CN106352795B - 用于柔性制造的视觉测量装置及方法 - Google Patents

用于柔性制造的视觉测量装置及方法 Download PDF

Info

Publication number
CN106352795B
CN106352795B CN201610956260.5A CN201610956260A CN106352795B CN 106352795 B CN106352795 B CN 106352795B CN 201610956260 A CN201610956260 A CN 201610956260A CN 106352795 B CN106352795 B CN 106352795B
Authority
CN
China
Prior art keywords
camera
measurement
measured
sets
acruracy survey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610956260.5A
Other languages
English (en)
Other versions
CN106352795A (zh
Inventor
齐乃明
姚蔚然
刘延芳
霍明英
刘永孛
尹宇磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610956260.5A priority Critical patent/CN106352795B/zh
Publication of CN106352795A publication Critical patent/CN106352795A/zh
Application granted granted Critical
Publication of CN106352795B publication Critical patent/CN106352795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

用于柔性制造的视觉测量装置及方法,属于产品柔性制造的测量技术领域。本发明是为了解决在特征不同的多品种产品的测量过程中,由于需要分别根据产品特征来调节测量位置,造成测量效率低的问题。装置的视觉测量单元中高精度测量相机安装于调整机构的顶端,调整机构的底端设置在可移动小车上,调整机构用于调整高精度测量相机的高度、视线的方向角及俯仰角;方法首先利用场内的相机阵对待测物进行粗测量,判断最佳的测量位置,然后使视觉测量单元移动至最佳测量位置并固定,最后利用高精度测量相机进行精确测量,它确保了测量数据的准确性与可靠性。本发明用于柔性制造中的视觉测量。

Description

用于柔性制造的视觉测量装置及方法
技术领域
本发明涉及用于柔性制造的视觉测量装置及方法,属于产品柔性制造的测量技术领域。
背景技术
柔性制造技术对于尖端设备及高精密装备的制造至关重要,该技术要求装配装置可以适应不同的产品型号,并能够动态响应计划内外的装配需求及工艺流程,可以重组和改变装配流程。
目前,在工业领域的产品柔性制造中,常常需要在对产品零件、组件操作的同时进行位置、姿态测量,从而指导制造工序的完成,视觉测量作为一种非接触测量方法常常被应用于这些测量工作。在被测物体的表面设置标志点,视觉测量相机可以通过跟踪标志点的位置来测量被测物的状态。基于视觉的测量方法具有精度高、实时性强的优点,同时不需要测量相机与被测物体发生接触。
但是对于一些多品种、小批次的一类产品,由于其特征不同,测量要求也有所不同,因此测量相机必须根据需要来调整位置,这样不但影响的了测量效率,而且测量精度难以保证。
发明内容
本发明目的是为了解决在特征不同的多品种产品的测量过程中,由于需要分别根据产品特征来调节测量位置,造成测量效率低的问题,提供了一种用于柔性制造的视觉测量装置及方法。
本发明所述用于柔性制造的视觉测量装置,它包括多个标识点、多个基准标识器和多个场内测量相机,多个场内测量相机组成场内测量相机阵,多个基准标识器布置于场内测量相机阵的视场范围内,多个标识点分散固定于待测产品件的上表面,待测产品件分散于场内测量相机阵的视场范围内;它还包括视觉测量单元,
视觉测量单元包括可移动小车、高精度测量相机和调整机构,高精度测量相机安装于调整机构的顶端,调整机构的底端设置在可移动小车上,调整机构用于调整高精度测量相机的高度、视线的方向角及俯仰角。
用于柔性制造的视觉测量方法,该测量方法基于上述用于柔性制造的视觉测量装置实现,它包括以下步骤:
步骤一:利用测量相机阵测量所有待测产品件的位置姿态;
步骤二:根据待测产品件的位置姿态及基准标识器的位置,计算获得待测产品件的最佳测量位置,该最佳测量位置使高精度测量相机可同时观测所有待测产品件上的标识点和至少一个基准标识器,并与各待测产品件测量点的距离最小;
步骤三:使视觉测量单元移动到最佳测量位置,并调整高精度测量相机的高度、视线的方向角及俯仰角;
步骤四:使固定支腿伸出支脚从而固定可移动小车位置;
步骤五:计算从高精度测量相机坐标系到测试场地坐标系的变换关系;
步骤六:根据从高精度测量相机坐标系到测试场地坐标系的变换关系,计算获得待测产品件相对于测试场地坐标系的位置姿态,实现柔性制造的视觉测量。
本发明的优点:本发明用于工业领域产品制造中的产品测量环节,涉及了视觉测量技术及位姿伺服控制技术。其测量装置在产品制造的工作中能够灵活适应不同的零件位置、姿态测量需求,改进了测量系统的柔性适应能力和自动化程度,进而提高产品的制造效率及装配质量。其测量方法,首先利用场内的相机阵对待测物进行粗测量,判断最佳的测量位置,然后使视觉测量单元移动至最佳测量位置并固定,最后利用高精度测量相机进行精确测量,它确保了测量数据的准确性与可靠性。
附图说明
图1是本发明所述视觉测量单元的结构示意图;
图2是本发明所述用于柔性制造的视觉测量装置的结构示意图;
图3是本发明所述用于柔性制造的视觉测量方法的流程图。
具体实施方式
具体实施方式一:下面结合图1和图2说明本实施方式,本实施方式所述用于柔性制造的视觉测量装置,它包括多个标识点18、多个基准标识器20和多个场内测量相机21,多个场内测量相机21组成场内测量相机阵,多个基准标识器20布置于场内测量相机阵的视场范围内,多个标识点18分散固定于待测产品件19的上表面,待测产品件19分散于场内测量相机阵的视场范围内;它还包括视觉测量单元A,
视觉测量单元A包括可移动小车、高精度测量相机1和调整机构,高精度测量相机1安装于调整机构的顶端,调整机构的底端设置在可移动小车上,调整机构用于调整高精度测量相机1的高度、视线的方向角及俯仰角。
可移动小车包括三套固定支腿14、两套驱动轮及驱动电机15、车底座16和两套万向支撑轮17,
两套驱动轮及驱动电机15安装于车底座16的前方,作为可移动小车的前轮,两套万向支撑轮17安装于车底座16的后下方,作为可移动小车的后轮,三套固定支腿14其中的一套固定支腿14安装固定于车底座16前端,并处于两套驱动轮及驱动电机15中间,其中的另两套固定支腿14安装固定于车底座16后端,并与两套万向支撑轮17的位置分别对应;固定支腿14具有可伸缩支脚,可伸缩支脚与地面的接触方式为点接触。
调整机构包括俯仰驱动电机2、俯仰支架3、转板4、座板5、转向驱动电机6、两根支柱7、顶端盖板8、四根导向杆9、丝杆10、升降机11、升降驱动电机12和升降平台13,
升降平台13的外边缘沿圆周方向均匀设置四个导向通孔,升降平台13的中心设置一个中心通孔,丝杆10穿过中心通孔、四根导向杆9对应穿过四个导向通孔后,四根导向杆9与丝杆10的底端面均竖直固定在车底座16上,四根导向杆9与丝杆10的顶端面连接顶端盖板8;升降平台13上安装有升降机11和升降驱动电机12,升降驱动电机12用于驱动升降机11,升降机11与丝杆10配合实现升降平台13的升降;
升降平台13上还设置有两根支柱7,两根支柱7穿过顶端盖板8后,支撑在座板5的下表面,座板5上设置转板4,转板4通过转向驱动电机6驱动;转板4上设置俯仰支架3,俯仰支架3与高精度测量相机1之间为转动配合,俯仰支架3通过俯仰驱动电机2驱动。
本发明装置用于室内环境下的产品柔性制造过程。可移动小车具有自主移动能力,可以在场地的地面上任意移动位置。高精度测量相机1在室内的环境下可以根据需求任意的拍摄图像,并且在室内的环境下拍摄的图像可以容易的分辨出标识点18和基准标识器20与周遭环境的差异;这样,依靠目前比较成熟的视觉处理算法可以对拍摄到的图像依次进行特征点提取和相对位置解算,从而获得被测量点相对于相机坐标系的坐标位置。调整机构可以根据需要调整相机视线的方向角、俯仰角,以及相机的高度。
所述两套驱动轮及驱动电机15相互独立驱动,可以实现可移动小车的移动和转向。当两套驱动轮以相同的速度向相同方向转动时,视觉测量单元可以沿直线向前移动;当两个驱动轮以不同的转动速度或者不同的转动方向进行旋转时,视觉测量单元可以改变前进方向。三套固定支腿14可以实现可移动小车的状态切换,当其支脚收回时,不与地面发生接触,视觉测量单元整体由驱动轮和万向支撑轮支撑,可移动小车为移动状态;三套支腿伸出时,视觉测量单元通过三套支腿实现三点支撑定位,从而达到最稳定的支撑状态,此时可移动小车为测量状态。四根导向杆9与丝杆10的方向垂直于车底座16;升降平台13受四根导向杆9的限制,只能沿导向杆方向进行上下的直线运动。转板4通过转向驱动电机6的驱动,与座板5相对转动。俯仰驱动电机2驱动俯仰支架3用于实现高精度测量相机1的俯仰角调整。
具体实施方式二:下面结合图图1至图3说明本实施方式,本实施方式所述用于柔性制造的视觉测量方法,该测量方法基于所述的用于柔性制造的视觉测量装置实现,它包括以下步骤:
步骤一:利用测量相机阵测量所有待测产品件19的位置姿态;
步骤二:根据待测产品件19的位置姿态及基准标识器20的位置,计算获得待测产品件19的最佳测量位置,该最佳测量位置使高精度测量相机1可同时观测所有待测产品件19上的标识点18和至少一个基准标识器20,并与各待测产品件19测量点的距离最小;
步骤三:使视觉测量单元A移动到最佳测量位置,并调整高精度测量相机1的高度、视线的方向角及俯仰角;
步骤四:使固定支腿14伸出支脚从而固定可移动小车位置;
步骤五:计算从高精度测量相机1坐标系到测试场地坐标系的变换关系;
步骤六:根据从高精度测量相机1坐标系到测试场地坐标系的变换关系,计算获得待测产品件19相对于测试场地坐标系的位置姿态,实现柔性制造的视觉测量。
步骤一利用场内的测量相机阵测量所有待测物体粗略的位置姿态:
在场内的不同位置,设置有若干的场内测量相机21,这些相机共同组成场内测量相机阵。各套相机的视场互有重叠,但没有任何两套相机的视场完全重合,并且所有相机的相机坐标系之间的转换矩阵也已经预先进行了换算。
在初始状态下,场内测量相机阵的视场可以覆盖所有的待测物体的标志点。但是,由于相机阵中的相机所处位置与标志点距离较远,不利于视觉测量结果的精度,因此全局测量只能对被测物体的位置、姿态进行粗略判断,为后续的精确测量步骤做准备。
步骤二中,场内的基准标志器20在测量工作开始前已经预先设置在场地内,并且其位置已经精确测量。这样据待测物体的粗略的位置、姿态以及场内基准标志器20的位置,可以进行优化计算,得到一个较优测量位置。
较优测量位置对应高精度测量相机1的位置和姿态,测量位置的优劣取决于相机的视场。较优的测量位置,相应的视场应该能够覆盖所有待测物体上附着的标志点以及足够数量的基准标志器,另外应该使相机到各个被测量点的距离尽可能的小,使对各点的测量都能够尽可能的精确。
步骤三中,视觉测量单元依靠可移动小车移动到计算出的最佳的测量位置。
这一过程中首先应利用可移动小车移动到场内合适的测量位置;利用升降驱动电机12驱动升降平台13,进而带动高精度测量相机1到合适的高度;然后利用转向驱动电机6带动转板4,进而带动高精度测量相机1旋转到合适的方向;最后利用俯仰驱动电机2调整高精度测量相机1的俯仰角。
步骤四中,视觉测量单元A伸出支腿固定自身位置。支腿伸出后,高精度测量相机1不再作任何移动。
步骤五中,根据场内标志点的真实位置以及视觉测量单元A通过测量得到位置计算从相机坐标系到场地坐标系的变换关系。
由于场内的基准标志器20相对于场地坐标系的位置是精确已知的,而视觉测量单元到达最佳测量位置后也可以相对精确的测出基准标志器20相对于自身相机坐标系的位置。因此通过计算基准标志器20在两种不同坐标系的坐标偏差,就可以导出两种坐标系间的变换关系。
步骤六中,精确测量待测物体相对于相机坐标系的位置姿态,然后根据两种坐标系之间的变换关系就可以求出待测物体相对于场地坐标系的位置和姿态。

Claims (1)

1.一种用于柔性制造的视觉测量方法,基于用于柔性制造的视觉测量装置实现,所述测量装置包括多个标识点(18)、多个基准标识器(20)和多个场内测量相机(21),多个场内测量相机(21)组成场内测量相机阵,多个基准标识器(20)布置于场内测量相机阵的视场范围内,多个标识点(18)分散固定于待测产品件(19)的上表面,待测产品件(19)分散于场内测量相机阵的视场范围内;所述测量装置还包括视觉测量单元(A),
视觉测量单元(A)包括可移动小车、高精度测量相机(1)和调整机构,高精度测量相机(1)安装于调整机构的顶端,调整机构的底端设置在可移动小车上,调整机构用于调整高精度测量相机(1)的高度、视线的方向角及俯仰角;
可移动小车包括三套固定支腿(14)、两套驱动轮及驱动电机(15)、车底座(16)和两套万向支撑轮(17),
两套驱动轮及驱动电机(15)安装于车底座(16)的前方,作为可移动小车的前轮,两套万向支撑轮(17)安装于车底座(16)的后下方,作为可移动小车的后轮,三套固定支腿(14)其中的一套固定支腿(14)安装固定于车底座(16)前端,并处于两套驱动轮及驱动电机(15)中间,其中的另两套固定支腿(14)安装固定于车底座(16)后端,并与两套万向支撑轮(17)的位置分别对应;固定支腿(14)具有可伸缩支脚,可伸缩支脚与地面的接触方式为点接触;调整机构包括俯仰驱动电机(2)、俯仰支架(3)、转板(4)、座板(5)、转向驱动电机(6)、两根支柱(7)、顶端盖板(8)、四根导向杆(9)、丝杆(10)、升降机(11)、升降驱动电机(12)和升降平台(13),
升降平台(13)的外边缘沿圆周方向均匀设置四个导向通孔,升降平台(13)的中心设置一个中心通孔,丝杆(10)穿过中心通孔、四根导向杆(9)对应穿过四个导向通孔后,四根导向杆(9)与丝杆(10)的底端面均竖直固定在车底座(16)上,四根导向杆(9)与丝杆(10)的顶端面连接顶端盖板(8);升降平台(13)上安装有升降机(11)和升降驱动电机(12),升降驱动电机(12)用于驱动升降机(11),升降机(11)与丝杆(10)配合实现升降平台(13)的升降;
升降平台(13)上还设置有两根支柱(7),两根支柱(7)穿过顶端盖板(8)后,支撑在座板(5)的下表面,座板(5)上设置转板(4),转板(4)通过转向驱动电机(6)驱动;转板(4)上设置俯仰支架(3),俯仰支架(3)与高精度测量相机(1)之间为转动配合,俯仰支架(3)通过俯仰驱动电机(2)驱动;其特征在于,所述测量方法包括以下步骤:
步骤一:利用测量相机阵测量所有待测产品件(19)的位置姿态;
步骤二:根据待测产品件(19)的位置姿态及基准标识器(20)的位置,计算获得待测产品件(19)的最佳测量位置,该最佳测量位置使高精度测量相机(1)可同时观测所有待测产品件(19)上的标识点(18)和至少一个基准标识器(20),并与各待测产品件(19)测量点的距离最小;
步骤三:使视觉测量单元(A)移动到最佳测量位置,并调整高精度测量相机(1)的高度、视线的方向角及俯仰角;
步骤四:使固定支腿(14)伸出支脚从而固定可移动小车位置;
步骤五:计算从高精度测量相机(1)坐标系到测试场地坐标系的变换关系;
步骤六:根据从高精度测量相机(1)坐标系到测试场地坐标系的变换关系,计算获得待测产品件(19)相对于测试场地坐标系的位置姿态,实现柔性制造的视觉测量。
CN201610956260.5A 2016-10-26 2016-10-26 用于柔性制造的视觉测量装置及方法 Active CN106352795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610956260.5A CN106352795B (zh) 2016-10-26 2016-10-26 用于柔性制造的视觉测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610956260.5A CN106352795B (zh) 2016-10-26 2016-10-26 用于柔性制造的视觉测量装置及方法

Publications (2)

Publication Number Publication Date
CN106352795A CN106352795A (zh) 2017-01-25
CN106352795B true CN106352795B (zh) 2019-02-19

Family

ID=57864605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610956260.5A Active CN106352795B (zh) 2016-10-26 2016-10-26 用于柔性制造的视觉测量装置及方法

Country Status (1)

Country Link
CN (1) CN106352795B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625569B (zh) * 2017-02-15 2023-06-16 华南理工大学 一种具有二轴自稳云台的自平衡探测机器人
CN106908039A (zh) * 2017-02-21 2017-06-30 中国人民解放军第三军医大学第三附属医院 一种便携式驾驶员视野范围测定装置及测定方法
US20200248863A1 (en) * 2019-02-01 2020-08-06 Faro Technologies, Inc. Stable mobile platform for coordinate measurement
CN111043458A (zh) * 2019-11-04 2020-04-21 浙江大学 一种电动升降移动跟踪拍摄云台及跟踪拍摄方法
CN111963868B (zh) * 2020-08-27 2021-10-22 珠海大横琴科技发展有限公司 一种目标跟踪拍摄装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199704A (ja) * 1999-01-06 2000-07-18 Yaskawa Electric Corp 画像処理装置のキャリブレ―ション方法
CN101055177A (zh) * 2007-05-30 2007-10-17 北京航空航天大学 基于双面靶标的流动式三维视觉测量拼接方法
CN102243063A (zh) * 2011-04-14 2011-11-16 华中科技大学 一种混凝土桥梁底面裂缝检测装置
CN103644860A (zh) * 2013-12-09 2014-03-19 二重集团(德阳)重型装备股份有限公司 大型空间自由曲面测量方法
CN104634246A (zh) * 2015-02-03 2015-05-20 李安澜 目标空间坐标的浮动式立体视觉测量系统及测量方法
CN105157609A (zh) * 2015-09-01 2015-12-16 大连理工大学 基于两组相机的大型零件全局形貌测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199704A (ja) * 1999-01-06 2000-07-18 Yaskawa Electric Corp 画像処理装置のキャリブレ―ション方法
CN101055177A (zh) * 2007-05-30 2007-10-17 北京航空航天大学 基于双面靶标的流动式三维视觉测量拼接方法
CN102243063A (zh) * 2011-04-14 2011-11-16 华中科技大学 一种混凝土桥梁底面裂缝检测装置
CN103644860A (zh) * 2013-12-09 2014-03-19 二重集团(德阳)重型装备股份有限公司 大型空间自由曲面测量方法
CN104634246A (zh) * 2015-02-03 2015-05-20 李安澜 目标空间坐标的浮动式立体视觉测量系统及测量方法
CN105157609A (zh) * 2015-09-01 2015-12-16 大连理工大学 基于两组相机的大型零件全局形貌测量方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
交会对接仿真实验方案的研究;齐乃明等;《上海航天》;20000830(第4期);第1-5页
基于立体视觉的移动机器人导航算法;侯建等;《计算机技术与发展》;20140331;第24卷(第3期);第106-109页
移动机器人立体视觉高精度标定技术;侯建等;《计算机技术与发展》;20140228;第24卷(第2期);第92-95页
航天器交会对接模拟系统逼近过程自抗扰控制;徐喆垚等;《航空学报》;20160525;第37卷(第5期);第1552-1562页

Also Published As

Publication number Publication date
CN106352795A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106352795B (zh) 用于柔性制造的视觉测量装置及方法
US9197810B2 (en) Systems and methods for tracking location of movable target object
CN105818132B (zh) 一种工业机器人吸盘式工具手标定定位方法
CN108534679B (zh) 一种筒形件轴线位姿的无靶标自动测量装置及方法
CN105382631B (zh) 一种五轴数控机床旋转轴误差的检测设备和方法
CN107650144A (zh) 一种工业机器人工件坐标系的标定校准系统及其方法
CN103307984A (zh) 一种用于可调桨叶片的激光测量装置、系统及方法
CN105262946A (zh) 一种三维双目相机云台实验装置
CN110757146B (zh) 汽车车身相对位置调整系统
CN105571488B (zh) 一种孔组位置度的图像检测装置及检测方法
CN208027173U (zh) 一种机器人摄像头安装参数可调式测试装置
CN105364924B (zh) 机器人零点校准系统及机器人零点校准方法
CN205332963U (zh) 一种三次元测量仪
CN110285816A (zh) 一种小卫星星上设备高精度姿态测量系统及方法
CN106767443A (zh) 一种新型全自动二次元影像检测仪及测量方法
CN110686595A (zh) 非正交轴系激光全站仪的激光束空间位姿标定方法
US20230386080A1 (en) System and Method For Utilization of Displacement Sensor During Placement of Vehicle Service Fixture
CN109000127A (zh) 一种仪器设备自动调平装置及其方法
CN106679614A (zh) 具有自动调平装置的电子经纬仪
CN112476395A (zh) 一种面向工业机器人的三维视觉划线设备及方法
CN114046965B (zh) 一种飞机多型航电设备光轴校准装置及校准方法
CN113567964A (zh) 激光雷达自动测试方法及装置、系统
CN106441371B (zh) 数字水准仪专用检定/校准装置
CN111207685A (zh) 一种用于结构光深度测量的全自动标定系统
CN203349785U (zh) 一种用于可调桨叶片的激光测量装置及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant