CN106338811B - 光学成像系统 - Google Patents
光学成像系统 Download PDFInfo
- Publication number
- CN106338811B CN106338811B CN201610329377.0A CN201610329377A CN106338811B CN 106338811 B CN106338811 B CN 106338811B CN 201610329377 A CN201610329377 A CN 201610329377A CN 106338811 B CN106338811 B CN 106338811B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical axis
- imaging system
- optical imaging
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 211
- 230000003287 optical effect Effects 0.000 claims abstract description 316
- 238000003384 imaging method Methods 0.000 claims abstract description 93
- 230000004075 alteration Effects 0.000 claims description 83
- 210000001747 pupil Anatomy 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 44
- 230000000007 visual effect Effects 0.000 claims description 41
- 238000006073 displacement reaction Methods 0.000 claims description 36
- 239000004033 plastic Substances 0.000 claims description 34
- 229920003023 plastic Polymers 0.000 claims description 34
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 210000004196 psta Anatomy 0.000 claims description 6
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 19
- 201000009310 astigmatism Diseases 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000009738 saturating Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005043 peripheral vision Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 241000700608 Sagitta Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明公开了一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。第一透镜至第五透镜中至少一透镜具有正屈折力。第五透镜可具有负屈折力,其两个表面皆为非球面,其中第五透镜的至少一表面具有反曲点。当满足特定条件时,可具备更大的收光以及更佳的光路调节能力,以提升成像质量。
Description
技术领域
本发明涉及一种光学成像系统,且特别是有关于一种应用于电子产品上的小型光学成像系统。
背景技术
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐增加。一般光学系统的感光元件不外乎为感光耦合元件(Charge Coupled Device;CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor;CMOSSensor)两种,且随着半导体制造技术的进步,使得感光元件的像素尺寸缩小,光学系统逐渐往高像素方向发展,因此对成像质量的要求也日益增加。
传统搭载于便携设备上的光学系统,多采用三片或四片式透镜结构,然而,由于便携设备不断朝像素提升方向发展,并且终端消费者对大光圈的需求不断增加,例如微光与夜拍功能,现有的光学成像系统已无法满足更高阶的摄影要求。
因此,如何有效增加光学成像镜头的进光量,并进一步提高成像的质量,便成为一个相当重要的议题。
发明内容
本发明针对一种光学成像系统及光学影像撷取镜头,能够利用五个透镜的屈光力、凸面与凹面的组合(本发明所述凸面或凹面原则上指各透镜的物侧面或像侧面距离光轴不同高度的几何形状变化的描述),进而有效提高光学成像系统的进光量,同时提高成像质量,以应用于小型的电子产品上。
本发明实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:
与长度或高度有关的透镜参数:
光学成像系统的成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统中的第一透镜物侧面至第五透镜像侧面间的距离以InTL表示;光学成像系统中的固定光栏(光圈)至成像面间的距离以InS表示;光学成像系统中的第一透镜与第二透镜间的距离以IN12表示(例示);光学成像系统中的第一透镜于光轴上的厚度以TP1表示(例示)。
与材料有关的透镜参数:
光学成像系统中的第一透镜的色散系数以NA1表示(例示);第一透镜的折射律以Nd1表示(例示)。
与视角有关的透镜参数:
视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。
与出入瞳有关的透镜参数:
光学成像系统的入射瞳直径以HEP表示;单一透镜的任一表面的最大有效半径指系统最大视角入射光通过入射瞳最边缘的光线于该透镜表面交会点(Effective HalfDiameter;EHD),该交会点与光轴之间的垂直高度。例如第一透镜物侧面的最大有效半径以EHD11表示,第一透镜像侧面的最大有效半径以EHD12表示。第二透镜物侧面的最大有效半径以EHD21表示,第二透镜像侧面的最大有效半径以EHD22表示。光学成像系统中其余透镜的任一表面的最大有效半径表示方式以此类推。
与透镜面形弧长及表面轮廓有关的参数:
单一透镜的任一表面的最大有效半径的轮廓曲线长度指该透镜的表面与所属光学成像系统的光轴的交点为起始点,自该起始点沿着该透镜的表面轮廓直至其最大有效半径的终点为止,前述两点间的曲线弧长为最大有效半径的轮廓曲线长度,并以ARS表示。例如第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示。光学成像系统中其余透镜的任一表面的最大有效半径的轮廓曲线长度表示方式以此类推。
单一透镜的任一表面的1/2入射瞳直径(HEP)的轮廓曲线长度指该透镜的表面与所属光学成像系统的光轴的交点为起始点,自该起始点沿着该透镜的表面轮廓直至该表面上距离光轴1/2入射瞳直径的垂直高度的坐标点为止,前述两点间的曲线弧长为1/2入射瞳直径(HEP)的轮廓曲线长度,并以ARE表示。例如第一透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE11表示,第一透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE12表示。第二透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE21表示,第二透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE22表示。光学成像系统中其余透镜的任一表面的1/2入射瞳直径(HEP)的轮廓曲线长度表示方式以此类推。
与透镜面形深度有关的参数:
第五透镜物侧面于光轴上的交点至第五透镜物侧面的最大有效半径的终点为止,前述两点间水平于光轴的距离以InRS51表示(最大有效半径深度);第五透镜像侧面于光轴上的交点至第五透镜像侧面的最大有效半径的终点为止,前述两点间水平于光轴的距离以InRS52表示(最大有效半径深度)。其他透镜物侧面或像侧面的最大有效半径的深度(沉陷量)表示方式比照前述。
与透镜面型有关的参数:
临界点C指特定透镜表面上,除与光轴的交点外,一与光轴相垂直的切面相切的点。承上,例如第四透镜物侧面的临界点C41与光轴的垂直距离为HVT41(例示),第四透镜像侧面的临界点C42与光轴的垂直距离为HVT42(例示),第五透镜物侧面的临界点C51与光轴的垂直距离为HVT51(例示),第五透镜像侧面的临界点C52与光轴的垂直距离为HVT52(例示)。其他透镜的物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。
第五透镜物侧面上最接近光轴的反曲点为IF511,该点沉陷量SGI511(例示),SGI511亦即第五透镜物侧面于光轴上的交点至第五透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF511该点与光轴间的垂直距离为HIF511(例示)。第五透镜像侧面上最接近光轴的反曲点为IF521,该点沉陷量SGI521(例示),SGI511亦即第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离,IF521该点与光轴间的垂直距离为HIF521(例示)。
第五透镜物侧面上第二接近光轴的反曲点为IF512,该点沉陷量SGI512(例示),SGI512亦即第五透镜物侧面于光轴上的交点至第五透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF512该点与光轴间的垂直距离为HIF512(例示)。第五透镜像侧面上第二接近光轴的反曲点为IF522,该点沉陷量SGI522(例示),SGI522亦即第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离,IF522该点与光轴间的垂直距离为HIF522(例示)。
第五透镜物侧面上第三接近光轴的反曲点为IF513,该点沉陷量SGI513(例示),SGI513亦即第五透镜物侧面于光轴上的交点至第五透镜物侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF513该点与光轴间的垂直距离为HIF513(例示)。第五透镜像侧面上第三接近光轴的反曲点为IF523,该点沉陷量SGI523(例示),SGI523亦即第五透镜像侧面于光轴上的交点至第五透镜像侧面第三接近光轴的反曲点之间与光轴平行的水平位移距离,IF523该点与光轴间的垂直距离为HIF523(例示)。
第五透镜物侧面上第四接近光轴的反曲点为IF514,该点沉陷量SGI514(例示),SGI514亦即第五透镜物侧面于光轴上的交点至第五透镜物侧面第四接近光轴的反曲点之间与光轴平行的水平位移距离,IF514该点与光轴间的垂直距离为HIF514(例示)。第五透镜像侧面上第四接近光轴的反曲点为IF524,该点沉陷量SGI524(例示),SGI524亦即第五透镜像侧面于光轴上的交点至第五透镜像侧面第四接近光轴的反曲点的间与光轴平行的水平位移距离,IF524该点与光轴间的垂直距离为HIF524(例示)。
其他透镜物侧面或像侧面上的反曲点及其与光轴的垂直距离或其沉陷量的表示方式比照前述。
与像差有关的变数:
光学成像系统的光学畸变(Optical Distortion)以ODT表示;其TV畸变(TVDistortion)以TDT表示,并且可以进一步限定描述在成像50%至100%视野间像差偏移的程度;球面像差偏移量以DFS表示;慧星像差偏移量以DFC表示。
光圈边缘横向像差以STA(STOP Transverse Aberration)表示,评价特定光学成像系统的性能,可利用子午面光扇(tangential fan)或弧矢面光扇(sagittal fan)上计算任一视场的光线横向像差,特别是分别计算最长工作波长(例如波长为650NM或656NM)以及最短工作波长(例如波长为470NM或486NM)通过光圈边缘的横向像差大小作为性能优异的标准。前述子午面光扇的坐标方向,可进一步区分成正向(上光线)与负向(下光线)。最长工作波长通过光圈边缘的横向像差,其定义为最长工作波长通过光圈边缘入射在成像面上特定视场的成像位置,其与参考波长主光线(例如波长为555NM或587.5NM)在成像面上该视场的成像位置两位置间的距离差,最短工作波长通过光圈边缘的横向像差,其定义为最短工作波长通过光圈边缘入射在成像面上特定视场的成像位置,其与参考波长主光线在成像面上该视场的成像位置两位置间的距离差,评价特定光学成像系统的性能为优异,可利用最短以及最长工作波长通过光圈边缘入射在成像面上0.7视场(即0.7成像高度HOI)的横向像差均小于20微米(μm)或20像素(Pixel Size)作为检核方式,甚至可进一步以最短以及最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差均小于10微米(μm)或10像素(Pixel Size)作为检核方式。
光学成像系统于成像面上垂直于光轴具有一最大成像高度HOI,光学成像系统的正向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SSTA表示。
本发明提供一种光学成像系统,其第五透镜的物侧面或像侧面设置有反曲点,可有效调整各视场入射于第五透镜的角度,并针对光学畸变与TV畸变进行补正。另外,第五透镜的表面可具备更佳的光路调节能力,以提升成像质量。
依据本发明提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及一成像面。第一透镜至第五透镜均具有屈折力。该第一透镜至该第五透镜中至少一透镜具有正屈折力,并且至少一透镜的物侧面及像侧面皆为非球面,该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该多个透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,其满足下列条件:1.2≤f/HEP≤6.0;0.9163≤InTL/HOS;以及0.9≤2×(ARE/HEP)≤1.5。
依据本发明另提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及一成像面。第一透镜具有负屈折力。第二透镜具有屈折力。第三透镜具有屈折力。第四透镜具有屈折力。第五透镜具有屈折力,该第一透镜至该第五透镜中至少一透镜的物侧面及像侧面皆为非球面。该第一透镜至该第五透镜中至少一透镜的至少一表面具有至少一反曲点,且该第二透镜至该第五透镜中至少一透镜具有正屈折力,该第一透镜至该第五透镜中至少一透镜为塑料材质,该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该多个透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,其满足下列条件:1.2≤f/HEP≤6.0;0.9163≤InTL/HOS;以及0.9≤2×(ARE/HEP)≤1.5。
依据本发明再提供一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及一成像面。其中该第一透镜至该第五透镜中至少一透镜的至少一表面具有至少一反曲点。第一透镜具有负屈折力。第二透镜具有负屈折力。第三透镜具有正屈折力。第四透镜具有屈折力。第五透镜具有屈折力。该第五透镜的物侧面及像侧面皆为非球面。该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该光学成像系统的最大视角的一半为HAF,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该多个透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,其满足下列条件:1.2≤f/HEP≤3.5;0.4≤│tan(HAF)│≤6.0;0.9163≤InTL/HOS;以及0.9≤2×(ARE/HEP)≤1.5。
单一透镜的任一表面在最大有效半径范围内的轮廓曲线长度影响该表面修正像差以及各视场光线间光程差的能力,轮廓曲线长度越长则修正像差的能力提升,然而同时亦会增加生产制造上的困难度,因此必须控制单一透镜的任一表面在最大有效半径范围内的轮廓曲线长度,特别是控制该表面的最大有效半径范围内的轮廓曲线长度(ARS)与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系(ARS/TP)。例如第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ARS11/TP1,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示,其与TP1间的比值为ARS12/TP1。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ARS21/TP2,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示,其与TP2间的比值为ARS22/TP2。光学成像系统中其余透镜的任一表面的最大有效半径的轮廓曲线长度与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。
单一透镜的任一表面在1/2入射瞳直径(HEP)高度范围内的轮廓曲线长度特别影响该表面上在各光线视场共享区域的修正像差以及各视场光线间光程差的能力,轮廓曲线长度越长则修正像差的能力提升,然而同时亦会增加生产制造上的困难度,因此必须控制单一透镜的任一表面在1/2入射瞳直径(HEP)高度范围内的轮廓曲线长度,特别是控制该表面的1/2入射瞳直径(HEP)高度范围内的轮廓曲线长度(ARE)与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系(ARE/TP)。例如第一透镜物侧面的1/2入射瞳直径(HEP)高度的轮廓曲线长度以ARE11表示,第一透镜于光轴上的厚度为TP1,两者间的比值为ARE11/TP1,第一透镜像侧面的1/2入射瞳直径(HEP)高度的轮廓曲线长度以ARE12表示,其与TP1间的比值为ARE12/TP1。第二透镜物侧面的1/2入射瞳直径(HEP)高度的轮廓曲线长度以ARE21表示,第二透镜于光轴上的厚度为TP2,两者间的比值为ARE21/TP2,第二透镜像侧面的1/2入射瞳直径(HEP)高度的轮廓曲线长度以ARE22表示,其与TP2间的比值为ARE22/TP2。光学成像系统中其余透镜的任一表面的1/2入射瞳直径(HEP)高度的轮廓曲线长度与该表面所属的该透镜于光轴上的厚度(TP)间的比例关系,其表示方式以此类推。
当│f1│>f5时,光学成像系统的系统总高度(HOS;Height of Optic System)可以适当缩短以达到微型化的目的。
当│f2│+│f3│+│f4│以及│f1│+│f5│满足上述条件时,第二透镜至第四透镜中至少一透镜具有弱的正屈折力或弱的负屈折力。弱屈折力指特定透镜的焦距的绝对值大于10。当本发明中的第二透镜至第四透镜中至少一透镜具有弱的正屈折力时,其可有效分担第一透镜的正屈折力而避免不必要的像差过早出现,反之,若第二透镜至第四透镜中至少一透镜具有弱的负屈折力,则可以微调补正系统的像差。
此外,第五透镜可具有负屈折力,其像侧面可为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,第五透镜的至少一表面可具有至少一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
附图说明
图1A为本发明第一实施例的光学成像系统的示意图;
图1B由左至右依序为本发明第一实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图1C为本发明第一实施例光学成像系统的光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图2A为本发明第二实施例的光学成像系统的示意图;
图2B由左至右依序为本发明第二实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图2C为本发明第二实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图3A为本发明第三实施例的光学成像系统的示意图;
图3B由左至右依序为本发明第三实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图3C为本发明第三实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图4A为本发明第四实施例的光学成像系统的示意图;
图4B由左至右依序为本发明第四实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图4C为本发明第四实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图5A为本发明第五实施例的光学成像系统的示意图;
图5B由左至右依序为本发明第五实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图5C为本发明第五实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图;
图6A为本发明第六实施例的光学成像系统的示意图;
图6B由左至右依序为本发明第六实施例的光学成像系统的球差、像散以及光学畸变的曲线图;
图6C为本发明第六实施例光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图。
附图标记说明:光学成像系统:10、20、30、40、50、60
光圈:100、200、300、400、500、600
第一透镜:110、210、310、410、510、610
物侧面:112、212、312、412、512、612
像侧面:114、214、314、414、514、614
第二透镜:120、220、320、420、520、620
物侧面:122、222、322、422、522、622
像侧面:124、224、324、424、524、624
第三透镜:130、230、330、430、530、630
物侧面:132、232、332、432、532、632
像侧面:134、234、334、434、534、634
第四透镜:140、240、340、440、540、640
物侧面:142、242、342、442、542、642
像侧面:144、244、344、444、544、644
第五透镜:150、250、350、450、550、650
物侧面:152、252、352、452、552、652
像侧面:154、254、354、454、554、654
红外线滤光片:180、280、380、480、580、680
成像面:190、290、390、490、590、690
影像感测元件:192、292、392、492、592
光学成像系统的焦距:f
第一透镜的焦距:f1
第二透镜的焦距:f2
第三透镜的焦距:f3
第四透镜的焦距:f4
第五透镜的焦距:f5
光学成像系统的光圈值:f/HEP
光学成像系统的最大视角的一半:HAF
第一透镜的色散系数:NA1
第二透镜至第五透镜的色散系数:NA2、NA3、NA4、NA5
第一透镜物侧面以及像侧面的曲率半径:R1、R2
第五透镜物侧面以及像侧面的曲率半径:R9、R10
第一透镜于光轴上的厚度:TP1
第二至第五透镜于光轴上的厚度:TP2、TP3、TP4、TP5
所有具有屈折力的透镜的厚度总和:ΣTP
第一透镜与第二透镜于光轴上的间隔距离:IN12
第二透镜与第三透镜于光轴上的间隔距离:IN23
第三透镜与第四透镜于光轴上的间隔距离:IN34
第四透镜与第五透镜于光轴上的间隔距离:IN45
第五透镜物侧面于光轴上的交点至第五透镜物侧面的最大有效半径位置于光轴的水平位移距离:InRS51
第五透镜物侧面上最接近光轴的反曲点:IF511;该点沉陷量:SGI511
第五透镜物侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF511
第五透镜像侧面上最接近光轴的反曲点:IF521;该点沉陷量:SGI521
第五透镜像侧面上最接近光轴的反曲点与光轴间的垂直距离:HIF521
第五透镜物侧面上第二接近光轴的反曲点:IF512;该点沉陷量:SGI512
第五透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF512
第五透镜像侧面上第二接近光轴的反曲点:IF522;该点沉陷量:SGI522
第五透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离:HIF522
第五透镜物侧面的临界点:C51
第五透镜像侧面的临界点:C52
第五透镜物侧面的临界点与光轴的水平位移距离:SGC51
第五透镜像侧面的临界点与光轴的水平位移距离:SGC52
第五透镜物侧面的临界点与光轴的垂直距离:HVT51
第五透镜像侧面的临界点与光轴的垂直距离:HVT52
系统总高度(第一透镜物侧面至成像面于光轴上的距离):HOS
光圈至成像面的距离:InS
第一透镜物侧面至该第五透镜像侧面的距离:InTL
第五透镜像侧面至该成像面的距离:InB
影像感测元件有效感测区域对角线长的一半(最大像高):HOI
光学成像系统于结像时的TV畸变(TV Distortion):TDT
光学成像系统于结像时的光学畸变(Optical Distortion):ODT
具体实施方式
本发明公开了一种光学成像系统,由物侧至像侧依序包含具有屈折力的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及一成像面。光学成像系统还可包含一影像感测元件,其设置于成像面。
光学成像系统可使用三个工作波长进行设计,分别为486.1nm、587.5nm、656.2nm,其中587.5nm为主要参考波长为主要提取技术特征的参考波长。光学成像系统亦可使用五个工作波长进行设计,分别为470nm、510nm、555nm、610nm、650nm,其中555nm为主要参考波长为主要提取技术特征的参考波长。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值为PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值为NPR,所有具有正屈折力的透镜的PPR总和为ΣPPR,所有具有负屈折力的透镜的NPR总和为ΣNPR,当满足下列条件时有助于控制光学成像系统的总屈折力以及总长度:0.5≤ΣPPR/│ΣNPR│≤3.0,较佳地,可满足下列条件:1≤ΣPPR/│ΣNPR│≤2.5。
光学成像系统可进一步包含一影像感测元件,其设置于成像面。影像感测元件有效感测区域对角线长度的一半(即为光学成像系统的成像高度或称最大像高)为HOI,第一透镜物侧面至成像面于光轴上的距离为HOS,其满足下列条件:HOS/HOI≤25;以及0.5≤HOS/f≤25。较佳地,可满足下列条件:1≤HOS/HOI≤20;以及1≤HOS/f≤20。藉此,可维持光学成像系统的小型化,以搭载于轻薄可携式的电子产品上。
另外,本发明提供的光学成像系统中,依需求可设置至少一光圈,以减少杂散光,有助于提升影像质量。
本发明提供的光学成像系统中,光圈配置可为前置光圈或中置光圈,其中前置光圈意即光圈设置于被摄物与第一透镜之间,中置光圈则表示光圈设置于第一透镜与成像面之间。若光圈为前置光圈,可使光学成像系统的出瞳与成像面产生较长的距离而容置更多光学元件,并可提高影像感测元件接收影像的效率;若为中置光圈,则有助于扩大系统的视场角,使光学成像系统具有广角镜头的优势。前述光圈至成像面间的距离为InS,其满足下列条件:0.2≤InS/HOS≤1.1。藉此,可同时兼顾维持光学成像系统的小型化以及具备广角的特性。
本发明提供的光学成像系统中,第一透镜物侧面至第五透镜像侧面间的距离为InTL,于光轴上所有具有屈折力的透镜的厚度总和为ΣTP,其满足下列条件:0.1≤ΣTP/InTL≤0.9。藉此,当可同时兼顾系统成像的对比度以及透镜制造的合格率并提供适当的后焦距以容置其他元件。
第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,其满足下列条件:0.01<│R1/R2│<100。藉此,第一透镜具备适当正屈折力强度,避免球差增加过速。较佳地,可满足下列条件:0.05<│R1/R2│<80。
第五透镜物侧面的曲率半径为R9,第五透镜像侧面的曲率半径为R10,其满足下列条件:-50<(R9-R10)/(R9+R10)<50。藉此,有利于修正光学成像系统所产生的像散。
第一透镜与第二透镜于光轴上的间隔距离为IN12,其满足下列条件:IN12/f≤5.0。藉此,有助于改善透镜的色差以提升其性能。
第四透镜与第五透镜于光轴上的间隔距离为IN45,其满足下列条件:IN45/f≤5.0。藉此,有助于改善透镜的色差以提升其性能。
第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≤(TP1+IN12)/TP2≤50.0。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
第四透镜与第五透镜于光轴上的厚度分别为TP4以及TP5,前述两透镜于光轴上的间隔距离为IN45,其满足下列条件:0.1≤(TP5+IN45)/TP4≤50.0。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
第二透镜、第三透镜与第四透镜于光轴上的厚度分别为TP2、TP3以及TP4,第二透镜与第三透镜于光轴上的间隔距离为IN23,第三透镜与第四透镜于光轴上的间隔距离为IN34,第一透镜物侧面至第五透镜像侧面间的距离为InTL,其满足下列条件:0.1≤TP3/(IN23+TP3+IN34)<1。藉此,有助层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
本发明提供的光学成像系统中,第五透镜物侧面的临界点C51与光轴的垂直距离为HVT51,第五透镜像侧面的临界点C52与光轴的垂直距离为HVT52,第五透镜物侧面于光轴上的交点至临界点C51位置于光轴的水平位移距离为SGC51,第五透镜像侧面于光轴上的交点至临界点C52位置于光轴的水平位移距离为SGC52,其满足下列条件:0mm≤HVT51≤3mm;0mm<HVT52≤6mm;0≤HVT51/HVT52;0mm≤│SGC51│≤0.5mm;0mm<│SGC52│≤2mm;以及0<│SGC52│/(│SGC52│+TP5)≤0.9。藉此,可有效修正离轴视场的像差。
本发明提供的光学成像系统满足下列条件:0.2≤HVT52/HOI≤0.9。较佳地,可满足下列条件:0.3≤HVT52/HOI≤0.8。藉此,有助于光学成像系统的外围视场的像差修正。
本发明提供的光学成像系统满足下列条件:0≤HVT52/HOS≤0.5。较佳地,可满足下列条件:0.2≤HVT52/HOS≤0.45。藉此,有助于光学成像系统的外围视场的像差修正。
本发明提供的光学成像系统中,第五透镜物侧面于光轴上的交点至第五透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI511表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI521表示,其满足下列条件:0<SGI511/(SGI511+TP5)≤0.9;0<SGI521/(SGI521+TP5)≤0.9。较佳地,可满足下列条件:0.1≤SGI511/(SGI511+TP5)≤0.6;0.1≤SGI521/(SGI521+TP5)≤0.6。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI512表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI522表示,其满足下列条件:0<SGI512/(SGI512+TP5)≤0.9;0<SGI522/(SGI522+TP5)≤0.9。较佳地,可满足下列条件:0.1≤SGI512/(SGI512+TP5)≤0.6;0.1≤SGI522/(SGI522+TP5)≤0.6。
第五透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF511表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF521表示,其满足下列条件:0.001mm≤│HIF511│≤5mm;0.001mm≤│HIF521│≤5mm。较佳地,可满足下列条件:0.1mm≤│HIF511│≤3.5mm;1.5mm≤│HIF521│≤3.5mm。
第五透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF512表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF522表示,其满足下列条件:0.001mm≤│HIF512│≤5mm;0.001mm≤│HIF522│≤5mm。较佳地,可满足下列条件:0.1mm≤│HIF522│≤3.5mm;0.1mm≤│HIF512│≤3.5mm。
第五透镜物侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF513表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第三接近光轴的反曲点与光轴间的垂直距离以HIF523表示,其满足下列条件:0.001mm≤│HIF513│≤5mm;0.001mm≤│HIF523│≤5mm。较佳地,可满足下列条件:0.1mm≤│HIF523│≤3.5mm;0.1mm≤│HIF513│≤3.5mm。
第五透镜物侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF514表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第四接近光轴的反曲点与光轴间的垂直距离以HIF524表示,其满足下列条件:0.001mm≤│HIF514│≤5mm;0.001mm≤│HIF524│≤5mm。较佳地,可满足下列条件:0.1mm≤│HIF524│≤3.5mm;0.1mm≤│HIF514│≤3.5mm。
本发明提供的光学成像系统的一种实施方式,可通过具有高色散系数与低色散系数的透镜交错排列,从而助于光学成像系统色差的修正。
上述非球面的方程式为:
z=ch2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+…(1)
其中,z为沿光轴方向在高度为h的位置以表面顶点作参考的位置值,k为锥面系数,c为曲率半径的倒数,且A4、A6、A8、A10、A12、A14、A16、A18以及A20为高阶非球面系数。
本发明提供的光学成像系统中,透镜的材质可为塑料或玻璃。当透镜材质为塑料时,可以有效降低生产成本与重量。当透镜的材质为玻璃时,则可以控制热效应并且增加光学成像系统屈折力配置的设计空间。此外,光学成像系统中的第一透镜至第五透镜的物侧面及像侧面可为非球面,其可获得较多的控制变量,除用以消减像差外,相较于传统玻璃透镜的使用甚至可减少透镜的使用数目,因此能有效降低本发明光学成像系统的总高度。
另外,本发明提供的光学成像系统中,若透镜表面为凸面,原则上表示透镜表面于近光轴处为凸面;若透镜表面为凹面,原则上表示透镜表面于近光轴处为凹面。
本发明提供的光学成像系统还可视需求应用于移动对焦的光学系统中,并兼具优良像差修正与良好成像质量的特色,从而扩大应用层面。
本发明提供的光学成像系统可进一步视需求包括一驱动模块,该驱动模块可与该多个透镜相耦合并使该多个透镜产生位移。前述驱动模块可以是音圈马达(VCM),用于带动镜头进行对焦,或者为光学防手振元件(OIS),用于降低拍摄过程因镜头振动所导致失焦的发生频率。
本发明提供的光学成像系统可进一步视需求令第一透镜、第二透镜、第三透镜、第四透镜及第五透镜中至少一透镜为能够滤除波长小于500nm的光线的光线滤除元件,其可通过该特定具滤除功能的透镜的至少一表面上镀膜或该透镜本身即由具可滤除短波长的材质所制作而达成。
根据上述实施方式,以下提出具体实施例并配合图式予以详细说明。
第一实施例
如图1A及图1B所示,其中图1A为依照本发明第一实施例的一种光学成像系统的示意图,图1B由左至右依序为第一实施例的光学成像系统的球差、像散及光学畸变曲线图。图1C为第一实施例的光学成像系统的子午面光扇以及弧矢面光扇,最长工作波长以及最短工作波长通过光圈边缘于0.7视场处的横向像差图。由图1A可知,光学成像系统由物侧至像侧依序包含第一透镜110、光圈100、第二透镜120、第三透镜130、第四透镜140、第五透镜150、红外线滤光片180、成像面190以及影像感测元件192。
第一透镜110具有负屈折力,且为塑料材质,其物侧面112为凸面,其像侧面114为凹面,并皆为非球面,且其物侧面112具有一反曲点。第一透镜物侧面的最大有效半径的轮廓曲线长度以ARS11表示,第一透镜像侧面的最大有效半径的轮廓曲线长度以ARS12表示。第一透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE11表示,第一透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE12表示。第一透镜于光轴上的厚度为TP1。
第一透镜物侧面于光轴上的交点至第一透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI111表示,第一透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI121表示,其满足下列条件:SGI111=1.96546mm;│SGI111│/(│SGI111│+TP1)=0.72369。
第一透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF111表示,第一透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF121表示,其满足下列条件:HIF111=3.38542mm;HIF111/HOI=0.90519。
第二透镜120具有正屈折力,且为塑料材质,其物侧面122为凸面,其像侧面124为凹面,并皆为非球面。第二透镜物侧面的最大有效半径的轮廓曲线长度以ARS21表示,第二透镜像侧面的最大有效半径的轮廓曲线长度以ARS22表示。第二透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE21表示,第二透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE22表示。第二透镜于光轴上的厚度为TP2。
第二透镜物侧面于光轴上的交点至第二透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI211表示,第二透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI221表示。
第二透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF211表示,第二透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF221表示。
第三透镜130具有正屈折力,且为塑料材质,其物侧面132为凸面,其像侧面134为凸面,并皆为非球面,且其物侧面132具有一反曲点。第三透镜物侧面的最大有效半径的轮廓曲线长度以ARS31表示,第三透镜像侧面的最大有效半径的轮廓曲线长度以ARS32表示。第三透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE31表示,第三透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE32表示。第三透镜于光轴上的厚度为TP3。
第三透镜物侧面于光轴上的交点至第三透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI311表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI321表示,其满足下列条件:SGI311=0.00388mm;│SGI311│/(│SGI311│+TP3)=0.00414。
第三透镜物侧面于光轴上的交点至第三透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI312表示,第三透镜像侧面于光轴上的交点至第三透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI322表示。
第三透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF311表示,第三透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF321表示,其满足下列条件:HIF311=0.38898mm;HIF311/HOI=0.10400。
第三透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF412表示,第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF422表示。
第四透镜140具有正屈折力,且为塑料材质,其物侧面142为凸面,其像侧面144为凸面,并皆为非球面,且其物侧面142具有一反曲点。第四透镜物侧面的最大有效半径的轮廓曲线长度以ARS41表示,第四透镜像侧面的最大有效半径的轮廓曲线长度以ARS42表示。第四透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE41表示,第四透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE42表示。第四透镜于光轴上的厚度为TP4。
第四透镜物侧面于光轴上的交点至第四透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI411表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI421表示,其满足下列条件:SGI421=0.06508mm;│SGI421│/(│SGI421│+TP4)=0.03459。
第四透镜物侧面于光轴上的交点至第四透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI412表示,第四透镜像侧面于光轴上的交点至第四透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI422表示。
第四透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF411表示,第四透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF421表示,其满足下列条件:HIF421=0.85606mm;HIF421/HOI=0.22889。
第四透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF412表示,第四透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF422表示。
第五透镜150具有负屈折力,且为塑料材质,其物侧面152为凹面,其像侧面154为凹面,并皆为非球面,且其物侧面152以及像侧面154均具有一反曲点。第五透镜物侧面的最大有效半径的轮廓曲线长度以ARS51表示,第五透镜像侧面的最大有效半径的轮廓曲线长度以ARS52表示。第五透镜物侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE51表示,第五透镜像侧面的1/2入射瞳直径(HEP)的轮廓曲线长度以ARE52表示。第五透镜于光轴上的厚度为TP5。
第五透镜物侧面于光轴上的交点至第五透镜物侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI511表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面最近光轴的反曲点之间与光轴平行的水平位移距离以SGI521表示,其满足下列条件:SGI511=-1.51505mm;│SGI511│/(│SGI511│+TP5)=0.70144;SGI521=0.01229mm;│SGI521│/(│SGI521│+TP5)=0.01870。
第五透镜物侧面于光轴上的交点至第五透镜物侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI512表示,第五透镜像侧面于光轴上的交点至第五透镜像侧面第二接近光轴的反曲点之间与光轴平行的水平位移距离以SGI522表示。
第五透镜物侧面最近光轴的反曲点与光轴间的垂直距离以HIF511表示,第五透镜像侧面最近光轴的反曲点与光轴间的垂直距离以HIF521表示,其满足下列条件:HIF511=2.25435mm;HIF511/HOI=0.60277;HIF521=0.82313mm;HIF521/HOI=0.22009。
第五透镜物侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF512表示,第五透镜像侧面第二接近光轴的反曲点与光轴间的垂直距离以HIF522表示。
红外线滤光片180为玻璃材质,其设置于第五透镜150及成像面190之间且不影响光学成像系统的焦距。
本实施例的光学成像系统中,光学成像系统的焦距为f,光学成像系统的入射瞳直径为HEP,光学成像系统中最大视角的一半为HAF,其数值如下:f=3.03968mm;f/HEP=1.6;以及HAF=50.001度与tan(HAF)=1.1918。
本实施例的光学成像系统中,第一透镜110的焦距为f1,第五透镜150的焦距为f5,其满足下列条件:f1=-9.24529mm;│f/f1│=0.32878;f5=-2.32439;以及│f1│>f5。
本实施例的光学成像系统中,第二透镜120至第五透镜150的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=17.3009mm;│f1│+│f5│=11.5697mm以及│f2│+│f3│+│f4│>│f1│+│f5│。
光学成像系统的焦距f与每一片具有正屈折力的透镜的焦距fp的比值为PPR,光学成像系统的焦距f与每一片具有负屈折力的透镜的焦距fn的比值为NPR,本实施例的光学成像系统中,所有具有正屈折力的透镜的PPR总和为ΣPPR=f/f2+f/f3+f/f4=1.86768,所有具有负屈折力的透镜的NPR总和为ΣNPR=f/f1+f/f5=-1.63651,ΣPPR/│ΣNPR│=1.14125。同时亦满足下列条件:│f/f2│=0.47958;│f/f3│=0.38289;│f/f4│=1.00521;│f/f5│=1.30773。
本实施例的光学成像系统中,第一透镜物侧面112至第五透镜像侧面154间的距离为InTL,第一透镜物侧面112至成像面190间的距离为HOS,光圈100至成像面180间的距离为InS,影像感测元件192有效感测区域对角线长的一半为HOI,第五透镜像侧面154至成像面190间的距离为BFL,其满足下列条件:InTL+BFL=HOS;HOS=10.56320mm;HOI=3.7400mm;HOS/HOI=2.8244;HOS/f=3.4751;InS=6.21073mm;以及InS/HOS=0.5880。
本实施例的光学成像系统中,于光轴上所有具有屈折力的透镜的厚度总和为ΣTP,其满足下列条件:ΣTP=5.0393mm;InTL=9.8514mm以及ΣTP/InTL=0.5115。藉此,当可同时兼顾系统成像的对比度以及透镜制造的合格率并提供适当的后焦距以容置其他元件。
本实施例的光学成像系统中,第一透镜物侧面112的曲率半径为R1,第一透镜像侧面114的曲率半径为R2,其满足下列条件:│R1/R2│=1.9672。藉此,第一透镜的具备适当正屈折力强度,避免球差增加过速。
本实施例的光学成像系统中,第五透镜物侧面152的曲率半径为R9,第五透镜像侧面154的曲率半径为R10,其满足下列条件:(R9-R10)/(R9+R10)=-1.1505。藉此,有利于修正光学成像系统所产生的像散。
本实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=f2+f3+f4=17.30090mm;以及f2/(f2+f3+f4)=0.36635。藉此,有助于适当分配第二透镜120的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=f1+f5=-11.56968mm;以及f5/(f1+f5)=0.20090。藉此,有助于适当分配第五透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。
本实施例的光学成像系统中,第一透镜110与第二透镜120于光轴上的间隔距离为IN12,其满足下列条件:IN12=3.19016mm;IN12/f=1.04951。藉此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第四透镜140与第五透镜150于光轴上的间隔距离为IN45,其满足下列条件:IN45=0.40470mm;IN45/f=0.13314。藉此,有助于改善透镜的色差以提升其性能。
本实施例的光学成像系统中,第一透镜110、第二透镜120以及第三透镜130于光轴上的厚度分别为TP1、TP2以及TP3,其满足下列条件:TP1=0.75043mm;TP2=0.89543mm;TP3=0.93225mm;以及(TP1+IN12)/TP2=4.40078。藉此,有助于控制光学成像系统制造的敏感度并提升其性能。
本实施例的光学成像系统中,第四透镜140与第五透镜150于光轴上的厚度分别为TP4以及TP5,前述两透镜于光轴上的间隔距离为IN45,其满足下列条件:TP4=1.81634mm;TP5=0.64488mm;以及(TP5+IN45)/TP4=0.57785。藉此,有助于控制光学成像系统制造的敏感度并降低系统总高度。
本实施例的光学成像系统中,第三透镜130与第四透镜140于光轴上的间隔距离为IN34,第一透镜物侧面112至第五透镜像侧面164间的距离为InTL,其满足下列条件:TP2/TP3=0.96051;TP3/TP4=0.51325;TP4/TP5=2.81657;以及TP3/(IN23+TP3+IN34)=0.43372。藉此有助于层层微幅修正入射光行进过程所产生的像差并降低系统总高度。
本实施例的光学成像系统中,第四透镜物侧面142于光轴上的交点至第四透镜物侧面142的最大有效半径位置于光轴的水平位移距离为InRS41,第四透镜像侧面144于光轴上的交点至第五透镜像侧面144的最大有效半径位置于光轴的水平位移距离为InRS42,第四透镜140于光轴上的厚度为TP4,其满足下列条件:InRS41=-0.09737mm;InRS42=-1.31040mm;│InRS41│/TP4=0.05361以及│InRS42│/TP4=0.72145。藉此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第四透镜物侧面142的临界点与光轴的垂直距离为HVT41,第四透镜像侧面144的临界点与光轴的垂直距离为HVT42,其满足下列条件:HVT41=1.41740mm;HVT42=0。
本实施例的光学成像系统中,第五透镜物侧面152于光轴上的交点至第五透镜物侧面152的最大有效半径位置于光轴的水平位移距离为InRS51,第五透镜像侧面154于光轴上的交点至第五透镜像侧面154的最大有效半径位置于光轴的水平位移距离为InRS52,第五透镜150于光轴上的厚度为TP5,其满足下列条件:InRS51=-1.63543mm;InRS52=-0.34495mm;│InRS51│/TP5=2.53604以及│InRS52│/TP5=0.53491。藉此,有利于镜片的制作与成型,并有效维持其小型化。
本实施例的光学成像系统中,第五透镜物侧面162的临界点与光轴的垂直距离为HVT51,第五透镜像侧面154的临界点与光轴的垂直距离为HVT52,其满足下列条件:HVT51=0;HVT52=1.35891mm;以及HVT51/HVT52=0。
本实施例的光学成像系统中,其满足下列条件:HVT52/HOI=0.36334。藉此,有助于光学成像系统的外围视场的像差修正。
本实施例的光学成像系统中,其满足下列条件:HVT52/HOS=0.12865。藉此,有助于光学成像系统的外围视场的像差修正。
本实施例的光学成像系统中,第三透镜以及第五透镜具有负屈折力,第三透镜的色散系数为NA3,第五透镜的色散系数为NA5,其满足下列条件:NA5/NA3=0.368966。藉此,有助于光学成像系统色差的修正。
本实施例的光学成像系统中,光学成像系统于结像时的TV畸变为TDT,结像时的光学畸变为ODT,其满足下列条件:│TDT│=0.63350%;│ODT│=2.06135%。
本实施例的光学成像系统中,正向子午面光扇图的最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以PLTA表示,其为-0.042mm,正向子午面光扇图的最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以PSTA表示,其为0.056mm,负向子午面光扇图的最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以NLTA表示,其为-0.011mm,负向子午面光扇图的最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以NSTA表示,其为-0.024mm。弧矢面光扇图的最长工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以SLTA表示,其为-0.013mm,弧矢面光扇图的最短工作波长通过光圈边缘入射在成像面上0.7视场的横向像差以SSTA表示,其为0.018mm。
再配合参照下列表一以及表二。
表二、第一实施例的非球面系数
依据表一及表二可得到下列轮廓曲线长度相关的数值:
表一为图1A、图1B和图1C第一实施例详细的结构数据,其中曲率半径、厚度、距离及焦距的单位为mm,且表面0-16依序表示由物侧至像侧的表面。表二为第一实施例中的非球面数据,其中,k表非球面曲线方程式中的锥面系数,A1-A20则表示各表面第1-20阶非球面系数。此外,以下各实施例表格对应各实施例的示意图与像差曲线图,表格中数据的定义皆与第一实施例的表一及表二的定义相同,在此不加赘述。
第二实施例
如图2A及图2B所示,其中图2A为依照本发明第二实施例的一种光学成像系统的示意图,图2B由左至右依序为第二实施例的光学成像系统的球差、像散及光学畸变曲线图。图2C为第二实施例的光学成像系统于0.7视场处的横向像差图。由图2A可知,光学成像系统由物侧至像侧依序包含第一透镜210、第二透镜220、第三透镜230、光圈200、第四透镜240、第五透镜250、红外线滤光片280、成像面290以及影像感测元件292。
第一透镜210具有负屈折力,且为塑料材质,其物侧面212为凸面,其像侧面214为凹面,并皆为非球面,且其物侧面212具有一反曲点。
第二透镜220具有负屈折力,且为塑料材质,其物侧面222为凹面,其像侧面224为凹面,并皆为非球面,且其物侧面222具有一反曲点。
第三透镜230具有正屈折力,且为塑料材质,其物侧面232为凸面,其像侧面234为凸面,并皆为非球面。
第四透镜240具有负屈折力,且为塑料材质,其物侧面242为凹面,其像侧面244为凹面,并皆为非球面,且其像侧面244具有一反曲点。
第五透镜250具有正屈折力,且为塑料材质,其物侧面252为凸面,其像侧面254为凸面。藉此,有利于缩短其后焦距以维持小型化。另外,第五透镜像侧面254具有一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外线滤光片280为玻璃材质,其设置于第五透镜250及成像面290之间且不影响光学成像系统的焦距。
第二实施例的光学成像系统中,第二透镜220至第五透镜250的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=21.3374mm;│f1│+│f5│=18.3654mm;以及│f2│+│f3│+│f4│>│f1│+│f5│。
第二实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=8.87594mm;以及f3/ΣPP=0.67791。藉此,有助于适当分配第三透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
第二实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-30.82683mm;以及f1/ΣNP=0.50302。藉此,有助于适当分配第一透镜的负屈折力至其他负透镜。
请配合参照下列表三以及表四。
表四、第二实施例的非球面系数
第二实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表三及表四可得到下列条件式数值:
第二实施例中,InTL/HOS=0.9163。
依据表三及表四可得到轮廓曲线长度相关的数值:
依据表三及表四可得到下列数值:
第三实施例
如图3A及图3B所示,其中图3A为依照本发明第三实施例的一种光学成像系统的示意图,图3B由左至右依序为第三实施例的光学成像系统的球差、像散及光学畸变曲线图。图3C为第三实施例的光学成像系统于0.7视场处的横向像差图。由图3A可知,光学成像系统由物侧至像侧依序包含第一透镜310、第二透镜320、第三透镜330、光圈300、第四透镜340、第五透镜350、红外线滤光片380、成像面390以及影像感测元件392。
第一透镜310具有负屈折力,且为塑料材质,其物侧面312为凸面,其像侧面314为凹面,并皆为非球面。
第二透镜320具有负屈折力,且为塑料材质,其物侧面322为凸面,其像侧面324为凹面,并皆为非球面,且其物侧面具有一反曲点。
第三透镜330具有正屈折力,且为塑料材质,其物侧面332为凸面,其像侧面334为凹面,并皆为非球面。
第四透镜340具有正屈折力,且为塑料材质,其物侧面342为凸面,其像侧面344为凸面,并皆为非球面,且其物侧面342具有一反曲点。
第五透镜350具有负屈折力,且为塑料材质,其物侧面352为凸面,其像侧面354为凹面。藉此,有利于缩短其后焦距以维持小型化。另外,其物侧面352具有两个反曲点以及像侧面354具有一反曲点,可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外线滤光片380为玻璃材质,其设置于第五透镜350及成像面390之间且不影响光学成像系统的焦距。
第三实施例的光学成像系统中,第二透镜320至第五透镜360的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=32.8735mm;│f1│+│f5│=50.1732mm;以及│f2│+│f3│+│f4│<│f1│+│f5│。
第三实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=27.87392mm;以及f3/ΣPP=0.87453mm。藉此,有助于适当分配第三透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
第三实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-55.17274mm;以及f1/ΣNP=0.61045。藉此,有助于适当分配第一透镜的负屈折力至其他负透镜。
请配合参照下列表五以及表六。
表六、第三实施例的非球面系数
第三实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表五及表六可得到下列条件式数值:
依据表五及表六可得到下列轮廓曲线长度相关的数值:
依据表五及表六可得到下列条件式数值:
第四实施例
如图4A及图4B所示,其中图4A为依照本发明第四实施例的一种光学成像系统的示意图,图4B由左至右依序为第四实施例的光学成像系统的球差、像散及光学畸变曲线图。图4C为第四实施例的光学成像系统于0.7视场处的横向像差图。由图4A可知,光学成像系统由物侧至像侧依序包含第一透镜410、光圈400、第二透镜420、第三透镜430、第四透镜440、第五透镜450、红外线滤光片480、成像面490以及影像感测元件492。
第一透镜410具有负屈折力,且为塑料材质,其物侧面412为凸面,其像侧面414为凹面,并皆为非球面。
第二透镜420具有负屈折力,且为塑料材质,其物侧面422为凸面,其像侧面424为凹面,并皆为非球面,其物侧面422以及像侧面424均具有一反曲点。
第三透镜430具有正屈折力,且为塑料材质,其物侧面432为凸面,其像侧面434为凸面,并皆为非球面,且其物侧面432具有一反曲点。
第四透镜440具有负屈折力,且为塑料材质,其物侧面442为凹面,其像侧面444为凹面,并皆为非球面。
第五透镜450具有正屈折力,且为塑料材质,其物侧面452为凸面,其像侧面454为凸面。藉此,有利于缩短其后焦距以维持小型化。
红外线滤光片480为玻璃材质,其设置于第五透镜450及成像面490之间且不影响光学成像系统的焦距。
第四实施例的光学成像系统中,第二透镜420至第五透镜450的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=24.2854mm;│f1│+│f5│=12.5933mm;以及│f2│+│f3│+│f4│>│f1│+│f5│。
第四实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=15.68241mm;以及f3/ΣPP=0.84738。藉此,有助于适当分配第三透镜的正屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
第四实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-33.93998mm;以及f1/ΣNP=0.42508。藉此,有助于适当分配第一透镜的负屈折力至其他负透镜。
请配合参照下列表七以及表八。
表八、第四实施例的非球面系数
第四实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表七及表八可得到下列条件式数值:
依据表七及表八可得到下列轮廓曲线长度相关的数值:
依据表七及表八可得到下列条件式数值:
第五实施例
如图5A及图5B所示,其中图5A为本发明第五实施例的一种光学成像系统的示意图,图5B由左至右依序为第五实施例的光学成像系统的球差、像散及光学畸变曲线图。图5C为第五实施例的光学成像系统于0.7视场处的横向像差图。由图5A可知,光学成像系统由物侧至像侧依序包含第一透镜510、第二透镜520、光圈500、第三透镜530、第四透镜540、第五透镜550、红外线滤光片580、成像面590以及影像感测元件592。
第一透镜510具有负屈折力,且为塑料材质,其物侧面512为凸面,其像侧面514为凹面,并皆为非球面,且其像侧面514具有两个反曲点。
第二透镜520具有负屈折力,且为塑料材质,其物侧面522为凹面,其像侧面524为凹面,并皆为非球面,且其物侧面522具有一反曲点。
第三透镜530具有正屈折力,且为塑料材质,其物侧面532为凸面,其像侧面534为凹面,并皆为非球面,且其像侧面534具有一反曲点。
第四透镜540具有正屈折力,且为塑料材质,其物侧面542为凸面,其像侧面544为凸面,并皆为非球面,且其物侧面542具有一反曲点。
第五透镜550具有负屈折力,且为塑料材质,其物侧面552为凹面,其像侧面554为凸面,且其物侧面552以及像侧面554均具有一反曲点。藉此,有利于缩短其后焦距以维持小型化。
红外线滤光片580为玻璃材质,其设置于第五透镜550及成像面590之间且不影响光学成像系统的焦距。
第五实施例的光学成像系统中,第二透镜520至第五透镜550的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=32.3540mm;│f1│+│f5│=17.2684mm;以及│f2│+│f3│+│f4│>│f1│+│f5│。
第五实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=15.68241mm;以及f3/ΣPP=0.84738。据此,有助于适当分配第三透镜的正屈折力至其他正透镜,以抑制入射光行进过程显著像差的产生。
第五实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-33.93998mm;以及f1/ΣNP=0.42508。据此,有助于适当分配第一透镜的负屈折力至其他负透镜。
请配合参照下列表九以及表十。
表十、第五实施例的非球面系数
第五实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表九及表十可得到下列条件式数值:
依据表九及表十可得到轮廓曲线长度相关的数值:
依据表九及表十可得到下列条件式数值:
第六实施例
如图6A及图6B所示,其中图6A为本发明第六实施例的一种光学成像系统的示意图,图6B由左至右依序为第六实施例的光学成像系统的球差、像散及光学畸变曲线图。图6C为第六实施例的光学成像系统于0.7视场处的横向像差图。由图6A可知,光学成像系统由物侧至像侧依序包含第一透镜610、第二透镜620、光圈600、第三透镜630、第四透镜640、第五透镜650、红外线滤光片680、成像面690以及影像感测元件692。
第一透镜610具有负屈折力,且为塑料材质,其物侧面612为凸面,其像侧面614为凹面,并皆为非球面,且其物侧面612以及像侧面614均具有一反曲点。
第二透镜620具有正屈折力,且为塑料材质,其物侧面622为凹面,其像侧面624为凹面,并皆为非球面,且其物侧面622具有一反曲点。
第三透镜630具有正屈折力,且为塑料材质,其物侧面632为凸面,其像侧面634为凸面,并皆为非球面,且其物侧面632具有一反曲点。
第四透镜640具有负屈折力,且为塑料材质,其物侧面642为凸面,其像侧面644为凸面,并皆为非球面,且其物侧面642具有两个反曲点以及像侧面644具有一反曲点。
第五透镜650具有正屈折力,且为塑料材质,其物侧面652为凹面,其像侧面654为凹面,且其物侧面652具有两个反曲点以及像侧面654具有一反曲点。藉此,有利于缩短其后焦距以维持小型化。另外,亦可有效地压制离轴视场光线入射的角度,进一步可修正离轴视场的像差。
红外线滤光片680为玻璃材质,其设置于第五透镜650及成像面690之间且不影响光学成像系统的焦距。
第六实施例的光学成像系统中,第二透镜620至第五透镜650的焦距分别为f2、f3、f4、f5,其满足下列条件:│f2│+│f3│+│f4│=8.4735mm;│f1│+│f5│=8.9495mm;以及│f2│+│f3│+│f4│<│f1│+│f5│。
第六实施例的光学成像系统中,所有具有正屈折力的透镜的焦距总和为ΣPP,其满足下列条件:ΣPP=11.46338mm;以及f3/ΣPP=0.15626。藉此,有助于适当分配第三透镜屈折力至其他正透镜,以抑制入射光线行进过程显著像差的产生。
第六实施例的光学成像系统中,所有具有负屈折力的透镜的焦距总和为ΣNP,其满足下列条件:ΣNP=-5.95967mm;以及f1/ΣNP=0.56425。藉此,有助于适当分配第一透镜的负屈折力至其他负透镜,以抑制入射光线行进过程显著像差的产生。
请配合参照下列表十一以及表十二。
表十二、第六实施例的非球面系数
第六实施例中,非球面的曲线方程式表示如第一实施例的形式。此外,下表参数的定义皆与第一实施例相同,在此不加以赘述。
依据表十一及表十二可得到下列条件式数值:
依据表十一及表十二可得到轮廓曲线长度相关的数值:
依据表十一及表十二可得到下列条件式数值:
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视本案权利要求范围所界定为准。
虽然本发明已参照其例示性实施例而特别地显示及描述,将为所属技术领域具通常知识者所理解的是,于不脱离本案权利要求范围及其等效物所定义的本发明的精神与范畴下可对其进行形式与细节上的各种变更。
Claims (22)
1.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
一第一透镜,具有负屈折力;
一第二透镜,具有负屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力,该第五透镜的物侧面与像侧面中的至少一面为凸面;以及
一成像面,
其中,该光学成像系统中具有屈折力的透镜个数为五个,该第一透镜至该第五透镜中至少一透镜的物侧面及像侧面皆为非球面,该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,该光学成像系统的可视角度的一半为HAF,其满足下列条件:1.2≤f/HEP≤1.8;0.9163≤InTL/HOS;以及0.9≤2×(ARE/HEP)≤1.5;70deg≤HAF≤100deg。
2.根据权利要求1所述的光学成像系统,其特征在于,该光学成像系统于结像时的TV畸变为TDT,该光学成像系统于该成像面上垂直于光轴具有一最大成像高度HOI,该光学成像系统的正向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≤50微米;PSTA≤50微米;NLTA≤50微米;NSTA≤50微米;SLTA≤50微米;以及SSTA≤50微米;│TDT│<150%。
3.根据权利要求1所述的光学成像系统,其特征在于,该第一透镜至该第五透镜中任一透镜的任一表面的最大有效半径以EHD表示,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面的最大有效半径处为终点,前述起点与终点间的轮廓曲线长度为ARS,其满足下列公式:0.9≤ARS/EHD≤2.0。
4.根据权利要求1所述的光学成像系统,其特征在于,该光学成像系统于该成像面上垂直于光轴具有一最大成像高度HOI,其满足下列关系式:0.5≤HOS/HOI≤25。
5.根据权利要求1所述的光学成像系统,其特征在于,该第五透镜的物侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE51,该第五透镜的像侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE52,第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≤ARE51/TP5≤15;以及0.05≤ARE52/TP5≤15。
6.根据权利要求1所述的光学成像系统,其特征在于,该第四透镜的物侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为为ARE41,该第四透镜的像侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE42,该第四透镜于光轴上的厚度为TP4,其满足下列条件:0.05≤ARE41/TP4≤15;以及0.05≤ARE42/TP4≤15。
7.根据权利要求1所述的光学成像系统,其特征在于,还包括一光圈,并且于该光圈至该成像面的距离为InS,其满足下列公式:0.2≤InS/HOS≤1.1。
8.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
一第一透镜,具有负屈折力;
一第二透镜,具有负屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力,该第五透镜的物侧面与像侧面中的至少一面为凸面;以及
一成像面,
其中,该光学成像系统中具有屈折力的透镜个数为五个,该第一透镜至该第五透镜中至少一透镜的至少一表面具有至少一反曲点,该第一透镜至该第五透镜中至少一透镜为塑料材质,并且该第一透镜至该第五透镜中至少一透镜的物侧面及像侧面皆为非球面,该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,该光学成像系统的可视角度的一半为HAF,其满足下列条件:1.2≤f/HEP≤1.8;0.9163≤InTL/HOS;以及0.9≤2×(ARE/HEP)≤1.5;70deg≤HAF≤100deg。
9.根据权利要求8所述的光学成像系统,其特征在于,该第一透镜至该第五透镜中任一透镜的任一表面的最大有效半径以EHD表示,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面的最大有效半径处为终点,前述起点与终点间的轮廓曲线长度为ARS,其满足下列公式:0.9≤ARS/EHD≤2.0。
10.根据权利要求8所述的光学成像系统,其特征在于,该光学成像系统于该成像面上垂直于光轴具有一最大成像高度HOI,该光学成像系统的正向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≤50微米;PSTA≤50微米;NLTA≤50微米;NSTA≤50微米;SLTA≤50微米;以及SSTA≤50微米。
11.根据权利要求8所述的光学成像系统,其特征在于,该第三透镜为塑料材质。
12.根据权利要求8所述的光学成像系统,其特征在于,该第一透镜与该第二透镜之间于光轴上的距离为IN12,且满足下列公式:0<IN12/f≤5.0。
13.根据权利要求8所述的光学成像系统,其特征在于,该第四透镜与该第五透镜之间于光轴上的距离为IN45,且满足下列公式:0<IN45/f≤5.0。
14.根据权利要求8所述的光学成像系统,其特征在于,该第四透镜与该第五透镜之间于光轴上的距离为IN45,该第四透镜与第五透镜于光轴上的厚度分别为TP4以及TP5,其满足下列条件:0.1≤(TP5+IN45)/TP4≤50。
15.根据权利要求8所述的光学成像系统,其特征在于,该第一透镜与该第二透镜之间于光轴上的距离为IN12,该第一透镜与第二透镜于光轴上的厚度分别为TP1以及TP2,其满足下列条件:0.1≤(TP1+IN12)/TP2≤50。
16.根据权利要求8所述的光学成像系统,其特征在于,该第一透镜、该第二透镜、该第三透镜、该第四透镜及该第五透镜中至少一透镜为能够滤除波长小于500nm的光线的光线滤除元件。
17.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
一第一透镜,具有负屈折力;
一第二透镜,具有负屈折力;
一第三透镜,具有正屈折力;
一第四透镜,具有屈折力;
一第五透镜,具有屈折力,该第五透镜的物侧面与像侧面中的至少一面为凸面;以及
一成像面,
其中,该光学成像系统中具有屈折力的透镜个数为五个,该第一透镜至该第五透镜中至少一透镜的至少一表面具有至少一反曲点,并且该第五透镜的物侧面及像侧面皆为非球面,该第一透镜至该第五透镜的焦距分别为f1、f2、f3、f4和f5,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该光学成像系统的最大视角的一半为HAF,该第一透镜物侧面至该成像面的距离为HOS,该第一透镜物侧面至该第五透镜像侧面于光轴上的距离为InTL,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,该光学成像系统的可视角度的一半为HAF,其满足下列条件:1.2≤f/HEP≤1.8;0.4≤│tan(HAF)│≤6.0;0.9163≤InTL/HOS以及0.9≤2×(ARE/HEP)≤1.5;70deg≤HAF≤100deg。
18.根据权利要求17所述的光学成像系统,其特征在于,该第一透镜至该第五透镜中任一透镜的任一表面的最大有效半径以EHD表示,该第一透镜至该第五透镜中任一透镜的任一表面与光轴的交点为起点,延着该表面的轮廓直到该表面的最大有效半径处为终点,前述起点与终点间的轮廓曲线长度为ARS,其满足下列公式:0.9≤ARS/EHD≤2.0。
19.根据权利要求17所述的光学成像系统,其特征在于,该光学成像系统于该成像面上垂直于光轴具有一最大成像高度HOI,其满足下列关系式:0.5≤HOS/HOI≤25。
20.根据权利要求17所述的光学成像系统,其特征在于,该第五透镜的物侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE51,该第五透镜的像侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE52,第五透镜于光轴上的厚度为TP5,其满足下列条件:0.05≤ARE51/TP5≤15;以及0.05≤ARE52/TP5≤15。
21.根据权利要求17所述的光学成像系统,其特征在于,该第四透镜的物侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为为ARE41,该第四透镜的像侧面于光轴上的交点为起点,延着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE42,该第四透镜于光轴上的厚度为TP4,其满足下列条件:0.05≤ARE41/TP4≤15;以及0.05≤ARE42/TP4≤15。
22.根据权利要求17所述的光学成像系统,其特征在于,该光学成像系统还包括一光圈、一影像感测元件以及一驱动模块,该影像感测元件设置于该成像面,并且于该光圈至该成像面的距离为InS,该驱动模块与该第一透镜至该第五透镜相耦合并使该第一透镜至该第五透镜产生位移,其满足下列公式:0.2≤InS/HOS≤1.1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104122331 | 2015-07-09 | ||
TW104122331A TWI594005B (zh) | 2015-07-09 | 2015-07-09 | 光學成像系統(一) |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106338811A CN106338811A (zh) | 2017-01-18 |
CN106338811B true CN106338811B (zh) | 2018-11-27 |
Family
ID=57730876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610329377.0A Active CN106338811B (zh) | 2015-07-09 | 2016-05-17 | 光学成像系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9835829B2 (zh) |
CN (1) | CN106338811B (zh) |
TW (1) | TWI594005B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI601973B (zh) * | 2015-07-15 | 2017-10-11 | 先進光電科技股份有限公司 | 光學成像系統(一) |
TWI604243B (zh) * | 2015-08-28 | 2017-11-01 | 先進光電科技股份有限公司 | 光學成像系統(三) |
TWI710814B (zh) * | 2016-03-10 | 2020-11-21 | 先進光電科技股份有限公司 | 光學成像系統(一) |
TWI606259B (zh) * | 2016-03-18 | 2017-11-21 | 先進光電科技股份有限公司 | 光學成像系統(一) |
TWI631363B (zh) * | 2016-06-02 | 2018-08-01 | 先進光電科技股份有限公司 | 光學成像系統(一) |
TWI642987B (zh) * | 2017-01-04 | 2018-12-01 | 先進光電科技股份有限公司 | 光學成像系統 |
JP6755073B2 (ja) | 2017-04-10 | 2020-09-16 | カンタツ株式会社 | 撮像レンズ |
US10459199B2 (en) * | 2017-07-05 | 2019-10-29 | Newmax Technology Co., Ltd. | Five-piece optical lens system with a wide field of view |
CN108196355B (zh) * | 2018-03-05 | 2019-08-23 | 嘉兴中润光学科技有限公司 | 光学定焦镜头 |
TWI697690B (zh) * | 2018-03-09 | 2020-07-01 | 先進光電科技股份有限公司 | 光學成像系統 |
CN110412717B (zh) * | 2018-04-28 | 2021-11-12 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN109633867B (zh) * | 2019-01-30 | 2024-04-09 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114706190A (zh) | 2022-03-29 | 2022-07-05 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291871A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106291876A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106291874A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201202780A (en) * | 2010-07-09 | 2012-01-16 | Genius Electronic Optical Co Ltd | Five-lens image lens and electronic device using the same |
WO2012132455A1 (ja) * | 2011-03-30 | 2012-10-04 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
TWI461731B (zh) * | 2012-05-18 | 2014-11-21 | Largan Precision Co Ltd | 影像鏡頭系統組 |
-
2015
- 2015-07-09 TW TW104122331A patent/TWI594005B/zh active
-
2016
- 2016-03-18 US US15/074,575 patent/US9835829B2/en active Active
- 2016-05-17 CN CN201610329377.0A patent/CN106338811B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291871A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106291876A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106291874A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
Also Published As
Publication number | Publication date |
---|---|
TW201702677A (zh) | 2017-01-16 |
TWI594005B (zh) | 2017-08-01 |
US20170010446A1 (en) | 2017-01-12 |
US9835829B2 (en) | 2017-12-05 |
CN106338811A (zh) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106547072B (zh) | 光学成像系统 | |
CN106556914B (zh) | 光学成像系统 | |
CN106483627B (zh) | 光学成像系统 | |
CN106855653B (zh) | 光学成像系统 | |
CN106249377B (zh) | 光学成像系统 | |
CN106291871B (zh) | 光学成像系统 | |
CN106338811B (zh) | 光学成像系统 | |
CN106707464B (zh) | 光学成像系统 | |
CN106291874B (zh) | 光学成像系统 | |
CN106199909B (zh) | 光学成像系统 | |
CN106483631B (zh) | 光学成像系统 | |
CN106168699B (zh) | 光学成像系统 | |
CN106405790B (zh) | 光学成像系统 | |
CN106199911B (zh) | 光学成像系统 | |
CN107132640B (zh) | 光学成像系统 | |
CN106468822B (zh) | 光学成像系统 | |
CN106353875B (zh) | 光学成像系统 | |
CN107085277B (zh) | 光学成像系统 | |
CN106680968B (zh) | 光学成像系统 | |
CN106443964B (zh) | 光学成像系统 | |
CN106468820B (zh) | 光学成像系统 | |
CN108279471A (zh) | 光学成像系统 | |
CN106483630B (zh) | 光学成像系统 | |
CN106291872B (zh) | 光学成像系统 | |
CN108957710A (zh) | 光学成像系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |