CN106346095A - 电解加工用微细单晶硅工具电极及其制备方法 - Google Patents

电解加工用微细单晶硅工具电极及其制备方法 Download PDF

Info

Publication number
CN106346095A
CN106346095A CN201610909851.7A CN201610909851A CN106346095A CN 106346095 A CN106346095 A CN 106346095A CN 201610909851 A CN201610909851 A CN 201610909851A CN 106346095 A CN106346095 A CN 106346095A
Authority
CN
China
Prior art keywords
electrode
electrolyzed processing
layer
tool electrode
fine single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610909851.7A
Other languages
English (en)
Other versions
CN106346095B (zh
Inventor
李勇
刘国栋
周凯
佟浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201610909851.7A priority Critical patent/CN106346095B/zh
Publication of CN106346095A publication Critical patent/CN106346095A/zh
Application granted granted Critical
Publication of CN106346095B publication Critical patent/CN106346095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • B23H3/06Electrode material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Weting (AREA)

Abstract

本发明涉及一种电解加工用微细单晶硅工具电极,其包括电极夹持部和电极加工部,该电极加工部设置于所述电极夹持部,该电极夹持部和电极加工部的材料是高浓度掺杂的单晶硅,且电极夹持部和电极加工部的表面设置有侧壁绝缘层,该电极加工部用于进行微细电解加工。另外,本发明还涉及一种电解加工用微细单晶硅工具电极的制备方法。

Description

电解加工用微细单晶硅工具电极及其制备方法
技术领域
本发明属于特种加工技术领域,尤其涉及一种用于电解加工用微细工具电极及其制备方法。
背景技术
随着科学技术的不断发展,对金属零件上的微结构形状尺寸、表面形貌提出了更高的加工要求,具有微细尺度的孔、槽结构在汽车、航空航天和精密仪器等领域具有重要的应用。目前,微细电解加工是微细制造领域中一种重要的加工方法,微细电解加工是以电化学反应为原理,在加工过程中将工件材料以离子形式蚀除的微细加工方法,在作用机理上具有微纳尺度加工的可行性,在微细结构加工方面具有潜在优势。
在微细电解加工技术中,微结构的尺寸和精度很大程度上取决于工具电极的特征尺寸和对加工定域性的约束能力。现有技术中,一方面,考虑到电极的导电性和稳定性,工具电极常采用铜、钨等金属材料,但是微细尺度(100μm左右)的工具电极的制备非常困难,尤其是长宽比较大的工具电极,其尺寸一致性难以保证,限制了金属工具电极的应用范围;另一方面,工具电极的侧壁会对已加工表面产生杂散腐蚀作用,为了抑制杂散腐蚀效应和约束加工区域,在工具电极上制备侧壁绝缘层是一种有效的手段,其要求绝缘层具有良好的绝缘性能,以减小杂散电流。为了限制加工间隙和提高加工效率,其绝缘层的壁厚需要很小且均匀,其厚度小于1μm比较理想,另外绝缘层与工具电极基体结合性好,可以保证一定使用寿命,工具电极的侧壁一般采用高分子材料、陶瓷材料和金属氧化物等绝缘材料。
常用的工具电极侧壁绝缘技术主要有化学气相沉积(CVD)法、有机材料涂覆法、静电喷涂法和绝缘套管法等,都实现了一定的减少杂散腐蚀的效果。但是涂覆或嵌套等物理方法无法实现金属与绝缘层间的紧密结合,其使用寿命一般较短,而且SiC或SiO2等材料与金属的热膨胀系数差距较大,高温沉积方法制备的绝缘层在室温下的金属上的附着能力不强。
发明内容
有鉴于此,确有必要提供一种具有尺寸微小、绝缘层厚度小而且绝缘层使用寿命长的电解加工用微细单晶硅工具电极及其制备方法。
一种电解加工用微细单晶硅工具电极,其包括电极夹持部和电极加工部,该电极加工部设置于所述电极夹持部,该电极夹持部和电极加工部的材料是高浓度掺杂的单晶硅,且电极夹持部和电极加工部的表面设置有侧壁绝缘层,该电极加工部用于进行微细电解加工。
一种电解加工用微细单晶硅工具电极的制备方法,其包括以下步骤:
S1,提供一单晶硅基底,该基底具有相对设置的上表面和下表面;
S2,在所述的基底的上、下表面制备一层保护层作为刻蚀工艺的掩模窗口,该掩模窗口包括工具电极轮廓和背面减薄窗口;
S3,刻蚀所述基底,形成图形化的电解加工用微细单晶硅工具电极轮廓;
S4,将所述基底上、下表面的保护层完全去除;
S5,在所述基底的所有表面上沉积一层绝缘层;
S6,在所述的绝缘层上制备一层图形化的保护层,将局部的绝缘层去除露出基底;
S7,利用所述保护层作为掩模窗口在所述露出的基底上制备一层金属层;
S8,将所述基底按照电解加工用微细单晶硅工具电极的轮廓裂片,使电解加工用微细单晶硅工具电极从所述基底上脱离下来;
S9,对所述电解加工用微细单晶硅工具电极的加工部的端面表面进行处理,去除绝缘层,保证电解加工用微细单晶硅工具电极端面导电。
与现有技术相比较,本发明提供的电解加工用微细单晶硅工具电极及其制备方法,由于采用高浓度掺杂的单晶硅材料作为电解加工用工具电极,其上沉积的绝缘层,可以解决金属材料与绝缘物质结合力小,绝缘层使用寿命短等问题;硅材料硬度高,在微细尺寸下可以保证不发生形变。而且硅微细加工工艺已经相当成熟,能够进一步缩小电解加工用微细单晶硅工具电极的尺寸;利用高速旋转主轴带动非圆截面电解加工用工具电极旋转搅动电解液流动,有利于电解产物的排出和电化学反应的正常进行;通过调整电解加工用微细单晶硅工具电极中心线可以实现不同尺寸的微结构的加工。
附图说明
图1是本发明实施方式提供的电解加工用微细单晶硅工具电极的正面的立体结构示意图。
图2是本发明实施方式提供的电解加工用微细单晶硅工具电极的背面的立体结构示意图。
图3是本发明实施方式提供的电解加工用微细单晶硅工具电极的局部剖面结构示意图。
图4是本发明实施方式提供的电解加工用微细单晶硅工具电极的加工范围调整示意图。
图5是本发明实施方式提供的电解加工用微细单晶硅工具电极进行电解加工的示意图。
图6是本发明实施方式提供的电解加工用微细单晶硅工具电极的制备方法的流程图。
图7是本发明实施例1提供的电解加工用微细单晶硅工具电极的制备方法的工艺流程图。
主要元件符号说明
电解加工用微细单晶硅工具电极 100
电极夹持部 1
电极加工部 2
夹具 3
电解液 4
工件 5
图形化的金属层 11
定位槽 12
单晶硅基底 13
掩膜层 14
侧壁绝缘层 15
支撑部 31
夹紧部 32
中心线调整垫片 33
垫片 34
对中安装板 35
微调螺纹机构 36
凸台 351
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例,对本发明提供的电解加工用微细单晶硅工具电极及其制备方法做进一步的详细说明。
请参阅图1和图2,本发明实施例提供一种电解加工用微细单晶硅工具电极100,该电解加工用微细单晶硅工具电极100包括电极夹持部1和电极加工部2,该电极加工部2设置于所述电极夹持部1,该电极夹持部1和电极加工部2的材料为单晶硅,且电极夹持部1和电极加工部2的表面设置有绝缘层。所述单晶硅可以为高浓度掺杂的N型或P型单晶硅,优选为N型硅。掺杂浓度需在1016~1020/cm2范围内,优选为1019~1020/cm2范围内,更优选为1020/cm2。硅片晶面选用为(100)晶面,双面抛光。在本实施例中,选用N型硅片,其电阻率为10-3Ω·cm,选用双面抛光的硅片。
所述电极夹持部1的特征尺寸为毫米级,可以用作电解加工用微细单晶硅工具电极100的安装和夹持。所述电极夹持部1的特征尺寸是指电极夹持部1的横截面的距离最远的两点之间的尺寸。所述电解加工用微细单晶硅工具电极100安装在高速旋转的主轴上,实现电极加工部端面的圆形轮廓包络。所述电极夹持部1设置有图形化的金属层11,该图形化的金属层11的表面并没有设置绝缘层,该图形化的金属层11用于与电解加工电源电连接。所述电极夹持部1的形状不限,只要能利用夹具3装夹即可。所述电极夹持部1的与所述图形化金属层相对的表面具有两个定位槽12,该两个定位槽12分别设置在所述电极夹持部1的表面的两侧,且该定位槽12的延伸方向平行于所述电极加工部2的延伸方向。
所述电极加工部2的特征尺寸d为微米级,作为电解加工用微细单晶硅工具电极100的加工部分参与工件阳极的材料的蚀除加工。所谓电极加工部2的特征尺寸d是指电极加工部2的横截面的距离最远的两点之间的尺寸。所述电极加工部2的端面形状为非圆截面,在高速旋转的带动下,可以在其端面形成圆形包络面,满足实际的加工应用需求。在其加工端面并没有形成绝缘层。其中,电解加工用微细单晶硅工具电极100的电极加工部2的特征尺寸d小于100μm,绝缘层的厚度小于1μm。
请参阅图3,本发明的电解加工用微细单晶硅工具电极100进一步包括一夹具3。该夹具3包括支撑部31,夹紧部32,中心线调整垫片33,垫片34,对中安装板35,微调螺纹机构36。
所述支撑部31形成有一个凹槽,该凹槽具有相对设置的两个侧壁,所述对中安装板35设置在所述凹槽内,且所述中心线调整垫片33设置于所述凹槽的一个侧壁与所述对中安装板35的侧壁之间,所述微调螺纹机构36设置在所述凹槽的另一个侧壁中,旋转该微调螺纹机构36可以调整所述对中安装板35的位置。所述对中安装板35设置有两个凸台351,该两个凸台351与所述电极夹持部1的两个定位槽12配合,将电解加工用微细单晶硅工具电极100夹持在所述支撑部31和夹紧部32之间。该夹具3可以通过电机带动旋转。
其中,所述电解加工用微细单晶硅工具电极100通过两个定位槽12与所述对中安装板35配合,可以保证其电解加工用微细单晶硅工具电极100的中心线与夹具3的旋转轴的轴线平行或重合。调整中心线调整垫片33的厚度和微调螺纹机构36可以调整电解加工用微细单晶硅工具电极100的中心线,其中心线与夹具3的旋转轴的轴线的位置关系可以调整电解加工用微细单晶硅工具电极100的加工范围,考虑材料蚀除效率其加工范围可调整为d~1.5d。
所述电解加工用微细单晶硅工具电极100的加工范围调整示意如图4所示。当电解加工用微细单晶硅工具电极100的中心线与旋转轴轴线完全重合时,即δ=0时,电解加工用微细单晶硅工具电极100的加工直径与所述电极加工部2的特征尺寸相同,当二者不重合时,也可以进行加工,其端面包络的加工直径大于电极加工部2的特征尺寸。例如,当电解加工用微细单晶硅工具电极100的中心线与旋转轴轴线之间的距离为δ=δ0时,电解加工用微细单晶硅工具电极100的加工直径为d+2δ0。因此,可以通过调整电解加工用微细单晶硅工具电极100的中心线位置调整其加工范围。
本实施例中的电解加工用微细单晶硅工具电极100在工件5加工一个微孔的示意图如图5所示,电机(图未示)带动所述夹具3高速旋转,电解加工用微细单晶硅工具电极100的电极加工部2的端面形状为非圆截面,在高速旋转的带动下,可以在其端面形成圆形包络面,满足实际的加工应用需求,同时高速旋转的电解加工用微细单晶硅工具电极100搅动加工间隙内的电解液4,有利于电解产物和气泡的排出,实现电解液4的顺利更新。
请参阅图5,本发明提供一种电解加工用微细单晶硅工具电极的制备方法,其包括以下步骤:
S1,提供一单晶硅基底,该基底具有相对设置的上表面和下表面;
S2,在所述的基底的上、下表面制备一层保护层作为刻蚀工艺的掩模窗口,该掩模窗口包括工具电极轮廓和背面减薄窗口;
S3,刻蚀所述基底,形成图形化的电解加工用微细单晶硅工具电极轮廓;
S4,将所述基底上、下表面的保护层完全去除;
S5,在所述基底的所有表面上沉积一层绝缘层;
S6,在所述的绝缘层上制备一层图形化的保护层,将局部的绝缘层去除露出基底;
S7,利用所述保护层作为掩模窗口在所述露出的基底上制备一层金属层;
S8,将所述基底按照电解加工用微细单晶硅工具电极的轮廓裂片,使电解加工用微细单晶硅工具电极从所述基底上脱离下来;
S9,对所述电解加工用微细单晶硅工具电极的加工部的端面表面进行处理,去除绝缘层,保证电解加工用微细单晶硅工具电极端面导电。
下面将结合附图对本发明实施例进行详细的说明。
实施例1:
请参阅图6,在步骤S1中,所述单晶硅基底13选用经过高浓度掺杂的N型或P型硅片,优选为N型硅片。其掺杂浓度需在1016~1020/cm2范围内,优选为1019~1020/cm2范围内,更优选为1020/cm2。其电阻率优选为10-3Ω·cm。硅片晶面选用(100)晶面,硅片经过双面抛光。本实施例中,选用经过高浓度掺杂的(100)晶面的N型硅片,硅片的厚度为300 μm,其电阻率为10-3Ω·cm,是经过双面抛光的硅片, 如图7(a)所示。
在步骤S2中,采用热氧化或沉积工艺在所述单晶硅基底13的上表面和下表面均制备一层二氧化硅(SiO2),再采用沉积工艺制备一层氮化硅(Si3N4),构成掩膜层14,为后续的刻蚀加工图形化做准备。本实施例中,对所述单晶硅基底13进行热氧化制备一层厚度为500nm的二氧化硅(SiO2),然后再利用LPCVD沉积一层厚度为150 nm的氮化硅(Si3N4),构成掩膜层14。然后对所述掩膜层14进行一次双面光刻。采用刻蚀工艺去除掩膜层,直到露出所述单晶硅基底13为止,如图7(b) 所示。去除光刻胶之后在所述单晶硅基底13的上表面形成电解加工用微细单晶硅工具电极的掩模轮廓形状,下表面形成减薄窗口掩模形状。
在步骤S3中,将所述单晶硅基底13及其上的掩膜层14放入腐蚀液中进行刻蚀加工,并严格控制刻蚀的时间,使刻蚀加工后的单晶硅基底13的上表面发生自停止腐蚀形成电解加工用微细单晶硅工具电极的轮廓形状。在单晶硅基底13的下表面形成减薄窗口,刻蚀加工至所述单晶硅基底的上表面、下表面相交为止,如图7(c) 所示。所采用的腐蚀液成分为KOH,其浓度为20%~50%,优选地为20%。腐蚀温度为50~100°C,优选地为80°C。可以适量添加少许异丙醇(IPA),其浓度小于2%。在本实施例中,所采用的腐蚀液成分为KOH和异丙醇(IPA),KOH的浓度为20%,异丙醇(IPA)的浓度为0.5%,其腐蚀温度为80°C。在步骤S3中也可以采用干法刻蚀如电感耦合等离子体刻蚀(ICP刻蚀)实现,其形成的刻蚀剖面与图1有所不同,ICP刻蚀得到的刻蚀剖面为直壁面,其尺寸与上述相同,可以达到同样的效果。
在所述的步骤S2和S3中,也可以采用首先对制备的掩膜层14的上表面进行光刻,在采用刻蚀工艺去除正面掩膜层,露出图形化单晶硅基底13表面,然后将所述单晶硅基底13放入腐蚀液中进行刻蚀加工,腐蚀液的成分与上述S3中相同并严格控制时间。然后在单晶硅基底正面制备一层保护层,再对制备的掩膜层14的下表面进行光刻,在采用刻蚀工艺去除下表面掩膜层,露出图形化单晶硅基底13表面,然后将所述单晶硅基底13放入腐蚀液中进行刻蚀加工,腐蚀液的成分与上述S3中相同并严格控制时间。
在步骤S4中,分别利用刻蚀工艺和氢氟酸去除Si3N4和SiO2,露出所述单晶硅基底13的表面,如图7(d) 所示。
在步骤S5中,利用化学气相沉积法在所述单晶硅基底13的表面沉积一层SiO2,作为电解加工用微细单晶硅工具电极的侧壁绝缘层15,SiO2层的厚度约为200~1000nm,优选地,SiO2的厚度为800nm。本实施例中,所述SiO2层的厚度为800nm,如图7(e)所示。
在步骤6中,利用喷胶工艺在所述的单晶硅基底13的上、下表面绝缘层上制备一层光刻胶,其中上表面完全覆盖,下表面形成图形化的光刻胶作为保护层。然后利用氢氟酸去除局部的SiO2绝缘层,直到露出单晶硅基底13为止,如图7(f)所示。
在步骤7中,利用所述图形化的光刻胶作为掩膜层,采用金属溅射工艺在裸露的单晶硅基底13制备图形化的金属层11。该图形化的金属层11的材料为惰性金属,优选为金或铂,其沉积厚度为100-500nm,优选为200nm。本实施例中,在单晶硅基底13的下表面溅射一层金属金(Au),该金层的厚度为200nm,除去光刻胶后得到图形化的金属层11,如图7(g)所示。
在步骤S8中,采用裂片方式将制备好的电解加工用微细单晶硅工具电极从所述单晶硅基底13上脱离下来,裂片方式可以采用手工裂片或高频脉冲激光切割裂片的方式。
在步骤S9中,利用氢氟酸对所述电解加工用微细单晶硅工具电极的加工部的端面进行处理,蚀除所述加工部的端面的SiO2绝缘层,使所述电解加工用微细单晶硅工具电极的加工部的端面可以导电,形成电解加工用微细单晶硅工具电极100,该电解加工用微细单晶硅工具电极100包括电极夹持部1和电极加工部2,如图7(h)。
实施例2:
本实施例与实施例1的区别在于,在步骤1中,所述单晶硅基底13采用的是未经过掺杂的(100)晶面的单晶硅片,硅片的厚度为300μm。可以进行同样的轮廓刻蚀加工,但需要在步骤4中将所述单晶硅基底13的上表面和下表面的Si3N4和SiO2完全去除之后,添加一个所述单晶硅基底13的掺杂步骤。
具体步骤如下:将所述单晶硅基底13进行整体掺杂,掺杂浓度需在1016~1020/cm2范围内,优选为1019~1020/cm2范围内,更优选为1020/cm2。掺杂类型为P型或者N型,优选地为N型。掺杂方式为热扩散或离子注入,掺杂入杂质为磷(P)。
本发明实施例提供的电解加工用微细单晶硅工具电极及其制备方法具有以下优点:利用高速旋转主轴带动非圆截面电解加工用微细单晶硅工具电极旋转搅动电解液流动,有利于电解产物的排出和电化学反应的正常进行;通过调整电解加工用微细单晶硅工具电极中心线可以实现不同尺寸的微结构的加工;采用高浓度掺杂的硅材料作为电解加工用微细单晶硅工具电极,其上沉积的SiO2作为绝缘层,可以解决金属材料与绝缘物质结合力小,绝缘层使用寿命短等问题;硅材料硬度高,刚度大,在微细尺寸下可以保证不发生形变。而且硅微细加工工艺已经相当成熟,能够进一步缩小电解加工用微细单晶硅工具电极的特征尺寸;该电解加工用微细单晶硅工具电极的制备方法通过刻蚀工艺在硅片上得到电解加工用的微细工具电极,具有大批量制作的应用潜力。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

1.一种电解加工用微细单晶硅工具电极,其包括电极夹持部和电极加工部,该电极加工部设置于所述电极夹持部,该电极夹持部和电极加工部的材料是高浓度掺杂的单晶硅,且电极夹持部和电极加工部的表面设置有侧壁绝缘层,该电极加工部用于进行电解加工。
2.如权利要求1所述的电解加工用微细单晶硅工具电极,其特征在于:所述电极加工部的端面形状为非圆截面,在高速旋转的带动下,在该电极加工部的端面形成圆形包络面。
3.如权利要求1所述的电解加工用微细单晶硅工具电极,其特征在于:所述电极夹持部设置有图形化的金属层,该图形化的金属层的表面并没有设置绝缘层,所述电极夹持部具有两个定位槽,该两个定位槽分别设置在所述电极夹持部的与图形化的金属层相对表面的两侧,且该定位槽的延伸方向平行于所述电极加工部的延伸方向。
4.如权利要求3所述的电解加工用微细单晶硅工具电极,其特征在于:进一步包括一夹具,该夹具包括支撑部、夹紧部、中心线调整垫片、垫片、对中安装板、微调螺纹机构;所述支撑部形成有一个凹槽,该凹槽具有相对设置的两个侧壁,所述对中安装板设置在所述凹槽内,且所述中心线调整垫片设置于所述凹槽的一个侧壁与所述对中安装板之间,所述微调螺纹机构设置在所述凹槽的另一个侧壁中,旋转该微调螺纹机构可以调整所述对中安装板的位置,所述对中安装板设置有两个凸台,该两个凸台与所述电极夹持部的两个定位槽配合,将电解加工用微细单晶硅工具电极夹持在所述支撑部和夹紧部之间。
5.一种电解加工用微细单晶硅工具电极的制备方法,其包括以下步骤:
S1,提供一单晶硅基底,该基底具有相对设置的上表面和下表面;
S2,在所述的基底的上、下表面制备一层保护层作为刻蚀工艺的掩模窗口,该掩模窗口包括工具电极轮廓和背面减薄窗口;
S3,刻蚀所述基底,形成图形化的电解加工用微细单晶硅工具电极轮廓;
S4,将所述基底上、下表面的保护层完全去除;
S5,在所述基底的所有表面上沉积一层绝缘层;
S6,在所述的绝缘层上制备一层图形化的保护层,将局部的绝缘层去除露出基底;
S7,利用所述保护层作为掩模窗口在所述露出的基底上制备一层金属层;
S8,将所述基底按照电解加工用微细单晶硅工具电极的轮廓裂片,使电解加工用微细单晶硅工具电极从所述基底上脱离下来;
S9,对所述电解加工用微细单晶硅工具电极的加工部的端面表面进行处理,去除绝缘层,保证电解加工用微细单晶硅工具电极端面导电。
6.如权利要求5所述的电解加工用微细单晶硅工具电极的制备方法,其特征在于:在所述步骤S1中,所述单晶硅基底为高浓度掺杂的单晶硅基底,所述基底硅片晶面选用(100)晶面,电阻率为10-2~10-3Ω·cm。
7.如权利要求6所述的电解加工用微细单晶硅工具电极的制备方法,其特征在于:在所述步骤S2中,在所述单晶硅基底的上表面和下表面均制备一层二氧化硅,再制备一层氮化硅,构成掩膜层,对所述掩膜层进行光刻,采用刻蚀工艺去除氮化硅层和二氧化硅层,直到露出所述单晶硅基底。
8.如权利要求6所述的电解加工用微细单晶硅工具电极的制备方法,其特征在于:在所述步驟S3中,将所述单晶硅基底放入腐蚀液中进行刻蚀加工,并控制刻蚀的时间,使刻蚀加工后的单晶硅基底的上表面发生自停止腐蚀形成电解加工用工具电极的轮廓形状,在单晶硅基底的下表面形成减薄窗口,刻蚀加工至所述单晶硅基底的上表面、下表面相交为止。
9.如权利要求6所述的电解加工用微细单晶硅工具电极的制备方法,其特征在于:在所述步驟S5中,利用化学气相沉积法在所述单晶硅基底的表面沉积一层二氧化硅,作为电解加工用微细单晶硅工具电极的侧壁绝缘层。
10.如权利要求5所述的电解加工用微细单晶硅工具电极的制备方法,其特征在于:在所述步骤4中,将所述基底上、下表面的保护层完全去除之后,将所述单晶硅基底进行整体掺杂,掺杂浓度为1016~1020/cm2
CN201610909851.7A 2016-10-19 2016-10-19 电解加工用微细单晶硅工具电极及其制备方法 Active CN106346095B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610909851.7A CN106346095B (zh) 2016-10-19 2016-10-19 电解加工用微细单晶硅工具电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610909851.7A CN106346095B (zh) 2016-10-19 2016-10-19 电解加工用微细单晶硅工具电极及其制备方法

Publications (2)

Publication Number Publication Date
CN106346095A true CN106346095A (zh) 2017-01-25
CN106346095B CN106346095B (zh) 2019-07-19

Family

ID=57863378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610909851.7A Active CN106346095B (zh) 2016-10-19 2016-10-19 电解加工用微细单晶硅工具电极及其制备方法

Country Status (1)

Country Link
CN (1) CN106346095B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805024A (zh) * 2020-06-12 2020-10-23 清华大学 加工检测一体化硅电极及其制备方法
CN111843074A (zh) * 2020-06-12 2020-10-30 清华大学 具有辅助电极层的硅电极及其制备方法、应用和专用夹具
CN113649657A (zh) * 2021-06-01 2021-11-16 清华大学 一种电解加工用的纳米尺度多晶硅工具电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1565077A1 (de) * 1965-07-07 1970-02-26 Siemens Ag Anordnung zur Herstellung von Ausnehmungen oder Vorspruengen in Werkstuecken durch elektrochemisches Senken
JPS5583533A (en) * 1978-12-13 1980-06-24 Mitsubishi Electric Corp Manufacturing method of electro-chemical machining electrode
DE102006015443A1 (de) * 2006-03-31 2007-10-04 Daimlerchrysler Ag Elektrode und Verfahren zur elektrochemischen Bearbeitung von elektrisch leitfähigem Material
CN201483105U (zh) * 2009-08-17 2010-05-26 江西稀有稀土金属钨业集团有限公司 一种用于电火花加工硬质合金不规则形面模具的电极
CN201895150U (zh) * 2010-09-21 2011-07-13 沈阳黎明航空发动机(集团)有限责任公司 一种内、外蜂窝环电火花磨削加工的电极组
CN202317335U (zh) * 2011-10-28 2012-07-11 贵州航天精工制造有限公司 一种开槽螺栓电火花加工的工具电极结构
CN102699460A (zh) * 2012-06-04 2012-10-03 清华大学 一种电极导向器及电极侧壁绝缘状态在线快速切换方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1565077A1 (de) * 1965-07-07 1970-02-26 Siemens Ag Anordnung zur Herstellung von Ausnehmungen oder Vorspruengen in Werkstuecken durch elektrochemisches Senken
JPS5583533A (en) * 1978-12-13 1980-06-24 Mitsubishi Electric Corp Manufacturing method of electro-chemical machining electrode
DE102006015443A1 (de) * 2006-03-31 2007-10-04 Daimlerchrysler Ag Elektrode und Verfahren zur elektrochemischen Bearbeitung von elektrisch leitfähigem Material
CN201483105U (zh) * 2009-08-17 2010-05-26 江西稀有稀土金属钨业集团有限公司 一种用于电火花加工硬质合金不规则形面模具的电极
CN201895150U (zh) * 2010-09-21 2011-07-13 沈阳黎明航空发动机(集团)有限责任公司 一种内、外蜂窝环电火花磨削加工的电极组
CN202317335U (zh) * 2011-10-28 2012-07-11 贵州航天精工制造有限公司 一种开槽螺栓电火花加工的工具电极结构
CN102699460A (zh) * 2012-06-04 2012-10-03 清华大学 一种电极导向器及电极侧壁绝缘状态在线快速切换方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴明等: "侧壁绝缘电极脉冲电解加工的实验研究", 《现代制造工程》 *
许家源等: "硅电极电火花放电的表面改性技术研究", 《电加工与模具》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805024A (zh) * 2020-06-12 2020-10-23 清华大学 加工检测一体化硅电极及其制备方法
CN111843074A (zh) * 2020-06-12 2020-10-30 清华大学 具有辅助电极层的硅电极及其制备方法、应用和专用夹具
CN111805024B (zh) * 2020-06-12 2021-09-10 清华大学 加工检测一体化硅电极及其制备方法
CN111843074B (zh) * 2020-06-12 2021-09-14 清华大学 具有辅助电极层的硅电极及其制备方法、应用和专用夹具
CN113649657A (zh) * 2021-06-01 2021-11-16 清华大学 一种电解加工用的纳米尺度多晶硅工具电极及其制备方法

Also Published As

Publication number Publication date
CN106346095B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN106346095B (zh) 电解加工用微细单晶硅工具电极及其制备方法
CN104458813B (zh) 基于类金刚石薄膜的纳米孔测量系统及其制备方法
CN111805024B (zh) 加工检测一体化硅电极及其制备方法
WO2002075816A1 (fr) Pile solaire et son procede de fabrication
US20070224399A1 (en) Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
CN111354615B (zh) 一种透射电镜原位电热耦合芯片及其制备方法
KR20100015302A (ko) 실리콘 기재의 가공 방법과 그 가공품 및 가공 장치
WO2015047878A1 (en) Electro-polishing and porosification
Liu et al. Silicon-based tool electrodes for micro electrochemical machining
CN111843074B (zh) 具有辅助电极层的硅电极及其制备方法、应用和专用夹具
CN110055540B (zh) 在钨材料表面制备微纳结构的方法和表面具有微纳结构的钨材料及其应用
CN102810441B (zh) 离子光学器件的制备方法
Vesvikar et al. Efficient dicing of silicon ingots for photovoltaic applications
CN112458507A (zh) 一种电沉积书写系统及直写式制备金属微纳结构的方法
Atiqah et al. Application of focused ion beam micromachining: a review
EP3685434A1 (en) Method to create a free-standing membrane for biological applications
CN114620675A (zh) 一种多维度图案化硅基纳米草制备方法及其应用
KR20220008007A (ko) 실리콘 기판의 금속촉매습식식각 방법
CN115138932A (zh) 电解加工用分流辅助硅电极、电解加工系统及方法
CN113649657B (zh) 一种电解加工用的纳米尺度多晶硅工具电极及其制备方法
Yanjun et al. Formation of a silicon micropore array of a two-dimension electron multiplier by photo electrochemical etching
CN114054872B (zh) 一种电解加工用的可编程硅电极及其制备方法
CN104190484A (zh) 一种适于生物分子检测的芯片单元的制备方法
CN103187249A (zh) 一种半导体纳米材料器件及其制作方法
CN113478032B (zh) 一种大深宽比槽电解加工电极及加工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant