CN106356194B - 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法 - Google Patents

一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法 Download PDF

Info

Publication number
CN106356194B
CN106356194B CN201611051926.9A CN201611051926A CN106356194B CN 106356194 B CN106356194 B CN 106356194B CN 201611051926 A CN201611051926 A CN 201611051926A CN 106356194 B CN106356194 B CN 106356194B
Authority
CN
China
Prior art keywords
pam
pegma
peo
solid union
polyacrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611051926.9A
Other languages
English (en)
Other versions
CN106356194A (zh
Inventor
焦元启
邓丽媚
王明兰
杨树颜
纪传伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201611051926.9A priority Critical patent/CN106356194B/zh
Publication of CN106356194A publication Critical patent/CN106356194A/zh
Application granted granted Critical
Publication of CN106356194B publication Critical patent/CN106356194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及材料领域,属于锂离子电池电解质材料的制备技术领域。本发明由聚氧化乙烯(PEO)、高分子量聚丙烯酰胺(PAM)、丙烯酰胺和乙二醇单甲醚丙烯酸酯共聚物(P(AM‑co‑PEGMA))、锂盐和纳米填料等组分构成。本发明将含有极性基团和良好支撑作用的高分子量PAM作为支撑相,PEO作为传输相,P(AM‑co‑PEGMA)作为PAM和PEO增溶剂,纳米填料作为增强剂和PEO结晶抑制剂,制备出锂离子迁移数高、离子电导率高、界面电阻小和尺寸稳定性优良,可应用于锂离子电池。本发明的制备方法中不加入有机溶剂,属于一种清洁制备工艺,避免蒸发溶剂污染环境,浪费资源,且操作简单方便,制作成本低,效率高。

Description

一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法
技术领域
本发明属于锂离子电池、太阳能燃料敏化电池和燃料电池材料的关键材料设计及其制备技术领域,特别涉及到一种复合聚合物电解质组分设计及其制备方法,可用于锂离子电池、太阳能燃料敏化电池和燃料电池等能源储存设备的聚合物电解质。
背景技术
自上世纪70年代Wright发现PEO导电以来,经过40多年的研究,采用了共聚、共混、交联、接枝、无机填料、离子液体、梳状聚合物、超支化、树枝状和星型聚合物、有机-无机杂化等多种方法对PEO结构进行改性以提高离子电导率,但室温电导率始终没有达到应用要求,且上述方法也很少考虑到聚合物电解质的尺寸稳定性要求。固态聚合物电解质一般是制成微米级的薄膜,如果稳定性不好,在应用过程中存在由于环境变化导致体积膨胀或收缩,穿孔,正负极连通的风险。在PEO-LiX聚合物电解质体系中加入含极性基团的高分子材料可得到固态聚合物电解质,其离子电导率、锂离子迁移数、电化学稳定性和尺寸稳定性都可以得到大幅度提高。
共混作为一种简单的改性方法,可以均衡各聚合物组分的性能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能优异的聚合物材料,其加工性能也可得到改善。将具有不同功能和结构的聚合物组分混合,还能够抑制PEO结晶,提高离子电导率。另外,将纳米填料引入到聚合物电解质体系中,也有抑制PEO结晶和提高聚合物电解质力学性能的作用。
在现有的聚合物电解质的制备过程中,需要加入乙腈或四氢呋喃等溶剂作为锂盐和聚合物基体的分散相,以保证锂盐均匀地分散在PEO体系中。这些溶剂后期需要蒸发将其去除,其制备过程产生大量的VOC,污染环境,不是一种清洁工艺。另外,溶液浇铸法耗时长,不利于工业化生产。
发明内容
本发明的目的在于提供一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法,克服了上述现有技术中的使用溶剂制备电解质的缺陷以及普通方法难以均匀混合的不足。
本发明的一种聚丙烯酰胺类固态复合聚合物电解质是由PEO、PAM、P(AM-co-PEGMA)、锂盐和纳米填料组成,所述组分的质量分数分别为:PEO:60-80%,PAM:15-30%,P(AM-co-PEGMA):5-10%,锂盐:5-25%,纳米填料:2-10%,其中PEO的重均分子量为1.0×105-2.0×107,PAM的重均分子量为2.0×105-2.0×107,PAM平均粒径小于600μm;P(AM-co-PEGMA)为重均分子量为1.0×104-4.0×105,PEGMA中侧链PEO的分子量为220-924;锂盐为LiClO4和LiPF6中任意一种;纳米填料为Y2O3和Rb2O中的一种,粒径尺寸为20-50nm。
其中LiClO4和纳米填料使用前在100℃下真空干燥24h。将PEO和PAM和P(AM-co-PEGMA)在50℃下真空干燥24h后用超离心粉碎仪进行粉碎,粉碎后的聚合物基体与LiClO4、纳米稀土氧化物一起放进氮气保护的行星式球磨仪进行球磨,充分球磨后的原料放入双螺杆挤出机挤出,最后将挤出料放入聚四氟乙烯模具中,在温度为80-200℃和压力5-30Mpa下进行热压5-20min,得到厚度为100-200μm的半透明自支撑,并在50℃真空干燥24h。
本发明的一种制备固态聚合物电解质的方法包括以下步骤:
(1)原料的粉碎:按比例称取PAM、PEO、P(AM-co-PEGMA)后,送进超离心粉碎机,进样尺寸<10mm。选用的超离心机12齿转刀,转刀直径99mm,筛网孔径:125μm,粉碎2-12min,最终出料粒度不大于40μm;
(2)原料的球磨混合:将超离心粉碎的PEO、PAM、P(AM-co-PEGMA)三种聚合物基体与纳米填料和锂盐按一定的比例倒入球磨罐中,并充入氮气进行保护,然后球磨混合1-3h以上;
(3)原料的熔融共混挤出:将球磨混合的料加入到微型双螺杆热压机中挤出,挤出温度为160-200℃;
(4)热压:将挤出的物料放入聚四氟乙烯模具中,在80-200℃下热压5-20min,压力为5-30MPa,得到均匀的聚合物电解质。
与现有技术相比,本发明的有益效果是:本发明的PAM/PEO复合聚合物电解质的制备过程通过多种方法进行混合,可以克服普通物理方法难以均匀混合的不足;同时在混合过程中没有引入有机溶剂,避免溶剂挥发污染环境。制备出的聚合物电解质具有较高的室温电导率和锂离子迁移数,良好的尺寸稳定性,可以用作锂离子电池电解质材料。
附图说明
图1为工艺流程图;
图2为聚合物电解质;
图3为复合聚合物电解质的红外光谱图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
本发明技术方案不局限于下面的具体实施方式。
称取0.6g LiClO4和0.25g纳米Y2O3,使用前在100℃下真空干燥24h。
按比例称取4.8g分子量为20万的PEO;分子量为240万为PAM 1.3g;分子量为2.0×104的P(AM-co-PEGMA)1.2g,其中P(AM-co-PEGMA)中PEGMA的质量分数占70%,AM占30%。将上述聚合物基体送进超离心粉碎仪,选用直径99mm,12齿转刀的超离心机粉碎,粉碎3min,过孔径为125μm梯形孔筛网,重复3次。在氮气氛的保护下,将干燥后的LiClO4,纳米Y2O3和粉碎聚合物基体送入氮气保护的行星式球磨仪,球磨3h后,取出原料送入微型双螺杆热压机中挤出,挤出温度为175℃。称取和适量的挤出料放入聚四氟乙烯模具中,在110℃下,12MPa的压力下,热压10min,得到均匀的聚合物电解质。当高氯酸锂质量分数仅为5%,由电解质所组装的纽扣电池的交流阻抗谱可以算出,离子电导率可达10-5S cm-1
根据波谱分析法,3182为酰胺基中的(-NH2)的伸缩振动吸收峰,2879为亚甲基(-CH2-)中的C-H的伸缩振动峰,1730为酰胺基中羰基(C=O)的伸缩振动吸收峰,1465为亚甲基弯曲振动峰,947和1104位聚氧乙烯的特征吸收峰。

Claims (8)

1.一种聚丙烯酰胺类固态复合聚合物电解质,其特征在于:由聚氧化乙烯(PEO)、高分子量聚丙烯酰胺(PAM)、丙烯酰胺和乙二醇单甲醚丙烯酸酯共聚物(P(AM-co-PEGMA))、锂盐和纳米填料组成,各组分的质量分数分别为:PEO:60-80%,PAM:15-30%,P(AM-co-PEGMA):5-10%,锂盐:5-25%,纳米填料:2-10%。
2.根据权利要求1所述的聚丙烯酰胺类固态复合聚合物电解质,其特征在于所述PEO的重均分子量为1.0×105-2.0×107;PAM的重均分子量为2.0×105-2.0×107,PAM的平均粒径小于600 µm;P(AM-co-PEGMA)为重均分子量为1.0×104-4.0×105,其中PEGMA中侧链EO的分子量为220-924。
3.根据权利要求2所述的聚丙烯酰胺类固态复合聚合物电解质的制备方法,其特征在于所使用的PAM包括非离子、阴离子、阳离子型和两性PAM或它们之间的组合。
4.根据权利要求2所述的聚丙烯酰胺类固态复合聚合物电解质的制备方法,其特征在于所使用的P(AM-co-PEGMA)由PEGMA和丙烯酰胺(AM)经过自由基聚合所得。
5.根据权利要求1或2所述的聚丙烯酰胺类固态复合聚合物电解质的制备方法,其特征在于所使用的纳米填料为Y2O3和Rb2O的一种或其混合,粒径尺寸为20-50 nm。
6.根据权利要求1或2所述的聚丙烯酰胺类固态复合聚合物电解质,其特征在于所述锂盐为LiClO4和LiPF6中的任意一种。
7.一种如权利要求1所述的聚丙烯酰胺类固态复合聚合物电解质的制备方法,其特征在于,包括如下步骤:按质量分数PEO:60-80%、PAM:15-30%、P(AM-co-PEGMA): 5-10%混合后利用安装孔径为125µm筛网的超离心粉碎仪进行粉碎,粉碎后的聚合物基体与锂盐:5-25%,纳米填料:2-10%一起用全方位行星式球磨仪进行球磨混合,再将球磨后的原料用双螺杆挤出,最后将挤出的物料进行热压得到固态复合聚合物电解质。
8.根据权利要求7所述的聚丙烯酰胺类固态复合聚合物电解质的制备方法,其特征在于将称量好的聚合物基体加入到配有孔径为125µm筛网的超离心粉碎仪,超离心粉碎的速度为:4000-16000 rad/min,粉碎后的聚合物基体与称量好的纳米填料和锂盐物料加入到有氮气保护的行星式球磨仪混合1-3 h,球磨转速为:100-500 rad/min,球磨混合后的原料加入到微型双螺杆挤出机中挤出,挤出温度为160-200℃,然后将挤出的物料放到热压机中,在80-200℃下热压5-20 min,得到均匀的聚合物电解质,压力为5 -30Mpa。
CN201611051926.9A 2016-11-24 2016-11-24 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法 Active CN106356194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611051926.9A CN106356194B (zh) 2016-11-24 2016-11-24 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611051926.9A CN106356194B (zh) 2016-11-24 2016-11-24 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法

Publications (2)

Publication Number Publication Date
CN106356194A CN106356194A (zh) 2017-01-25
CN106356194B true CN106356194B (zh) 2018-08-07

Family

ID=57862281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611051926.9A Active CN106356194B (zh) 2016-11-24 2016-11-24 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法

Country Status (1)

Country Link
CN (1) CN106356194B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768729B (zh) * 2017-10-26 2020-06-30 电子科技大学 一种原位植入聚合物微粒固态电解质及其制备方法
CN110729514A (zh) * 2019-10-25 2020-01-24 东莞理工学院 生物聚合物壳聚糖基复合聚合物固态电解质及其制备方法
CN111138847B (zh) * 2019-12-29 2023-05-19 东莞理工学院 一种混合型抗静电半芳香尼龙树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019221A (ko) * 2000-09-05 2002-03-12 김순택 상온 용융염을 포함하는 복합 고분자 전해질
JP2008159496A (ja) * 2006-12-26 2008-07-10 Sony Corp ゲル電解質、リチウムイオン二次電池及びゲル電解質の製造方法
CN102035043A (zh) * 2009-09-25 2011-04-27 上海比亚迪有限公司 聚合物多孔膜、其制备方法、聚合物电解质及聚合物电池和电池的制备方法
CN103346348A (zh) * 2013-06-25 2013-10-09 南开大学 一种用于有机锂二次电池的聚合物电解质及其制备方法
CN104617332A (zh) * 2015-01-21 2015-05-13 长沙宝锋能源科技有限公司 锂离子二次电池用准固态聚合物电解质及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019221A (ko) * 2000-09-05 2002-03-12 김순택 상온 용융염을 포함하는 복합 고분자 전해질
JP2008159496A (ja) * 2006-12-26 2008-07-10 Sony Corp ゲル電解質、リチウムイオン二次電池及びゲル電解質の製造方法
CN102035043A (zh) * 2009-09-25 2011-04-27 上海比亚迪有限公司 聚合物多孔膜、其制备方法、聚合物电解质及聚合物电池和电池的制备方法
CN103346348A (zh) * 2013-06-25 2013-10-09 南开大学 一种用于有机锂二次电池的聚合物电解质及其制备方法
CN104617332A (zh) * 2015-01-21 2015-05-13 长沙宝锋能源科技有限公司 锂离子二次电池用准固态聚合物电解质及制备方法

Also Published As

Publication number Publication date
CN106356194A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
Su et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries
Guo et al. New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries
Huang et al. High-performance electrospun poly (vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries
CN106356194B (zh) 一种聚丙烯酰胺类固态复合聚合物电解质及其制备方法
Zhang et al. Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery
Uddin et al. A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries
CN106450394A (zh) 一种pvdf‑peo固态复合聚合物电解质及其制备方法
Liu et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane
Guo et al. Architectural engineering achieves high‐performance alloying anodes for lithium and sodium ion batteries
Yersak et al. Hot pressed, fiber-reinforced (Li2S) 70 (P2S5) 30 solid-state electrolyte separators for Li metal batteries
Yusof et al. Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries
CN103840112B (zh) 一种pvdf‑hfp基复合多孔聚合物隔膜及其制备方法
Yan et al. Effect of urea and formamide plasticizers on starch/PVA bioblend sheets
Aswathy et al. Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications
CN104861183B (zh) 一种纳米构造的聚偏氟乙烯复合材料及其制备方法
Huang et al. Design, fabrication and application of PEO/CMC-Li@ PI hybrid polymer electrolyte membrane in all-solid-state lithium battery
Zhang et al. Li6. 4La3Zr1. 4Ta0. 6O12 Reinforced Polystyrene-Poly (ethylene oxide)-Poly (propylene oxide)-Poly (ethylene oxide)-Polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries
Chiappone et al. Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries
Pang et al. Starch-based gel electrolyte thin films derived from native sago (Metroxylon sagu) starch
Wang et al. Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries
Guo et al. Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries
Tsai et al. Creation of lithium-ion-conducting channels in gel polymer electrolytes through non-solvent-induced phase separation for high-rate lithium-ion batteries
Jiang et al. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries
Yang et al. High‐Safety All‐Solid‐State Lithium‐Ion Battery Working at Ambient Temperature with In Situ UV‐Curing Polymer Electrolyte on the Electrode
CN106571438A (zh) 一种高含量玻纤填充的聚丙烯电池隔膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170125

Assignee: Guangzhou Aosheng Technology Co.,Ltd.

Assignor: DONGGUAN University OF TECHNOLOGY

Contract record no.: X2023990000096

Denomination of invention: Polyacrylamide solid composite polymer electrolyte and its preparation method

Granted publication date: 20180807

License type: Common License

Record date: 20230112

EE01 Entry into force of recordation of patent licensing contract