A publication Critical patent/CN106370290A/zh
Application granted granted Critical
Publication of CN106370290B publication Critical patent/CN106370290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/10Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polyvinyl chloride or polyvinylidene chloride
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法,所述压电传感器的结构为:石墨烯/弹性纤维外表覆盖着PVDF纳米纤维,石墨烯包覆弹性纤维。制备方法,包括:将弹性纤维浸入到氧化石墨烯分散液中,放置,取出后烘干,得到表面包覆氧化石墨烯的弹性纤维,还原,清洗,烘干,得到表面包覆石墨烯的弹性纤维;然后和PVDF纺丝液置于静电纺丝仪中,静电纺丝,即得。本发明的制备方法简单,得到的PVDF纳米纤维/石墨烯/弹性纤维压电传感器力学性能稳定,不需要额外的电源支持,即可准确、灵敏监测动态变形信号,循环稳定好;在柔性电子、可穿戴传感器领域具有广阔的应用前景。

Description

一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备 方法
技术领域
本发明属于石墨烯复合纤维及其制备领域,特别涉及一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法。
背景技术
石墨烯是由sp2杂化碳原子组成的,呈现出正六边形周期蜂窝点阵结构,具有极薄的厚度。自2004年首次被科学家成功制备出以来,其独特的二维结构和优异的性能受到众多学者的广泛关注。石墨烯常见的制备方法有机械剥离法、氧化还原法、SiC外延生长法和化学气相沉积法(CVD),它具有非同寻常的导电性能,是最坚硬的纳米材料,而且具有极高的光透性、优异的导热能、极高的比表面积、极快的电子迁移速率等特性,这些特性使石墨烯在超级电容器、应变传感器、智能服装领域等方面具有广泛的应用。
传感器是一种检测器件,能察觉到被测物的信息,并能将察觉到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以达到对检测物的监测。随着科学技术的进步,单靠人们自身的感觉器官来研究事物的规律以及功能已经远远不够了,传感器应运而生。其中可穿戴式传感器发展的最为迅速,它们被用于监测环境、健康等方面,监测的技术越来越成熟、范围越来越广、精密度越来越高。比如智能心率仪,智能体温计等智能便携可穿戴式传感器对于儿童和老人的健康监测有很大的辅助作用。近年来随着可穿戴式传感器的兴起,越来越多的材料用在此类传感器的制备中,其中石墨烯基的可穿戴式传感器近年来得到了很高的关注。
石墨烯基纤维传感器是近年来新兴的传感器,相比于基于金属箔和半导体等的传统传感器,其具有良好的灵敏度、较宽的检测范围、循环稳定性等特性。石墨烯基纤维作为传感器可以充分发挥出纤维的柔韧性、可拉伸性,亦可弯曲扭转,但现有的石墨烯基纤维传感器在应用时都需要对其提供额外的电源以保证其在监测时具有相应的信号,这很大程度上限制了石墨烯基复合纤维在应变传感器领域的应用。
发明内容
本发明所要解决的技术问题是提供一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法,该方法制得的石墨烯/弹性纤维压电传感器在应用时不需要额外的电源支持,即可准确、灵敏监测动态变形信号,循环稳定好,力学性能稳定,在柔性电子、可穿戴传感器领域具有广阔的应用前景。
本发明的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器,所述压电传感器的结构为:石墨烯/弹性纤维外表覆盖着PVDF纳米纤维,石墨烯包覆弹性纤维。
所述弹性纤维为由质量分数1~15%氨纶+99~85%涤纶组成。
本发明的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,包括:
(1)将弹性纤维浸入到氧化石墨烯分散液中,放置,取出后烘干,得到表面包覆氧化石墨烯的弹性纤维;
(2)将步骤(1)中表面包覆氧化石墨烯的弹性纤维进行还原,清洗,烘干,得到表面包覆石墨烯的弹性纤维;
(3)将步骤(2)中的弹性纤维和聚偏氟乙烯PVDF纺丝液置于静电纺丝仪中,弹性纤维置于纺丝液收集处,静电纺丝,得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;其中,PVDF纺丝液的组成为:质量比为丙酮:N,N-二甲基甲酰胺:PVDF=4~10:8~2:1~1.5。
所述步骤(1)中氧化石墨烯分散液的制备方法:室温下,将氧化石墨溶于去离子水中,得到氧化石墨分散液,超声,得到分散均匀的氧化石墨烯分散液;其中,氧化石墨烯分散液的浓度为1~50mg/mL;超声时间为1~72h。
所述步骤(1)中弹性纤维使用前进行表面改性前处理;其中,前处理的目的在于:使弹性纤维更利于纤维与氧化石墨烯的结合。
所述前处理的方式为:将弹性纤维用去离子水清洗后放置于酒精溶液中,超声处理10~60min,然后氧等离子处理10~60min。
所述步骤(1)中放置的时间为1~60min。
所述步骤(1)中烘干的条件为:40~70℃保温1~5h。
所述步骤(2)中还原的方式为:表面包覆氧化石墨烯的弹性纤维浸入氢碘酸中进行还原,还原时间为1~3h。
所述步骤(2)中清洗为分别用乙醇和去离子水多次清洗;烘干的条件为:40~70℃保温1~5h。
所述步骤(3)中静电纺丝的条件为:电压为10~20kV,静电纺丝时间为1~15min,接收距离为5~20cm。
有益效果
(1)本发明的制备方法简单,无需复杂工艺,制作成本低廉;
(2)本发明通过氧化石墨包覆弹性纤维上还原得到石墨烯/弹性纤维复合物,使石墨烯有一个优异弹性的基底,石墨烯和弹性纤维两者的优点充分的结合在一起,达到了一加一大于二的效果。
(3)本发明所制备的PVDF纳米纤维/石墨烯/弹性纤维压电传感器在应用时不需要额外的电源,弹性纤维在应变时由于PVDF的压电效应使制备的传感器可以自动产生电信号,使传感器摆脱了对外界电源的依赖,能监测出微弱、不同方向的震动,在医用领域、智能穿戴、应变等领域有着广阔的应用前景。
附图说明
图1为实施例1制备PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图;
图2为实施例1制备PVDF纳米纤维/石墨烯/弹性纤维压电传感器的细节扫描电镜图;
图3为实施例1制备PVDF纳米纤维/石墨烯/弹性纤维压电传感器在无外加电源时循环应变2%作用下的时间-电流曲线;
图4为实施例2制备PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图;
图5为实施例3制备PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
在室温下,称取氧化石墨270mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为9mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理8h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性纤维用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理30min。将处理后的弹性纤维浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨烯分散液的弹性纤维放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯基弹性纤维(氧化石墨烯包覆弹性纤维)。对获得的氧化石墨烯基弹性纤维用氢碘酸还原,时间为1h。将还原后的复合纤维分别用乙醇和去离子水进行多次洗涤除去残留氢碘酸,放入设置为60℃的烘箱中,时间为3h,得到石墨烯基弹性纤维。将按质量比为丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12的PVDF静电纺丝溶液用静电纺法纺于石墨烯基弹性纤维上,得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;其中,静电纺的使用高压为18kV,纺丝时间为3min,接受距离为15cm;石墨烯基弹性纤维置于纺丝液收集处。
图1为制备的PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图,可以看出:石墨烯/弹性纤维外表覆盖着PVDF纳米纤维。图2为制备的PVDF纳米纤维/石墨烯/弹性纤维压电传感器的细节扫描电镜图,可以看出:PVDF纳米纤维、石墨烯和弹性纤维的分层结构。图3为制备的PVDF纳米纤维/石墨烯/弹性纤维压电传感器在无外加电源时循环应变2%作用下的时间-电流曲线,可以明看出:在没有外界电压得支持下,石墨烯/弹性纤维压电传感器发生定量的形变时,依然能产生电信号,并且在多次循环后响应电流依然稳定。
实施例2
在室温下,称取氧化石墨270mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为9mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理8h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性纤维用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理30min。将处理后的弹性纤维浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨烯分散液的弹性纤维放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯基弹性纤维(氧化石墨烯包覆弹性纤维)。对获得的氧化石墨烯基弹性纤维用氢碘酸还原,时间为1h。将还原后的复合纤维分别用乙醇和去离子水进行多次洗涤除去残留氢碘酸,放入设置为60℃的烘箱中,时间为3h,得到石墨烯基弹性纤维。将按质量比为丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12的PVDF静电纺丝溶液用静电纺法纺于石墨烯基弹性纤维上,得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;其中,静电纺的使用高压为18kV,纺丝时间为9min,接受距离为15cm;石墨烯基弹性纤维置于纺丝液收集处。
图4为制备的PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图,可以看出石墨烯/弹性纤维复合体外裹覆的PVDF纳米纤维较实施例1的样品多了很多。
实施例3
在室温下,称取氧化石墨270mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为9mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理8h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性纤维用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理30min。将处理后的弹性纤维浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨烯分散液的弹性纤维放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯基弹性纤维(氧化石墨烯包覆弹性纤维)。对获得的氧化石墨基弹性纤维用氢碘酸还原,时间为1h。将还原后的复合纤维分别用乙醇和去离子水进行多次洗涤除去残留氢碘酸,放入设置为60℃的烘箱中,时间为3h,得到石墨烯基弹性纤维。将按质量比为丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12的PVDF静电纺丝溶液用静电纺法纺于石墨烯基弹性纤维上,得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;其中,静电纺的使用高压为18kV,纺丝时间为15min,接受距离为15cm;石墨烯基弹性纤维置于纺丝液收集处。
图5为PVDF纳米纤维/石墨烯/弹性纤维压电传感器的扫描电镜图,可以看出石墨烯/弹性纤维复合体外已经完全被PVDF纳米纤维裹覆,较实施例2样品表面的PVDF纳米纤维多。

Claims (10)

1.一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器,其特征在于,所述压电传感器的结构为:石墨烯/弹性纤维外表覆盖着PVDF纳米纤维,石墨烯包覆弹性纤维。
2.根据权利要求1所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器,其特征在于,所述弹性纤维由1~15wt%氨纶+99~85wt%涤纶组成。
3.一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,包括:
(1)将弹性纤维浸入到氧化石墨烯分散液中,放置,取出后烘干,得到表面包覆氧化石墨烯的弹性纤维;
(2)将步骤(1)中表面包覆氧化石墨烯的弹性纤维进行还原,清洗,烘干,得到表面包覆石墨烯的弹性纤维;
(3)将步骤(2)中的弹性纤维和聚偏氟乙烯PVDF纺丝液置于静电纺丝仪中,弹性纤维置于纺丝液收集处,静电纺丝,得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;其中,PVDF纺丝液的组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=4~10:8~2:1~1.5。
4.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(1)中氧化石墨烯分散液的制备方法:室温下,将氧化石墨溶于去离子水中,得到氧化石墨分散液,超声1~72h,得到氧化石墨烯分散液;其中,氧化石墨烯分散液的浓度为1~50mg/mL。
5.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(1)中弹性纤维使用前进行前处理;其中,前处理的方式为:将弹性纤维用去离子水清洗后放置于酒精溶液中,超声处理10~60min,然后氧等离子表面改性处理10~60min。
6.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(1)中放置的时间为1~60min。
7.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(1)和步骤(2)中烘干的条件为:40~70℃保温1~5h。
8.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(2)中还原的方式为:表面包覆氧化石墨烯的弹性纤维浸入氢碘酸中进行还原,还原时间为1~3h。
9.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(2)中清洗为分别用乙醇和去离子水清洗。
10.根据权利要求3所述的一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器的制备方法,其特征在于,所述步骤(3)中静电纺丝的条件为:电压为10~20kV,静电纺丝时间为1~15min,接收距离为5~20cm。
CN201610710933.9A 2016-08-23 2016-08-23 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法 Active CN106370290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610710933.9A CN106370290B (zh) 2016-08-23 2016-08-23 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610710933.9A CN106370290B (zh) 2016-08-23 2016-08-23 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN106370290A true CN106370290A (zh) 2017-02-01
CN106370290B CN106370290B (zh) 2019-02-26

Family

ID=57878983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610710933.9A Active CN106370290B (zh) 2016-08-23 2016-08-23 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN106370290B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167180A (zh) * 2017-05-19 2017-09-15 北京邮电大学 一种弹性纤维传感器及其制备方法
CN108511598A (zh) * 2018-03-16 2018-09-07 中国科学院上海微系统与信息技术研究所 Pvdf/石墨烯柔性压电材料及其柔性压电发电机的制备方法
CN108618243A (zh) * 2017-03-21 2018-10-09 上海衣佳网络科技有限公司 一种自动测量人体尺寸的智能衣
CN109989180A (zh) * 2017-12-29 2019-07-09 南京理工大学 一种纳米压电复合膜的制备方法
CN112226867A (zh) * 2020-08-19 2021-01-15 西安工程大学 一种制备超柔软的压电pvdf纱线的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111607A (ko) * 2011-04-01 2012-10-10 광주과학기술원 압전 효과를 이용한 그래핀 터치 센서
US20130127299A1 (en) * 2011-11-22 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Piezoelectric device of polymer
CN104617090A (zh) * 2015-01-16 2015-05-13 浙江大学 一种石墨烯基压力传感器及其制备方法
CN104790064A (zh) * 2015-04-10 2015-07-22 东华大学 一种压电聚合物/金属复合纳米单纤维及其制备方法
CN105094425A (zh) * 2015-07-17 2015-11-25 苏州诺菲纳米科技有限公司 触控传感器及其制备方法及具有触控传感器的显示器件
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN205319191U (zh) * 2016-01-18 2016-06-15 辽宁广告职业学院 一种压式发电薄膜器件
US10009026B2 (en) * 2012-04-11 2018-06-26 Commissariat A L'energie Atomique Aux Energies Alternatives Touch-sensitive sensor and method for producing such a sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111607A (ko) * 2011-04-01 2012-10-10 광주과학기술원 압전 효과를 이용한 그래핀 터치 센서
US20130127299A1 (en) * 2011-11-22 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Piezoelectric device of polymer
US10009026B2 (en) * 2012-04-11 2018-06-26 Commissariat A L'energie Atomique Aux Energies Alternatives Touch-sensitive sensor and method for producing such a sensor
CN104617090A (zh) * 2015-01-16 2015-05-13 浙江大学 一种石墨烯基压力传感器及其制备方法
CN104790064A (zh) * 2015-04-10 2015-07-22 东华大学 一种压电聚合物/金属复合纳米单纤维及其制备方法
CN105094425A (zh) * 2015-07-17 2015-11-25 苏州诺菲纳米科技有限公司 触控传感器及其制备方法及具有触控传感器的显示器件
CN105300574A (zh) * 2015-11-13 2016-02-03 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN205319191U (zh) * 2016-01-18 2016-06-15 辽宁广告职业学院 一种压式发电薄膜器件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108618243A (zh) * 2017-03-21 2018-10-09 上海衣佳网络科技有限公司 一种自动测量人体尺寸的智能衣
CN107167180A (zh) * 2017-05-19 2017-09-15 北京邮电大学 一种弹性纤维传感器及其制备方法
CN109989180A (zh) * 2017-12-29 2019-07-09 南京理工大学 一种纳米压电复合膜的制备方法
CN108511598A (zh) * 2018-03-16 2018-09-07 中国科学院上海微系统与信息技术研究所 Pvdf/石墨烯柔性压电材料及其柔性压电发电机的制备方法
CN108511598B (zh) * 2018-03-16 2020-04-03 中国科学院上海微系统与信息技术研究所 Pvdf/石墨烯柔性压电材料及其柔性压电发电机的制备方法
CN112226867A (zh) * 2020-08-19 2021-01-15 西安工程大学 一种制备超柔软的压电pvdf纱线的方法

Also Published As

Publication number Publication date
CN106370290B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Fu et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high‐performance electronic skin
CN106370290B (zh) 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法
CN109115266B (zh) 一种可穿戴多功能柔性传感器及其制备方法
Liu et al. MXene-coated air-permeable pressure-sensing fabric for smart wear
Li et al. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection
Wu et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@ polyurethane yarn for tiny motion monitoring
Sun et al. Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics
Shang et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions
Huang et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@ silver nanoparticles electrospun membrane strain sensors by multi-conductive network
CN107192485A (zh) 一种柔性可拉伸的多功能纳米纤维传感器及其制备方法
Chen et al. Multifunctional iontronic sensor based on liquid metal-filled ho llow ionogel fibers in detecting pressure, temperature, and proximity
CN105444928A (zh) 一种压阻型线状柔性应力传感器的制备方法
Yao et al. Gas-permeable and highly sensitive, washable and wearable strain sensors based on graphene/carbon nanotubes hybrids e-textile
Zhao et al. Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor
Zhou et al. Multifunctional and stretchable graphene/textile composite sensor for human motion monitoring
Lu et al. High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics
Tang et al. Biomass-derived multifunctional 3D film framed by carbonized loofah toward flexible strain sensors and triboelectric nanogenerators
CN106370221B (zh) 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法
Chen et al. Fast-response piezoresistive pressure sensor based on polyaniline cotton fabric for human motion monitoring
Chen et al. Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators
Hou et al. Flexible piezoresistive sensor based on surface modified dishcloth fibers for wearable electronics device
Zhu et al. High-performance fiber-film hybrid-structured wearable strain sensor from a highly robust and conductive carbonized bamboo aerogel
Luo et al. Preparation and tensile conductivity of carbon nanotube/polyurethane nanofiber conductive films based on the centrifugal spinning method
Zhao et al. Highly responsive asymmetric pressure sensor based on MXene/reduced graphene oxide nanocomposite fabricated by laser scribing technique
Zheng et al. Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant