CN106339724A - 一种用于诊断结核病的生物标记系统 - Google Patents

一种用于诊断结核病的生物标记系统 Download PDF

Info

Publication number
CN106339724A
CN106339724A CN201610777535.9A CN201610777535A CN106339724A CN 106339724 A CN106339724 A CN 106339724A CN 201610777535 A CN201610777535 A CN 201610777535A CN 106339724 A CN106339724 A CN 106339724A
Authority
CN
China
Prior art keywords
tuberculosis
gray
cell
pixel
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610777535.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610777535.9A priority Critical patent/CN106339724A/zh
Publication of CN106339724A publication Critical patent/CN106339724A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Probability & Statistics with Applications (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。本发明的有益效果为:能够对结核病进行有效诊断。

Description

一种用于诊断结核病的生物标记系统
技术领域
本发明涉及医学领域,具体涉及一种用于诊断结核病的生物标记系统。
背景技术
结核分枝杆菌可论证为世界范围的最成功的病原性微生物之一,并且是潜在致命的感染性疾病结核病的病原体。它也是全世界内从潜在可治愈的感染性疾病所致死亡的主要原因,估计每年有两百万相关死亡。
尽管有广泛研究,但目前对结核分枝杆菌的免疫应答和发病机理的理解仍然不完全。此外,现有的诊断和治疗方法是欠佳的。结核病是通过在临床标本中的致病微生物(结核分枝杆菌)的鉴定而确诊。
发明内容
为解决上述问题,本发明旨在提供一种用于诊断结核病的生物标记系统。
本发明的目的采用以下技术方案来实现:
一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
本发明的有益效果为:能够对结核病进行有效诊断。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是细胞识别模块的结构示意图。
附图标记:
细胞识别模块1、细胞图像分割单元11、特征提取单元12、分类识别单元13。
具体实施方式
结合以下应用场景对本发明作进一步描述。
应用场景1
参见图1,本应用场景的一个实施例的一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
优选地,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
本优选实施例提供了具体的诊断项目。
优选地,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
本优选实施例优化了诊断项目。
优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。
本优选实施例构建了细胞识别模块1的单元架构。
优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:
(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;
(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:
对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;
首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;
若(x,y)为边界点,则进行如下降噪处理:
h ( x , y ) = Σ q ( i , j ) ∈ [ q ( x , y ) - 1.5 σ , q ( x , y ) + 1.5 σ ] q ( i , j ) k
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;
若(x,y)为非边界点,则进行如下降噪处理:
h ( x , y ) = Σ ( i , j ) ∈ L x , y w ( i , j ) q ( i , j ) Σ ( i , j ) ∈ L x , y w ( i , j )
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;
(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:
将每个像素(x,y)用一个四维特征向量表示:
u → ( x , y ) = [ h ( x , y ) , h a v e ( x , y ) , h m e d ( x , y ) , h s t a ( x , y ) ]
式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;
采用K-means聚类法将其划分为背景、细胞质、细胞核三类;
(4)细胞核中心标定子单元,用于对细胞核中心进行标定:
由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):
x z = 1 2 ( Σ i = 1 n x i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n x i n )
y z = 1 2 ( Σ i = 1 n y i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n y i n )
(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;
构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;
沿线段以单位长度进行采样可以得到disp个点若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;
点(xi,yi)处沿线段方向的灰度差:
hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)
定义灰度差抑制函数:
Y ( x ) = x i f x ≤ 0 0.5 x i f x > 0
点(xi,yi)处沿线段方向的梯度gra(xi,yi):
g r a ( x i , y i ) = | Y ( h d ( x i , y i ) ) | + | Y ( h d ( x i + 1 , y i + ! ) ) | 2
选取梯度最大的值点作为细胞核和细胞质的精确边缘。
本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。
优选的,所述对细胞图像的纹理特征进行提取,包括:
(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:
设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:
H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)
综合灰度共生矩阵元素数目为:
X = Σ i = 1 4 w i X i
式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:
w i = 1 | D i - D ‾ | + 1 / Σ i = 1 4 1 | D i - D ‾ | + 1
(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;
(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。
本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。
在此应用场景中,设定阈值T=13,d=2,图像去噪效果相对提高了5%,细胞图像特征的提取精度提高了8%。
应用场景2
参见图1,本应用场景的一个实施例的一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
优选地,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
本优选实施例提供了具体的诊断项目。
优选地,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
本优选实施例优化了诊断项目。
优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。
本优选实施例构建了细胞识别模块1的单元架构。
优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:
(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;
(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:
对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;
首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;
若(x,y)为边界点,则进行如下降噪处理:
h ( x , y ) = Σ q ( i , j ) ∈ [ q ( x , y ) - 1.5 σ , q ( x , y ) + 1.5 σ ] q ( i , j ) k
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;
若(x,y)为非边界点,则进行如下降噪处理:
h ( x , y ) = Σ ( i , j ) ∈ L x , y w ( i , j ) q ( i , j ) Σ ( i , j ) ∈ L x , y w ( i , j )
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;
(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:
将每个像素(x,y)用一个四维特征向量表示:
u → ( x , y ) = [ h ( x , y ) , h a v e ( x , y ) , h m e d ( x , y ) , h s t a ( x , y ) ]
式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;
采用K-means聚类法将其划分为背景、细胞质、细胞核三类;
(4)细胞核中心标定子单元,用于对细胞核中心进行标定:
由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):
x z = 1 2 ( Σ i = 1 n x i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n x i n )
y z = 1 2 ( Σ i = 1 n y i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n y i n )
(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;
构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;
沿线段以单位长度进行采样可以得到disp个点若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;
点(xi,yi)处沿线段方向的灰度差:
hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)
定义灰度差抑制函数:
Y ( x ) = x i f x ≤ 0 0.5 x i f x > 0
点(xi,yi)处沿线段方向的梯度gra(xi,yi):
g r a ( x i , y i ) = | Y ( h d ( x i , y i ) ) | + | Y ( h d ( x i + 1 , y i + ! ) ) | 2
选取梯度最大的值点作为细胞核和细胞质的精确边缘。
本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。
优选的,所述对细胞图像的纹理特征进行提取,包括:
(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:
设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:
H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)
综合灰度共生矩阵元素数目为:
X = Σ i = 1 4 w i X i
式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:
w i = 1 | D i - D ‾ | + 1 / Σ i = 1 4 1 | D i - D ‾ | + 1
(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;
(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。
本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。
在此应用场景中,设定阈值T=15,d=2,图像去噪效果相对提高了6%,细胞图像特征的提取精度提高了8%。
应用场景3
参见图1,本应用场景的一个实施例的一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
优选地,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
本优选实施例提供了具体的诊断项目。
优选地,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
本优选实施例优化了诊断项目。
优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。
本优选实施例构建了细胞识别模块1的单元架构。
优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:
(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;
(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:
对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;
首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;
若(x,y)为边界点,则进行如下降噪处理:
h ( x , y ) = Σ q ( i , j ) ∈ [ q ( x , y ) - 1.5 σ , q ( x , y ) + 1.5 σ ] q ( i , j ) k
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;
若(x,y)为非边界点,则进行如下降噪处理:
h ( x , y ) = Σ ( i , j ) ∈ L x , y w ( i , j ) q ( i , j ) Σ ( i , j ) ∈ L x , y w ( i , j )
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;
(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:
将每个像素(x,y)用一个四维特征向量表示:
u → ( x , y ) = [ h ( x , y ) , h a v e ( x , y ) , h m e d ( x , y ) , h s t a ( x , y ) ]
式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;
采用K-means聚类法将其划分为背景、细胞质、细胞核三类;
(4)细胞核中心标定子单元,用于对细胞核中心进行标定:
由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):
x z = 1 2 ( Σ i = 1 n x i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n x i n )
y z = 1 2 ( Σ i = 1 n y i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n y i n )
(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;
构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;
沿线段以单位长度进行采样可以得到disp个点若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;
点(xi,yi)处沿线段方向的灰度差:
hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)
定义灰度差抑制函数:
Y ( x ) = x i f x ≤ 0 0.5 x i f x > 0
点(xi,yi)处沿线段方向的梯度gra(xi,yi):
g r a ( x i , y i ) = | Y ( h d ( x i , y i ) ) | + | Y ( h d ( x i + 1 , y i + ! ) ) | 2
选取梯度最大的值点作为细胞核和细胞质的精确边缘。
本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。
优选的,所述对细胞图像的纹理特征进行提取,包括:
(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:
设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:
H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)
综合灰度共生矩阵元素数目为:
X = Σ i = 1 4 w i X i
式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:
w i = 1 | D i - D ‾ | + 1 / Σ i = 1 4 1 | D i - D ‾ | + 1
(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;
(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。
本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。
在此应用场景中,设定阈值T=18,d=3,图像去噪效果相对提高了7%,细胞图像特征的提取精度提高了7%。
应用场景4
参见图1,本应用场景的一个实施例的一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
优选地,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
本优选实施例提供了具体的诊断项目。
优选地,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
本优选实施例优化了诊断项目。
优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。
本优选实施例构建了细胞识别模块1的单元架构。
优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:
(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;
(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:
对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;
首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;
若(x,y)为边界点,则进行如下降噪处理:
h ( x , y ) = Σ q ( i , j ) ∈ [ q ( x , y ) - 1.5 σ , q ( x , y ) + 1.5 σ ] q ( i , j ) k
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;
若(x,y)为非边界点,则进行如下降噪处理:
h ( x , y ) = Σ ( i , j ) ∈ L x , y w ( i , j ) q ( i , j ) Σ ( i , j ) ∈ L x , y w ( i , j )
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;
(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:
将每个像素(x,y)用一个四维特征向量表示:
u → ( x , y ) = [ h ( x , y ) , h a v e ( x , y ) , h m e d ( x , y ) , h s t a ( x , y ) ]
式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;
采用K-means聚类法将其划分为背景、细胞质、细胞核三类;
(4)细胞核中心标定子单元,用于对细胞核中心进行标定:
由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):
x z = 1 2 ( Σ i = 1 n x i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n x i n )
y z = 1 2 ( Σ i = 1 n y i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n y i n )
(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;
构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;
沿线段以单位长度进行采样可以得到disp个点若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;
点(xi,yi)处沿线段方向的灰度差:
hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)
定义灰度差抑制函数:
Y ( x ) = x i f x ≤ 0 0.5 x i f x > 0
点(xi,yi)处沿线段方向的梯度gra(xi,yi):
g r a ( x i , y i ) = | Y ( h d ( x i , y i ) ) | + | Y ( h d ( x i + 1 , y i + ! ) ) | 2
选取梯度最大的值点作为细胞核和细胞质的精确边缘。
本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。
优选的,所述对细胞图像的纹理特征进行提取,包括:
(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:
设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:
H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)
综合灰度共生矩阵元素数目为:
X = Σ i = 1 4 w i X i
式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:
w i = 1 | D i - D ‾ | + 1 / Σ i = 1 4 1 | D i - D ‾ | + 1
(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;
(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。
本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。
在此应用场景中,设定阈值T=20,d=4,图像去噪效果相对提高了8%,细胞图像特征的提取精度提高了6%。
应用场景5
参见图1,本应用场景的一个实施例的一种用于诊断结核病的生物标记系统,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
优选地,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
本优选实施例提供了具体的诊断项目。
优选地,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
本优选实施例优化了诊断项目。
优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。
本优选实施例构建了细胞识别模块1的单元架构。
优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:
(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;
(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:
对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;
首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;
若(x,y)为边界点,则进行如下降噪处理:
h ( x , y ) = Σ q ( i , j ) ∈ [ q ( x , y ) - 1.5 σ , q ( x , y ) + 1.5 σ ] q ( i , j ) k
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;
若(x,y)为非边界点,则进行如下降噪处理:
h ( x , y ) = Σ ( i , j ) ∈ L x , y w ( i , j ) q ( i , j ) Σ ( i , j ) ∈ L x , y w ( i , j )
式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;
(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:
将每个像素(x,y)用一个四维特征向量表示:
u → ( x , y ) = [ h ( x , y ) , h a v e ( x , y ) , h m e d ( x , y ) , h s t a ( x , y ) ]
式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;
采用K-means聚类法将其划分为背景、细胞质、细胞核三类;
(4)细胞核中心标定子单元,用于对细胞核中心进行标定:
由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):
x z = 1 2 ( Σ i = 1 n x i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n x i n )
y z = 1 2 ( Σ i = 1 n y i h ( x i , y i ) Σ i = 1 n h ( x i , y i ) + Σ i = 1 n y i n )
(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;
构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;
沿线段以单位长度进行采样可以得到disp个点若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;
点(xi,yi)处沿线段方向的灰度差:
hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)
定义灰度差抑制函数:
Y ( x ) = x i f x ≤ 0 0.5 x i f x > 0
点(xi,yi)处沿线段方向的梯度gra(xi,yi):
g r a ( x i , y i ) = | Y ( h d ( x i , y i ) ) | + | Y ( h d ( x i + 1 , y i + ! ) ) | 2
选取梯度最大的值点作为细胞核和细胞质的精确边缘。
本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。
优选的,所述对细胞图像的纹理特征进行提取,包括:
(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:
设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:
H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)
综合灰度共生矩阵元素数目为:
X = Σ i = 1 4 w i X i
式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:
w i = 1 | D i - D ‾ | + 1 / Σ i = 1 4 1 | D i - D ‾ | + 1
(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;
(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。
本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。
在此应用场景中,设定阈值T=26,d=2,图像去噪效果相对提高了7.5%,细胞图像特征的提取精度提高了8%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种用于诊断结核病的生物标记系统,其特征是,包括细胞识别模块和生物标记模块,所述细胞识别模块用于识别结核细胞,所述生物标记模块采用sCD170诊断结核病。
2.根据权利要求1所述的一种用于诊断结核病的生物标记系统,其特征是,所述诊断包括以下任何一项之间的鉴别诊断:活动性结核病和潜伏性结核病;活动性结核病和健康对照;潜伏性结核病和健康对照;活动性结核病和疾病对照;和潜伏性结核病和疾病对照。
3.根据权利要求2所述的一种用于诊断结核病的生物标记系统,其特征是,所述诊断还包括活动性结核病和潜伏性结核病之间的鉴别诊断。
CN201610777535.9A 2016-08-30 2016-08-30 一种用于诊断结核病的生物标记系统 Pending CN106339724A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610777535.9A CN106339724A (zh) 2016-08-30 2016-08-30 一种用于诊断结核病的生物标记系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610777535.9A CN106339724A (zh) 2016-08-30 2016-08-30 一种用于诊断结核病的生物标记系统

Publications (1)

Publication Number Publication Date
CN106339724A true CN106339724A (zh) 2017-01-18

Family

ID=57822907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610777535.9A Pending CN106339724A (zh) 2016-08-30 2016-08-30 一种用于诊断结核病的生物标记系统

Country Status (1)

Country Link
CN (1) CN106339724A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246040A (zh) * 2008-12-15 2011-11-16 开普敦大学 用于诊断结核病的方法和装置
CN104823052A (zh) * 2012-07-31 2015-08-05 蛋白逻辑有限责任公司 用于诊断和/或监测结核病的生物标记

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246040A (zh) * 2008-12-15 2011-11-16 开普敦大学 用于诊断结核病的方法和装置
CN104823052A (zh) * 2012-07-31 2015-08-05 蛋白逻辑有限责任公司 用于诊断和/或监测结核病的生物标记

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李宽: ""细胞图像的分割、纹理提取及识别方法研究"", 《中国博士学位论文全文数据库信息科技辑》 *
梁光明: ""体液细胞图像有形成分智能识别关键技术研究"", 《中国博士学位论文全文数据库信息科技辑》 *

Similar Documents

Publication Publication Date Title
CN104143079B (zh) 人脸属性识别的方法和系统
CN103886328B (zh) 基于脑网络模块结构特征的功能磁共振影像数据分类方法
CN103714536B (zh) 基于稀疏表示的多模态磁共振图像的分割方法及装置
CN109871875B (zh) 一种基于深度学习的建筑物变化检测方法
CN106056595A (zh) 基于深度卷积神经网络自动识别甲状腺结节良恶性的方法
CN102629374B (zh) 基于子空间投影和邻域嵌入的图像超分辨率重建方法
CN110534195B (zh) 一种基于数据空间变换的阿尔兹海默症检测方法
CN106446930A (zh) 基于深层卷积神经网络的机器人工作场景识别方法
CN105160310A (zh) 基于3d卷积神经网络的人体行为识别方法
CN105389550A (zh) 一种基于稀疏指引与显著驱动的遥感目标检测方法
CN103793711A (zh) 一种基于脑部核磁共振图像的多维度纹理提取方法
CN112488976B (zh) 一种基于darts网络的多模态医学图像融合方法
CN113902761A (zh) 基于知识蒸馏的肺部疾病病灶无监督分割方法
CN102509123A (zh) 一种基于复杂网络的脑功能磁共振图像分类方法
CN107292346A (zh) 一种基于局部子空间学习的mr图像海马体分割算法
CN103544695A (zh) 一种高效的基于博弈框架的医学图像分割方法
CN104951666A (zh) 一种疾病诊断方法和装置
Shah et al. EMED-UNet: an efficient multi-encoder-decoder based UNet for medical image segmentation
CN106570880A (zh) 结合模糊聚类和马尔科夫随机场的脑组织mri图像分割方法
CN115409843B (zh) 基于尺度均衡耦合卷积架构的脑神经影像特征提取方法
CN106339724A (zh) 一种用于诊断结核病的生物标记系统
CN111223113A (zh) 基于双重密集上下文感知网络的核磁共振海马体分割算法
CN116030063A (zh) Mri图像的分类诊断系统、方法、电子设备及介质
CN106350447A (zh) 一种弹性物品上微生物污染的检测系统
CN116258685A (zh) 全局和局部特征同时提取与融合的多器官分割方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170118