CN106362686B - 一种富集降解苯系物有机废水的复合材料的制备方法 - Google Patents

一种富集降解苯系物有机废水的复合材料的制备方法 Download PDF

Info

Publication number
CN106362686B
CN106362686B CN201610832663.9A CN201610832663A CN106362686B CN 106362686 B CN106362686 B CN 106362686B CN 201610832663 A CN201610832663 A CN 201610832663A CN 106362686 B CN106362686 B CN 106362686B
Authority
CN
China
Prior art keywords
composite material
foamy carbon
tio
preparation
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610832663.9A
Other languages
English (en)
Other versions
CN106362686A (zh
Inventor
吴燕
吕小凤
郭凤南
彭啸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN201610832663.9A priority Critical patent/CN106362686B/zh
Publication of CN106362686A publication Critical patent/CN106362686A/zh
Application granted granted Critical
Publication of CN106362686B publication Critical patent/CN106362686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种富集降解苯系物有机废水的复合材料的制备方法,步骤如下:(1)泡沫碳的预处理;(2)在泡沫碳上负载碳微球;(3)在负载了碳微球的泡沫碳上负载钛质前驱体,得到复合材料的前驱体;(4)复合材料前驱体水热生长得到复合材料。本发明所制备的复合材料在30分钟内能有效富集苯系物有机废水,增大苯系物的浓度,富集率达25%。在3小时能有效降解苯系物有机废水,降解率为95%。在制备过程中不产生对环境有污染的副产物,是一种环保型材料。制备方法简单,原料廉价,制备条件温和,操作简单。

Description

一种富集降解苯系物有机废水的复合材料的制备方法
技术领域
本发明属于危险化学品防治领域,涉及含苯系物有机废水的处理,尤其是一种富集降解苯系物有机废水的复合材料的制备方法。
背景技术
随着我国化学工业迅猛发展,“三苯”的产量不断增加,泄漏事故也急剧上升,给国家和人民群众生命、财产以及生态环境造成了极大的危害。其中,易挥发性苯系物液体危化品,一旦发生泄漏事故将会产生大量高浓污水,造成严重环境安全事故,如若不能彻底根治,将遗留严重安全隐患。苯系物泄漏事故通常属于突发性事故,不可预测,具有易燃烧爆炸、易中毒伤亡、易污染环境等特点。据不完全统计,仅2012至2015年,我国至少发生苯系物泄漏事故20起,泄漏量达到千吨以上,对事故发生地区及周边造成严重的影响。
目前,我国危化品泄漏事故由管辖区的消防部门负责,依据公安消防部编制的《危险化学品应急处置速查手册》,苯系物泄漏事故主要侧重于采用稀释法、覆盖法、吸附法和燃烧法对泄漏液体进行回收及处理,其可在一定程度上控制有毒气体、泄漏液体更大范围扩散,但不能从根本上彻底根治泄漏遗留的安全隐患,短时间内更促进高浓污染废水的生成和扩散。通常泄漏事故发生时,会使用大量的稀释剂-水或水蒸汽,因此会产生大量高浓污染废水,虽然冲洗后的污水要求集中装运至污水处理场所进行处置,但通常泄漏事故发生很多是突发性的交通事故导致,产生的污水很多时候没有条件进入密闭污水处理系统集中处理,一旦处理不及时会导致高浓污染水体进入周边环境中,存在很强的安全隐患。并且苯系物有机废水采用常规污水处理技术很难处理达标,如若处理不好,依旧会存在很大的安全隐患。因此,亟待研究开发具有针对性的无遗留隐患问题的救援救治技术措施。
吸附处理技术是目前危化品泄漏事故救援救治的有效方法之一,该材料一般具备较大的表面,依靠范德华力作用力的作用吸附污染物。污染物吸附材料主要包括沸石、粘土及炭等材料。炭材料价格低廉、来源广泛,具有发达的孔隙结构和巨大的表面积(500-1000m2/g)。与上述两类矿物吸附剂不同,炭材料表面疏水,与有机污染物相互作用非常显著,甚至超过物理作用,因此有机污染物吸附能力显著。尽管吸附材料可大幅降低污染物浓度,有效抑制有毒气体的生成与传输,但仍然无法改变其物理吸附作用的本质,即污染物没有得到彻底无害化处理。此外,吸附饱和的材料处理不当易成为二次污染源,存在安全隐患。因此,单纯采用吸附处理技术并不能根治苯系物危化品泄漏事故。
针对类似苯系物有机废水,光催化技术可从根本解决污染问题。光催化技术可将有机污染物彻底降解为小分子有机物,最常用的光催化剂为纳米级TiO2。该材料具有良好的光催化活性、稳定的化学性、优异的量子效应、无毒、易得且价廉等优点,适于光催化降解有机污染物。纳米级TiO2颗粒具有良好的表面效应、量子效应和尺寸效应,相应的反应活性及效率也较高,是光催化研究的主要对象。锐钛矿晶型的TiO2具有较宽的带隙(3.2eV)、较大的比表面积以及极小的粒径,具备高光催化活性的潜力。
近年来,国内外学者对吸附处理技术和光催化技术进行了深入广泛的理论和应用研究。如果能将吸附处理技术和光催化技术联用并应用于苯系物的防治,这将是在泄漏事故处理中及时控制有毒气体和液体生成与传输,有效保证周边人员及环境安全的一个有效途径。
发明内容
本发明解决的技术问题是,提供一种富集降解苯系物有机废水的复合材料的制备方法,本复合材料可以结合吸附处理技术和光催化技术对苯系物进行富集降解。
一种富集降解苯系物有机废水的复合材料的制备方法,步骤如下:
(1)泡沫碳的预处理:将泡沫碳加入蒸馏水中搅拌10~15分钟,超声清洗20~30分钟,然后将泡沫碳加入0.02mol/LHCl溶液中,搅拌20~30分钟,静置、过滤,并洗涤至pH为6~7,最后将泡沫碳进行干燥,在温度为100~110摄氏度下干燥1~3小时,冷却。
(2)在泡沫碳上负载碳微球:将步骤(1)处理后的泡沫碳加入到葡萄糖或淀粉或葡萄糖与淀粉的混合溶液中,超声分散10~30分钟后,于180摄氏度水热反应4~6小时,自然冷却至室温后以蒸馏水和乙醇洗涤3~5次,最后将泡沫碳-碳微球进行干燥1~3小时,温度为100~110摄氏度。
(3)在负载了碳微球的泡沫碳上负载钛质前驱体:将钛质前驱体溶于无水乙醇中,加入冰醋酸,加入步骤(2)中的泡沫碳-碳微球,搅拌20~40分钟,再滴加无水乙醇与去离子水的混合液,并将pH调节至2~3,滴加完毕后继续搅拌90~120分钟,静置形成凝胶,即得TiO2/CB-FC或TiO2/CS-FC或TiO2/CS-CB-FC复合材料的前驱体。
(4)复合材料前驱体水热生长得到复合材料:将复合材料的前驱体在100~250摄氏度下水热生长1~5小时,冷却至室温后,用蒸馏水和乙醇洗涤3~5次,在温度为100~110摄氏度下干燥1~3小时,冷却,即得TiO2/CB-FC或TiO2/CS-FC或TiO2/CS-CB-FC复合材料。
而且,所述步骤(1)中,泡沫碳使用前先进行粉碎,使其粒径在50~100目。
而且,所述步骤(2)中,葡萄糖或淀粉或葡萄糖与淀粉的混合溶液的浓度为0.5mol/L。
而且,所述步骤(2)中,所述淀粉为玉米淀粉或小麦淀粉或绿豆淀粉或马铃薯淀粉。
而且,所述步骤(2)中,葡萄糖或淀粉或葡萄糖与淀粉的混合溶液与泡沫碳加入量的配比为1mL:0.01~0.02g。
而且,所述的钛质前驱体为钛酸四丁酯或钛酸异丙酯或四氯化钛或硫酸钛或硫酸氧钛。
而且,所述步骤(3)中,钛质前驱体与碳微球-泡沫碳的质量比为1~25:1,优选的钛酸四丁酯与葡萄糖-碳微球-泡沫碳的质量比为10:1。
而且,所述步骤(3)中,钛酸四丁酯、乙醇总量、水与冰醋酸的物质的量之比为1:18:18:4。
而且,所述步骤(3)中,pH调节剂为盐酸,质量分数为37%。
而且,所述步骤(4)中,前驱体在180摄氏度下水热生长2小时。
本发明的优点和有益效果:
1、所制备的复合材料在30分钟内能有效富集苯系物有机废水,增大苯系物的浓度,富集率达25%。所制备的复合材料在3小时能有效降解苯系物有机废水,降解率为95%。
2、本发明在制备过程中不产生对环境有污染的副产物,是一种环保型材料。
3、本发明制备方法简单,原料廉价,制备条件温和,操作简单。
附图说明
图1本发明的CB-FC的SEM图。
图2本发明的TiO2/CB-FC的XRD图。
图3本发明的TiO2/CB-FC富集降解含苯有机废水图。
图4本发明的TiO2/CB-FC富集降解含甲苯有机废水图。
具体实施方式
下面结合附图和具体实施方式对本发明进一步说明。
实施例1
(1)TiO2前驱体的制备
将35mL的钛酸四丁酯溶于70mL的无水乙醇中,加入23mL的冰醋酸,搅拌15min。将混合液在剧烈搅拌下以1Drop/s的速度滴加去离子水与乙醇的混合液,其中去离子水的体积为32.4mL,乙醇的体积为35mL,用质量分数为37%的盐酸将pH值调节至2,滴加完毕后继续搅拌100分钟,即得TiO2前驱体。
(2)TiO2的制备
将步骤(1)中的TiO2前驱体在180摄氏度下水热反应2小时,经过冷却、洗涤、干燥后,即得TiO2材料。
实施例2
(1)FC的预处理
首先将一定量的泡沫碳加入到蒸馏水中均匀搅拌10分钟,然后将泡沫碳加入HCl溶液中,搅拌20分钟,静置、过滤、洗涤至pH为6.67,最后将泡沫碳在105摄氏度干燥4小时,冷却,所示HCl溶液浓度为1mol/L。
(2)CB-FC的制备
取30mL浓度为0.5mol/L的葡萄糖溶液,将步骤(1)中的泡沫碳加入到葡萄糖溶液中,葡萄糖与泡沫碳加入量的配比为1mL:0.015g。超声分散10分钟后,于180摄氏度水热反应4小时,自然冷却至室温后以蒸馏水和乙醇洗涤3次,最后将泡沫碳-葡萄糖碳微球进行干燥1小时,温度为100摄氏度。
(3)TiO2/(CB-FC)前驱体的制备
将35mL的钛酸四丁酯溶于70mL的无水乙醇中,加入23mL的冰醋酸,加入0.75g步骤(2)中的CB-FC,搅拌15min。将混合液在剧烈搅拌下以1Drop/s的速度滴加去离子水与乙醇的混合液,其中去离子水的体积为32.4mL,乙醇的体积为35mL,用质量分数为37%的盐酸将pH值调节至2,滴加完毕后继续搅拌100分钟,即得TiO2/(CB-FC)前驱体。
(4)TiO2/(CB-FC)复合材料的制备
将步骤(3)中的前驱体在180摄氏度下水热生长2小时,冷却至室温后,用蒸馏水和乙醇洗涤3次,在温度为105摄氏度下干燥1小时,冷却,即得TiO2/(CB-FC)复合材料。
测试结果:将步骤(2)中的CB-FC材料进行SEM表征,从图1可见碳球比较均匀的分布在泡沫碳表面及大孔孔洞处,碳球尺寸在1~3微米左右。将步骤(4)的TiO2/(CB-FC)材料进行表征,从图2可以看出,所得复合材料主要为锐钛矿相。从图(3)(4)可见,所制备的TiO2/(CB-FC)复合材料在30分钟内能有效富集苯系物有机废水,增大苯系物的浓度,富集率达25%。所制备的TiO2/(CB-FC)复合材料在3小时能有效降解苯系物有机废水,降解率为95%。
实施例3
(1)FC的预处理
首先将一定量的泡沫碳加入到蒸馏水中均匀搅拌30分钟,然后将泡沫碳加入HCl溶液中,搅拌20分钟,静置、过滤、洗涤至pH为6.88,最后将泡沫碳在100摄氏度干燥4小时,冷却,所示HCl溶液浓度为1mol/L。
(2)CS-FC的制备
取30mL浓度为0.5mol/L的玉米淀粉溶液,将步骤(1)中的泡沫碳加入到玉米淀粉溶液中,淀粉与泡沫碳加入量的配比为1mL:0.015g。超声分散30分钟后,于200摄氏度水热反应5小时,自然冷却至室温后以蒸馏水和乙醇洗涤5次,最后将泡沫碳-淀粉碳微球进行干燥5小时,温度为110摄氏度。
(3)TiO2/(CS-FC)前驱体的制备
将35mL的钛酸四丁酯溶于70mL的无水乙醇中,加入23mL的冰醋酸,加入3.75g步骤(2)中的CB-FC,搅拌15min。将混合液在剧烈搅拌下以1Drop/s的速度滴加去离子水与乙醇的混合液,其中去离子水的体积为32.4mL,乙醇的体积为35mL,用质量分数为37%的盐酸将pH值调节至2,滴加完毕后继续搅拌100分钟,即得TiO2/(CS-FC)前驱体。
(4)TiO2/(CS-FC)复合材料的制备
将步骤(3)中的TiO2/(CS-FC)前驱体在180摄氏度下水热反应4小时,经过冷却、洗涤、干燥后,即得TiO2/(CS-FC)复合材料。
实施例4
(1)FC的预处理
首先将一定量的泡沫碳加入到蒸馏水中均匀搅拌30分钟,然后将泡沫碳加入HCl溶液中,搅拌20分钟,静置、过滤、洗涤至pH为6.88,最后将泡沫碳在100摄氏度干燥4小时,冷却,所示HCl溶液浓度为1mol/L。
(2)(CS-CB)-FC的制备
按照质量比为1:1,配制为0.5mol/L的30mL淀粉-葡萄糖混合溶液,将步骤(1)中的泡沫碳加入到混合溶液中,混合溶液与泡沫碳加入量的配比为1mL:0.015g。超声分散30分钟后,于240摄氏度水热反应4小时,自然冷却至室温后以蒸馏水和乙醇洗涤5次,最后将泡沫碳淀粉-葡萄糖碳微球进行干燥4小时,温度为110摄氏度。
(3)TiO2/(CS-CB-FC)前驱体的制备
将35mL的钛酸四丁酯溶于70mL的无水乙醇中,加入23mL的冰醋酸,加入3.75g步骤(2)中的(CS-CB)-FC,搅拌15min。将混合液在剧烈搅拌下以1Drop/s的速度滴加去离子水与乙醇的混合液,其中去离子水的体积为32.4mL,乙醇的体积为35mL,用质量分数为37%的盐酸将pH值调节至2,滴加完毕后继续搅拌100分钟,即得TiO2/(CS-CB-FC)前驱体。(4)TiO2/(CS-CB-FC)复合材料的制备
将步骤(3)中的TiO2/10(CS-CB-FC)前驱体在180摄氏度下水热反应4小时,经过冷却、洗涤、干燥后,即得TiO2/(CS-CB-FC)复合材料。
为了验证实施例1、实施例2、实施例3和实施例4的富集降解效果,进行了富集降解实验,具体实验如下:
实施例5
取50mg/L的含苯有机废水,然后分别加入0.125g实施例1、实施例2、实施例3和实施例4中的复合材料。在采用紫外光辐射之前,先将悬浮液放入暗场中暗吸附30min。在暗吸附之后,使用100W的紫外灯,距离样品距离20cm,辐射该悬浮液3h,上部注入空气,起补充溶解氧和搅拌的作用。在辐射的过程中,间隔半小时取10mL的溶液,进行检测。
表1本发明在不同工艺下制备的复合材料富集降解苯的实验结果
实施例 1 2 3 4
复合材料 TiO2 TiO2/(CB-FC) TiO2/(CS-FC) TiO2/(CS-CB-FC)
降解率/% 64 84 76 90
降解率:TiO2/(CS-CB-FC)>TiO2/(CB-FC)>TiO2/(CS-FC)>TiO2。在此条件下,TiO2/(CS-CB-FC)的降解效果最好。
实施例6
取100mg/L的含苯有机废水,然后分别加入0.150g实施例1、实施例2、实施例3和实施例4中的复合材料。在采用紫外光辐射之前,先将悬浮液放入暗场中暗吸附45min。在暗吸附之后,使用100W的紫外灯,距离样品距离30cm,辐射该悬浮液3h,上部注入空气,起补充溶解氧和搅拌的作用。在辐射的过程中,间隔半小时取10mL的溶液,进行检测。
表2本发明在不同工艺下制备的复合材料富集降解甲苯的实验结果
实施例 1 2 3 4
复合材料 TiO2 TiO2/(CB-FC) TiO2/(CS-FC) TiO2/(CS-CB-FC)
降解率/% 58 88 80 95
降解率:TiO2/(CS-CB-FC)>TiO2/(CB-FC)>TiO2/(CS-FC)>TiO2。在此条件下,TiO2/(CS-CB-FC)的降解效果最好。
对比例1
取50mg/L的含苯有机废水,然后分别加入0.125g的P25。在采用紫外光辐射之前,先将悬浮液放入暗场中暗吸附30min。在暗吸附之后,使用100W的紫外灯,距离样品距离20cm,辐射该悬浮液3h,上部注入空气,起补充溶解氧和搅拌的作用。在辐射的过程中,间隔半小时取10mL的溶液,进行检测。
对比例2
取100mg/L的含甲苯有机废水,然后分别加入0.150g的P25。在采用紫外光辐射之前,先将悬浮液放入暗场中暗吸附45min。在暗吸附之后,使用100W的紫外灯,距离样品距离30cm,辐射该悬浮液3h,上部注入空气,起补充溶解氧和搅拌的作用。在辐射的过程中,间隔半小时取10mL的溶液,进行检测。

Claims (6)

1.一种富集降解苯系物有机废水的复合材料的制备方法,步骤如下:(1)泡沫碳的预处理;(2)在泡沫碳上负载碳微球;(3)在负载了碳微球的泡沫碳上负载钛质前驱体,得到复合材料的前驱体;(4)复合材料前驱体水热生长得到复合材料;
所述步骤(1)是将泡沫碳加入蒸馏水中搅拌10~15分钟,超声清洗20~30分钟,然后将泡沫碳加入0.02mol/LHCl溶液中,搅拌20~30分钟,静置、过滤,并洗涤至pH为6~7,最后将泡沫碳进行干燥,在温度为100~110摄氏度下干燥1~3小时,冷却;
所述步骤(2)是将步骤(1)处理后的泡沫碳加入到葡萄糖或淀粉或葡萄糖与淀粉的混合溶液中,超声分散10~30分钟后,于180摄氏度水热反应4~6小时,自然冷却至室温后以蒸馏水和乙醇洗涤3~5次,最后将泡沫碳-碳微球进行干燥1~3小时,温度为100~110摄氏度;
所述步骤(3)是将钛质前驱体溶于无水乙醇中,加入冰醋酸,加入步骤(2)中的泡沫碳-碳微球,钛质前驱体与碳微球-泡沫碳的质量比为1~25:1,搅拌20~40分钟,再滴加无水乙醇与去离子水的混合液,并将pH调节至2~3,滴加完毕后继续搅拌90~120分钟,静置形成凝胶,即得TiO2/CB-FC或TiO2/CS-FC或TiO2/CS-CB-FC复合材料的前驱体;
所述步骤(4)是将复合材料的前驱体在100~250摄氏度下水热生长1~5小时,冷却至室温后,用蒸馏水和乙醇洗涤3~5次,在温度为100~110摄氏度下干燥1~3小时,冷却,即得TiO2/CB-FC或TiO2/CS-FC或TiO2/CS-CB-FC复合材料。
2.根据权利要求1所述的富集降解苯系物有机废水的复合材料的制备方法,其特征在于:泡沫碳使用前先进行粉碎,使其粒径在50~100目。
3.根据权利要求1所述的富集降解苯系物有机废水的复合材料的制备方法,其特征在于:葡萄糖或淀粉或葡萄糖与淀粉的混合溶液的浓度为0.5mol/L。
4.根据权利要求1所述的富集降解苯系物有机废水的复合材料的制备方法,其特征在于:所述淀粉为玉米淀粉或小麦淀粉或绿豆淀粉或马铃薯淀粉。
5.根据权利要求1所述的富集降解苯系物有机废水的复合材料的制备方法,其特征在于:葡萄糖或淀粉或葡萄糖与淀粉的混合溶液与泡沫碳加入量的配比为1mL:0.01~0.02g。
6.根据权利要求1所述的富集降解苯系物有机废水的复合材料的制备方法,其特征在于:所述的钛质前驱体为钛酸四丁酯或钛酸异丙酯或四氯化钛或硫酸钛或硫酸氧钛。
CN201610832663.9A 2016-09-19 2016-09-19 一种富集降解苯系物有机废水的复合材料的制备方法 Active CN106362686B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610832663.9A CN106362686B (zh) 2016-09-19 2016-09-19 一种富集降解苯系物有机废水的复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610832663.9A CN106362686B (zh) 2016-09-19 2016-09-19 一种富集降解苯系物有机废水的复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106362686A CN106362686A (zh) 2017-02-01
CN106362686B true CN106362686B (zh) 2018-07-31

Family

ID=57897827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610832663.9A Active CN106362686B (zh) 2016-09-19 2016-09-19 一种富集降解苯系物有机废水的复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106362686B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552036B (zh) * 2017-08-21 2020-07-10 天津科技大学 一种光催化剂复合材料RHC-CS/La3+-TiO2的制备方法
CN108636435A (zh) * 2018-04-24 2018-10-12 周荣 一种光催化降解甲醛功能泡沫炭的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586713A (zh) * 2004-07-15 2005-03-02 清华大学 纳米载体的光催化剂
CN101693533A (zh) * 2009-10-23 2010-04-14 大连理工大学 以煤直接液化残渣为原料制备纳米碳纤维/泡沫炭的方法
CN103785371A (zh) * 2014-03-04 2014-05-14 湘潭大学 一种多孔炭微球@TiO2复合材料及其制备方法和应用
CN104828804A (zh) * 2015-03-25 2015-08-12 清华大学 一种多孔碳纳米管-炭球形复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011120492A1 (de) * 2011-09-02 2013-03-07 BLüCHER GMBH Wundauflage mit luftdurchlässiger Lage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586713A (zh) * 2004-07-15 2005-03-02 清华大学 纳米载体的光催化剂
CN101693533A (zh) * 2009-10-23 2010-04-14 大连理工大学 以煤直接液化残渣为原料制备纳米碳纤维/泡沫炭的方法
CN103785371A (zh) * 2014-03-04 2014-05-14 湘潭大学 一种多孔炭微球@TiO2复合材料及其制备方法和应用
CN104828804A (zh) * 2015-03-25 2015-08-12 清华大学 一种多孔碳纳米管-炭球形复合材料的制备方法

Also Published As

Publication number Publication date
CN106362686A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
Wang et al. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates
Ye et al. Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation
Fan et al. Simultaneous removal of harmful algal cells and toxins by a Ag2CO3-N: GO photocatalyst coating under visible light
CN111359582A (zh) 一种石墨烯复合气凝胶除甲醛材料及制备方法
Rizwan et al. Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants
Zhang et al. Immobilization laccase on heterophase TiO2 microsphere as a photo-enzyme integrated catalyst for emerging contaminants degradation under visible light
Li et al. Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes
Lin et al. Promotion of sulfameter degradation by coupling persulfate and photocatalytic advanced oxidation processes with Fe-doped MOFs
CN105749894A (zh) 一种三维石墨烯-二氧化钛复合物光催化剂的制备方法
CN115197591A (zh) 一种可见光催化复合材料及其制备方法
CN103464122A (zh) 一种石墨烯/壳聚糖吸附树脂的制备方法
CN106362686B (zh) 一种富集降解苯系物有机废水的复合材料的制备方法
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN105642248A (zh) 一种空气净化器用甲醛滤网复合材料及其制备方法
Popa et al. New hydrothermal charcoal TiO2 composite for sustainable treatment of wastewater with dyes and cadmium cations load
Zhang et al. Reusable and environmentally friendly cellulose nanofiber/titanium dioxide/chitosan aerogel photocatalyst for efficient degradation of tetracycline
Pacheco et al. Adsorption and degradation of rhodamine B and bromocresol green by FeOCl under advanced oxidation process
Du et al. Effective degradation of tetracycline via polyvinyl alcohol/Bi2WO6 hybrid hydrogel with easy separation
Lu et al. The collaborative incentive effect in adsorption-photocatalysis: A special perspective on phosphorus recovery and reuse
CN110215908A (zh) 一种复合高效吸附材料
CN109078644B (zh) 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法
CN105013448B (zh) 一种二氧化钛/壳聚糖层层自组装复合薄膜材料的制备及应用
CN108043457B (zh) 高导电性石墨烯-曙红y复合气凝胶光催化剂的制备方法
CN102847519B (zh) 一种去除水中氯酸根的复合吸附材料及其制备方法
Fu et al. Synthesis and application of wetland plant-based functional materials for aqueous antibiotics removal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant