CN109633867B - 光学成像镜头 - Google Patents
光学成像镜头 Download PDFInfo
- Publication number
- CN109633867B CN109633867B CN201910091778.0A CN201910091778A CN109633867B CN 109633867 B CN109633867 B CN 109633867B CN 201910091778 A CN201910091778 A CN 201910091778A CN 109633867 B CN109633867 B CN 109633867B
- Authority
- CN
- China
- Prior art keywords
- lens
- optical imaging
- optical
- imaging lens
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 199
- 230000003287 optical effect Effects 0.000 claims abstract description 129
- 238000000926 separation method Methods 0.000 claims description 14
- 238000003384 imaging method Methods 0.000 description 74
- 230000004075 alteration Effects 0.000 description 33
- 201000009310 astigmatism Diseases 0.000 description 22
- 238000010586 diagram Methods 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 208000001644 thecoma Diseases 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学成像镜头,沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜,其物侧面为凸面;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,光学成像镜头的相对F数Fno满足Fno<1.50。
Description
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种包括五片透镜的光学成像镜头。
背景技术
随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的成像镜头的需求逐渐增大。一方面,由于例如智能手机等便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的成像镜头的高成像品质及小型化均提出了更高的要求。
为了满足小型化的要求,现有镜头通常配置的光圈数(F数)均在2.0或2.0以上,以兼顾小型化与良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对配套使用的摄像镜头提出了更高的要求,特别是在光线不足(如阴雨天、黄昏等)、手抖等情况下,F数为2.0或2.0以上的镜头已经无法满足更高阶的成像要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜,其物侧面为凸面;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,光学成像镜头的相对F数Fno可满足Fno<1.50。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足1.0<f1/f2<2.0。
在一个实施方式中,第五透镜的有效焦距f5与第四透镜的有效焦距f4可满足-1.0<f5/f4<1.0。
在一个实施方式中,第四透镜的物侧面的曲率半径R7与第二透镜的物侧面的曲率半径R3可满足1.0<R7/R3<3.0。
在一个实施方式中,第二透镜的像侧面的曲率半径R4与第三透镜的物侧面的曲率半径R5可满足0.5<R4/R5<2.0。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足1.0<R9/R10<3.0。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45与第三透镜和第四透镜在光轴上的间隔距离T34可满足0<T45/T34<1.0。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5可满足1.0≤CT4/CT5<2.5。
在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51可满足0<SAG31/SAG51<1.0。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1、第一透镜和第二透镜在光轴上的间隔距离T12以及第二透镜和第三透镜在光轴上的间隔距离T23可满足0.5<CT1/(T12+T23)<2.0。
在一个实施方式中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学成像镜头的总有效焦距f可满足0.5<f123/f<1.5。
在一个实施方式中,光学成像镜头的最大半视场角Semi-FOV可满足Semi-FOV<40°。
在一个实施方式中,光学成像镜头的工作波段可为850nm至950nm的光波波段。
在一个实施方式中,光学成像镜头还包括光阑,光阑至第五透镜的像侧面在光轴上的距离SD可满足3.0mm<SD<4.0mm。
另一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学成像镜头的总有效焦距f可满足0.5<f123/f<1.5。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第五透镜的有效焦距f5与第四透镜的有效焦距f4可满足-1.0<f5/f4<1.0。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第四透镜的物侧面的曲率半径R7与第二透镜的物侧面的曲率半径R3可满足1.0<R7/R3<3.0。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第二透镜的像侧面的曲率半径R4与第三透镜的物侧面的曲率半径R5可满足0.5<R4/R5<2.0。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足1.0<R9/R10<3.0。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,第一透镜在光轴上的中心厚度CT1、第一透镜和第二透镜在光轴上的间隔距离T12以及第二透镜和第三透镜在光轴上的间隔距离T23可满足0.5<CT1/(T12+T23)<2.0。
又一方面,本申请提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧可依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面。其中,光学成像镜头的最大半视场角Semi-FOV可满足Semi-FOV<40°。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、大孔径、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线;
图19示出了根据本申请实施例10的光学成像镜头的结构示意图;
图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜可具有负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其物侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
具有负光焦度的第一透镜,其像侧面为凹面,有利于提高轴外视场的相对照度。具有负光焦度的第二透镜,有利于增大视场角,同时也有利于压缩光阑位置光线入射角,减小光瞳像差,提高成像质量。第四透镜的物侧面为凸面,有利于减小前几片镜所产生的像散。具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面,有助于缩短系统总长实现模组小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式Fno<1.50,其中,Fno为光学成像镜头的相对F数。更具体地,Fno进一步可满足1.40≤Fno≤1.45,例如,1.42≤Fno≤1.43。通过合理设置F数的范围,可以使光学系统获得更多的进光量,有助于在暗视场环境下和拍摄移动物体时获得较好的成像效果。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.0<f1/f2<2.0,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f1和f2进一步可满足1.30≤f1/f2≤1.97。通过合理约束前两片透镜的光焦度的比值范围,能合理的控制前两片透镜产生的正负球差并使得平衡后的残差在较小的合理范围,以有利于后面光学组员以较小的负担来平衡剩余的球差,进而使得光学系统较容易的保证轴上视场区域的像质。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式-1.0<f5/f4<1.0,其中,f5为第五透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f5和f4进一步可满足-0.77≤f5/f4≤0.67。通过合理控制第四透镜和第五透镜有效焦距的比值,能够合理分配系统的光焦度,使得前组透镜和后组透镜的正负球差相互抵消。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.0<R7/R3<3.0,其中,R7为第四透镜的物侧面的曲率半径,R3为第二透镜的物侧面的曲率半径。更具体地,R7和R3进一步可满足1.09≤R7/R3≤2.70。通过约束第四透镜物侧面的曲率半径和第二透镜物侧面的曲率半径的比值范围,来合理控制该两个组员的慧差贡献率,进而能够很好的平衡前端组员所产生的慧差,获得良好的成像质量。可选地,第四透镜的物侧面为凸面,第二透镜的物侧面为凸面。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.5<R4/R5<2.0,其中,R4为第二透镜的像侧面的曲率半径,R5为第三透镜的物侧面的曲率半径。更具体地,R4和R5进一步可满足0.96≤R4/R5≤1.76。通过控制第二透镜像侧面的曲率半径和第三透镜物侧面的曲率半径的比值范围,能够合理控制边缘视场在两个表面处的总的偏转角度,从而能够有效的降低系统的敏感性。可选地,第二透镜的像侧面为凹面,第三透镜的物侧面为凸面。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.0<R9/R10<3.0,其中,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R9和R10进一步可满足1.45≤R9/R10≤2.66。通过合理控制第五透镜的物侧面和像侧面的曲率半径的比值,能够调控光线在第五透镜表面的投影高度,进而控制第五透镜像侧面的口径。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0<T45/T34<1.0,其中,T45为第四透镜和第五透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,T45和T34进一步可满足0.17≤T45/T34≤0.70。通过合理约束第四透镜和第五透镜的间距以及第三透镜和第四透镜的间距,能够有效的保证系统的场曲和畸变量,从而使得光学系统的轴外视场具有良好的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.0≤CT4/CT5<2.5,其中,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度。更具体地,CT4和CT5进一步可满足1.00≤CT4/CT5≤2.02。通过控制第四透镜和第五透镜的中心厚度的比值,来控制系统各视场的畸变贡献量在合理的范围内,提升成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0<SAG31/SAG51<1.0,其中,SAG31为第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离,SAG51为第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离。更具体地,SAG31和SAG51进一步可满足0.19≤SAG31/SAG51≤0.59。通过控制第三物镜物侧面和第五透镜物侧面的矢高之比在一定范围内,有利于降低第三物镜和第五物镜的敏感度,方便镜片的加工成型。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.5<CT1/(T12+T23)<2.0,其中,CT1为第一透镜在光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离,T23为第二透镜和第三透镜在光轴上的间隔距离。更具体地,CT1、T12和T23进一步可满足0.75≤CT1/(T12+T23)≤1.71。通过合理控制CT1与T12和T23之和的比值,可以有效的限制第一透镜、第二透镜和第三透镜的位置,有利于实现镜头结构的紧凑型,同时有利于矫正轴外像差,提升系统整体像质。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.5<f123/f<1.5,其中,f123为第一透镜、第二透镜和第三透镜的组合焦距,f为光学成像镜头的总有效焦距。更具体地,f123和f进一步可满足0.99≤f123/f≤1.37。通过合理约束第一、第二、第三透镜的组合焦距与系统总有效焦距的比值,能够使得第一、第二、第三透镜组合后作为一个具有合理正光焦度的光学组元群,来与具有负的光焦度的光学组员群产生的像差进行平衡,进而获得良好的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式Semi-FOV<40°,其中,Semi-FOV为光学成像镜头的最大半视场角。更具体地,Semi-FOV进一步可满足31.4°≤Semi-FOV≤36.9°。通过限制系统的视场角在一定的范围内,可以有效的控制系统的焦距,有利于像质的提升。
根据本申请的光学成像镜头的工作波段为约850nm至约950nm的近红外波段,使得本申请的光学成像镜头能够适用于红外应用场景。
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升透镜组的成像质量。光阑的布置位置不局限于第二透镜和第三透镜之间。可选地,光阑还可设置在第三透镜和第四透镜之间。光阑位置的变化能够满足对矫正慧差、像散、畸变和垂轴色差等轴外像差的不同需求。光阑至第五透镜的像侧面在光轴上的距离SD可满足3.0mm<SD<4.0mm,例如,3.04mm≤SD≤3.82mm。合理配置光阑位置,能够矫正像差,提高镜头的成像质量。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学镜头还可具有超薄、大孔径、高成像质量、能够应用于红外波段等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
在实施例1中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 8.2180E-02 | -3.6143E-04 | 2.1133E-02 | -1.3292E-03 | 7.4876E-04 | 4.2755E-05 | 3.8543E-05 | 1.9551E-06 | -9.8984E-06 |
S2 | 6.3778E-02 | -1.0964E-02 | 3.8702E-02 | 3.3001E-03 | 2.9631E-04 | 6.3704E-04 | -3.0609E-04 | -1.9172E-04 | -1.2348E-04 |
S3 | -2.9825E-02 | -3.7532E-02 | -1.4906E-03 | 2.6784E-03 | -6.6004E-04 | 8.9844E-05 | -8.0146E-05 | 3.8563E-05 | -2.9752E-06 |
S4 | -2.0374E-01 | 1.4993E-02 | -7.3809E-03 | 2.9601E-03 | -8.4648E-04 | 1.8485E-04 | -5.3920E-05 | 2.4682E-05 | -4.6612E-06 |
S5 | -2.6529E-01 | 2.8714E-02 | -6.9847E-03 | 2.0342E-03 | -4.6003E-04 | 1.2164E-04 | -5.3964E-05 | 1.7543E-05 | -2.4122E-06 |
S6 | -9.1339E-02 | -8.2071E-03 | 2.5393E-04 | -9.2863E-05 | 8.3224E-05 | -6.7200E-05 | 6.0217E-06 | 4.8301E-06 | -1.5713E-06 |
S7 | -3.3157E-01 | -1.0922E-01 | -2.4278E-02 | -4.1050E-03 | -9.1885E-04 | -6.5330E-04 | -4.8733E-04 | -2.1021E-04 | -5.4340E-05 |
S8 | -2.7981E-01 | -6.6297E-02 | -7.3846E-03 | 1.1434E-03 | 3.0112E-04 | -2.6103E-05 | -1.1133E-05 | -4.3884E-06 | 2.5220E-05 |
S9 | -1.3390E+00 | 1.7984E-01 | -1.0977E-02 | -7.0022E-03 | 5.6234E-03 | 2.3704E-03 | 9.8447E-03 | 3.7799E-03 | 2.3331E-03 |
S10 | -1.5754E+00 | 1.2813E-01 | -3.6705E-02 | 4.8312E-02 | 1.7958E-02 | 2.7069E-02 | 2.7212E-02 | 1.5002E-02 | 6.4784E-03 |
表2
表3给出了实施例1中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
f1(mm) | -30.00 | f(mm) | 3.90 |
f2(mm) | -16.00 | TTL(mm) | 5.33 |
f3(mm) | 3.18 | ImgH(mm) | 2.54 |
f4(mm) | 6.22 | Semi-FOV(°) | 33.2 |
f5(mm) | -4.45 | Fno | 1.43 |
表3
实施例1中的光学成像镜头满足以下关系:
f1/f2=1.88,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距;
f5/f4=-0.72,其中,f5为第五透镜E5的有效焦距,f4为第四透镜E4的有效焦距;
R7/R3=1.28,其中,R7为第四透镜E4的物侧面S7的曲率半径,R3为第二透镜E2的物侧面S3的曲率半径;
R4/R5=1.76,其中,R4为第二透镜E2的像侧面S4的曲率半径,R5为第三透镜E3的物侧面S5的曲率半径;
R9/R10=2.07,其中,R9为第五透镜E5的物侧面S9的曲率半径,R10为第五透镜E5的像侧面S10的曲率半径;
T45/T34=0.61,其中,T45为第四透镜E4和第五透镜E5在光轴上的间隔距离,T34为第三透镜E3和第四透镜E4在光轴上的间隔距离;
CT4/CT5=2.02,其中,CT4为第四透镜E4在光轴上的中心厚度,CT5为第五透镜E5在光轴上的中心厚度;
SAG31/SAG51=0.48,其中,SAG31为第三透镜E3的物侧面S5和光轴的交点至第三透镜E3的物侧面S5的有效半径顶点的轴上距离,SAG51为第五透镜E5的物侧面S9和光轴的交点至第五透镜E5的物侧面S9的有效半径顶点的轴上距离;
CT1/(T12+T23)=1.58,其中,CT1为第一透镜E1在光轴上的中心厚度,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离,T23为第二透镜E2和第三透镜E3在光轴上的间隔距离;
f123/f=1.35,其中,f123为第一透镜E1、第二透镜E2和第三透镜E3的组合焦距,f为光学成像镜头的总有效焦距。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图2D示出了实施例1的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表4
在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.0240E-01 | -1.3508E-02 | 2.4150E-02 | -1.3332E-03 | 7.0237E-04 | -3.1378E-04 | -5.7330E-06 | -3.7430E-05 | 3.0121E-06 |
S2 | 2.6604E-02 | -5.7253E-03 | 4.3435E-02 | 7.5501E-03 | -9.0437E-04 | -3.5931E-05 | -7.6015E-04 | -3.9994E-04 | -2.0738E-04 |
S3 | -1.0759E-02 | -3.6268E-02 | -8.1439E-04 | 3.0440E-03 | -4.9049E-04 | -2.0206E-06 | -7.5978E-05 | 2.9044E-05 | 4.7918E-07 |
S4 | -1.9007E-01 | 2.0802E-02 | -9.3505E-03 | 3.3307E-03 | -9.1289E-04 | 2.3256E-04 | -8.1656E-05 | 3.2553E-05 | -5.3995E-06 |
S5 | -2.6090E-01 | 2.9378E-02 | -8.2501E-03 | 1.9998E-03 | -5.1480E-04 | 1.3789E-04 | -4.7882E-05 | 1.2755E-05 | -1.6766E-06 |
S6 | -8.0419E-02 | -8.1478E-03 | -6.6603E-04 | -1.6510E-04 | 7.4702E-05 | -4.5212E-05 | 7.8739E-06 | -2.6757E-07 | -1.3987E-07 |
S7 | -3.4531E-01 | -1.1701E-01 | -2.4274E-02 | 2.3929E-03 | 4.9602E-03 | 3.1728E-03 | 1.1724E-03 | 2.8183E-04 | 1.9358E-05 |
S8 | -3.2493E-01 | -6.4798E-02 | -9.6639E-03 | 5.2544E-03 | 1.1850E-03 | 5.2893E-04 | 6.4045E-05 | 2.4018E-05 | -8.9881E-08 |
S9 | -1.0829E+00 | 6.2360E-02 | 3.2659E-02 | -1.2616E-02 | 3.3656E-03 | -4.1177E-04 | 1.0549E-02 | 5.5963E-03 | 2.9257E-03 |
S10 | -1.7931E+00 | 1.5705E-01 | -8.1735E-02 | 2.0052E-02 | -1.7965E-02 | -5.9014E-03 | 2.7046E-03 | 4.3032E-03 | 2.9021E-03 |
表5
表6给出了实施例2中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图4D示出了实施例2的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表7
在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.0066E-01 | -1.3766E-02 | 1.5430E-02 | 2.0743E-04 | 2.7631E-04 | 8.0864E-07 | 9.0975E-05 | 5.0978E-05 | 2.5897E-05 |
S2 | 5.0412E-02 | -2.4862E-02 | -3.0669E-03 | 2.3294E-03 | -1.8616E-03 | -6.4558E-04 | -5.6682E-04 | -1.3831E-04 | -5.6473E-05 |
S3 | -6.8972E-02 | -5.4287E-02 | 2.6979E-04 | 2.9816E-03 | 2.3925E-04 | -4.6442E-04 | 1.2064E-04 | 8.0289E-05 | 1.1234E-04 |
S4 | -2.3822E-01 | 2.2652E-02 | -6.3069E-03 | 3.4791E-03 | -4.2740E-04 | 2.5393E-04 | 3.5456E-05 | 5.5690E-05 | 2.9119E-06 |
S5 | -3.1792E-01 | 2.2801E-02 | -7.9875E-03 | 1.0243E-03 | -6.2430E-04 | -7.6873E-05 | -6.1550E-05 | 7.1936E-06 | -1.1405E-05 |
S6 | -1.0888E-01 | -1.0240E-02 | -2.1049E-03 | -8.0369E-04 | -1.7152E-04 | -1.3044E-04 | -1.3705E-05 | -1.3259E-06 | 2.7736E-07 |
S7 | -2.0188E-01 | -6.9308E-02 | -2.0583E-02 | -6.3130E-03 | -1.6988E-03 | -1.6525E-04 | 1.5100E-04 | 1.2121E-04 | 3.4209E-05 |
S8 | -2.9940E-01 | -9.7549E-02 | -1.1149E-02 | 5.2353E-03 | 3.6722E-03 | 1.7062E-03 | 6.2981E-04 | 1.9381E-04 | 4.9952E-05 |
S9 | -1.1446E+00 | 1.1875E-01 | 1.9169E-02 | 8.7860E-03 | 7.2336E-03 | -6.6360E-03 | -4.0999E-04 | -9.4621E-04 | 9.0466E-04 |
S10 | -1.6579E+00 | 2.5126E-01 | -7.2264E-02 | 3.8425E-02 | -1.4850E-02 | -3.8539E-03 | -2.4602E-03 | 1.9718E-04 | 1.0688E-03 |
表8
表9给出了实施例3中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图6D示出了实施例3的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表10
在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.6850E-01 | -8.5116E-04 | 6.3384E-03 | 1.7628E-03 | 9.8856E-06 | 1.2741E-04 | 1.0024E-05 | 3.5390E-05 | 1.4687E-05 |
S2 | 9.9740E-02 | -1.3464E-02 | -1.6562E-02 | -2.0810E-03 | -3.6769E-03 | -1.1697E-03 | -7.0137E-04 | -1.5410E-04 | -4.7863E-05 |
S3 | -7.9232E-02 | -6.1012E-02 | 1.1620E-03 | 5.3907E-03 | 2.6603E-03 | 5.7851E-04 | 4.2181E-04 | 1.1766E-04 | 1.0614E-04 |
S4 | -2.4684E-01 | 1.8453E-02 | -3.6334E-04 | 4.5806E-03 | 5.9795E-04 | 5.9234E-04 | 2.4470E-04 | 1.1010E-04 | 1.8105E-05 |
S5 | -3.1690E-01 | 2.4558E-02 | -2.1981E-03 | 2.5050E-03 | -5.8099E-05 | 6.5042E-05 | 2.5073E-05 | 3.5102E-05 | -1.4408E-05 |
S6 | -1.1686E-01 | -7.5372E-03 | 5.2020E-04 | 4.1054E-04 | 2.5067E-04 | 3.6099E-05 | 5.9424E-05 | 2.4646E-05 | -1.3528E-06 |
S7 | -2.5512E-01 | -8.1214E-02 | -2.0152E-02 | -4.8554E-03 | -1.0311E-03 | -1.2358E-04 | -3.0129E-05 | -1.6711E-05 | -1.8014E-05 |
S8 | -3.8313E-01 | -8.0467E-02 | -3.3444E-03 | 5.5457E-03 | 3.4643E-03 | 1.8084E-03 | 8.2579E-04 | 2.6881E-04 | 9.2753E-05 |
S9 | -1.1307E+00 | 1.7298E-01 | -6.1764E-03 | 1.0670E-03 | 1.6240E-03 | -2.1790E-03 | 6.7033E-04 | -3.0914E-04 | 5.2198E-05 |
S10 | -1.6293E+00 | 2.5402E-01 | -9.5665E-02 | 3.7017E-02 | -1.4853E-02 | 7.8561E-04 | -2.6156E-03 | -3.6590E-04 | -2.3256E-04 |
表11
表12给出了实施例4中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图8D示出了实施例4的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -4.9286E-02 | 2.7076E-02 | 3.9528E-03 | -2.6713E-04 | 1.9768E-04 | 1.3341E-04 | -6.5511E-05 | 1.6835E-05 | -2.6508E-05 |
S2 | -5.2846E-02 | 3.6814E-02 | 2.6092E-02 | 7.5441E-03 | 2.5204E-03 | 1.0241E-03 | -7.8529E-04 | -2.5217E-04 | -2.4620E-04 |
S3 | -2.0247E-02 | -3.8199E-02 | -1.4876E-03 | 1.8457E-03 | -4.5487E-04 | 2.3296E-04 | -7.4694E-05 | 3.2761E-05 | -4.3790E-06 |
S4 | -2.0376E-01 | 1.3046E-02 | -6.8860E-03 | 2.9635E-03 | -9.0023E-04 | 2.3915E-04 | -6.9318E-05 | 2.6668E-05 | -4.8957E-06 |
S5 | -2.7444E-01 | 2.6551E-02 | -6.7732E-03 | 2.0721E-03 | -4.6089E-04 | 1.1374E-04 | -4.7547E-05 | 1.6936E-05 | -2.6877E-06 |
S6 | -1.0688E-01 | -7.0608E-03 | 1.7244E-04 | 1.6461E-05 | 7.8733E-05 | -5.5499E-05 | 8.9588E-06 | 2.9078E-06 | -1.1362E-06 |
S7 | -3.7288E-01 | -1.1568E-01 | -2.2725E-02 | -3.5527E-03 | -1.5006E-03 | -1.3246E-03 | -8.9265E-04 | -3.6223E-04 | -8.6075E-05 |
S8 | -3.0875E-01 | -5.7786E-02 | -2.9405E-03 | 3.3357E-03 | 9.6585E-04 | 2.8101E-04 | 9.2321E-05 | 3.7463E-05 | 3.0229E-05 |
S9 | -1.4066E+00 | 1.8072E-01 | -2.4759E-03 | -1.0068E-02 | 1.0579E-02 | 2.1594E-03 | 1.0470E-02 | 3.7139E-03 | 2.5102E-03 |
S10 | -1.9711E+00 | 1.9546E-01 | -6.4704E-02 | 5.9401E-02 | 1.9004E-02 | 3.6973E-02 | 3.3703E-02 | 1.8748E-02 | 7.4644E-03 |
表14
表15给出了实施例5中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图10D示出了实施例5的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表16
在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.8498E-02 | -4.7098E-02 | 1.9972E-02 | -1.8299E-03 | 2.2550E-04 | -4.0939E-04 | 4.7915E-05 | -2.9053E-05 | 2.0589E-05 |
S2 | 3.9952E-02 | -3.5555E-02 | 1.6916E-02 | 6.0868E-03 | 2.6176E-04 | 2.3033E-04 | 9.6140E-05 | 7.5668E-05 | -7.1270E-06 |
S3 | 1.4496E-02 | -2.3230E-02 | 2.4248E-03 | 6.8046E-03 | -6.3598E-04 | -1.9113E-04 | -1.3034E-04 | 8.8522E-05 | 1.1290E-05 |
S4 | -1.9750E-01 | 2.2653E-02 | -9.4734E-03 | 3.4515E-03 | -8.7328E-04 | 2.0229E-04 | -7.5940E-05 | 3.2675E-05 | -7.3734E-06 |
S5 | -3.2543E-01 | 2.7822E-02 | -1.7749E-02 | 1.8167E-03 | -1.6215E-03 | 5.0984E-05 | -2.0057E-04 | -2.4939E-06 | -3.2924E-05 |
S6 | -4.6264E-02 | -3.5823E-02 | -8.2752E-03 | -1.9437E-03 | -4.1139E-04 | -2.6317E-04 | -4.1078E-05 | -2.9494E-05 | -1.2125E-05 |
S7 | -2.5210E-01 | -5.3294E-02 | -5.5654E-03 | 2.1859E-03 | 1.0466E-03 | 6.9267E-04 | -6.2943E-05 | -5.4016E-05 | -8.3784E-05 |
S8 | -3.2429E-01 | -3.4863E-02 | 1.2855E-02 | 1.8766E-02 | 3.2869E-03 | 1.0470E-03 | -8.4443E-04 | -2.2857E-04 | -3.1018E-04 |
S9 | -7.7579E-01 | 7.4004E-02 | -1.9598E-03 | 2.5559E-02 | 8.5510E-04 | -1.2172E-03 | -1.5680E-03 | 1.4824E-04 | -7.4588E-05 |
S10 | -1.5442E+00 | 2.3151E-01 | -1.0549E-01 | 2.7727E-02 | -1.6096E-02 | 3.8449E-03 | -2.7092E-03 | 4.7050E-05 | -1.5118E-03 |
表17
表18给出了实施例6中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图12D示出了实施例6的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表19
在实施例7中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 6.0997E-02 | -3.4782E-02 | 2.3756E-02 | -1.8806E-03 | -5.5958E-04 | -7.3751E-04 | 4.9702E-05 | 4.2142E-05 | 7.2771E-05 |
S2 | 4.2811E-02 | -1.8916E-02 | 2.1052E-02 | 1.3615E-02 | 2.7819E-03 | 1.3061E-03 | 2.3783E-04 | 1.4897E-04 | 1.5004E-05 |
S3 | -4.3527E-02 | -4.2708E-02 | 4.2127E-03 | 4.5294E-03 | 3.5197E-04 | -6.3220E-04 | -1.0660E-04 | -2.8770E-05 | 7.2783E-05 |
S4 | -2.2439E-01 | 1.5092E-02 | -6.9677E-03 | 2.8194E-03 | -8.0736E-04 | 1.5581E-04 | -6.4873E-05 | 1.8943E-05 | -8.8673E-06 |
S5 | -2.8854E-01 | 1.1228E-02 | -1.8664E-02 | -1.9014E-03 | -2.8239E-03 | -8.2281E-04 | -4.9451E-04 | -1.5549E-04 | -6.7345E-05 |
S6 | -1.7680E-02 | -3.5744E-02 | -1.3278E-02 | -4.1798E-03 | -1.5179E-03 | -6.6110E-04 | -1.8787E-04 | -6.8979E-05 | -1.3809E-05 |
S7 | -2.6298E-01 | -6.1994E-02 | -1.3177E-02 | -1.5366E-03 | -1.1697E-04 | 5.6286E-04 | 1.3061E-04 | 7.9139E-05 | -4.1339E-05 |
S8 | -3.9679E-01 | -3.5575E-02 | 5.8637E-03 | 2.1533E-02 | 4.3890E-03 | 2.0214E-03 | -9.3260E-04 | -2.6644E-04 | -4.1119E-04 |
S9 | -8.5013E-01 | 7.1723E-02 | 6.0310E-03 | 2.0426E-02 | 4.3745E-03 | -1.2554E-03 | -1.2180E-03 | -8.9354E-05 | -4.3218E-05 |
S10 | -1.7009E+00 | 2.9773E-01 | -1.0553E-01 | 2.8501E-02 | -1.6400E-02 | 3.6444E-03 | -1.5540E-03 | 2.5224E-04 | -1.1307E-03 |
表20
表21给出了实施例7中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图14D示出了实施例7的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表22
在实施例8中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 7.5900E-02 | -5.9383E-03 | 1.7702E-02 | -3.8684E-04 | 2.7529E-04 | 1.2044E-04 | 5.7412E-05 | 6.6225E-05 | 1.9219E-05 |
S2 | 6.2315E-02 | -2.9994E-02 | 2.3746E-03 | 1.7558E-03 | -1.3770E-03 | -2.0387E-04 | -3.5990E-04 | -6.6012E-05 | -4.5038E-05 |
S3 | -7.3238E-02 | -4.6036E-02 | -1.0908E-03 | 4.5106E-03 | -1.0542E-04 | -1.4036E-04 | -1.1641E-04 | -7.2243E-06 | 1.2381E-05 |
S4 | -2.4153E-01 | 2.7789E-02 | -6.9905E-03 | 4.5803E-03 | -7.0650E-04 | 2.9783E-04 | -2.4253E-05 | 5.0887E-05 | -1.0442E-05 |
S5 | -3.3647E-01 | 3.1657E-02 | -6.9598E-03 | 1.9915E-03 | -5.0182E-04 | 8.2710E-05 | -4.4457E-05 | 2.3194E-05 | 1.5042E-06 |
S6 | -1.0858E-01 | -4.7752E-03 | 4.1779E-05 | -2.2020E-04 | 4.9385E-05 | -4.1198E-05 | 7.7801E-06 | -1.3876E-05 | 1.3629E-05 |
S7 | -1.6518E-01 | -4.6823E-02 | -8.6150E-03 | -4.0407E-04 | 3.4426E-04 | 2.5965E-04 | 2.8235E-05 | 1.9022E-05 | -1.3090E-05 |
S8 | -2.5019E-01 | -6.8616E-02 | -3.1306E-03 | 4.3426E-03 | 1.5913E-03 | 3.7371E-04 | 3.2328E-05 | 3.8326E-05 | 1.2555E-05 |
S9 | -1.2388E+00 | 1.4858E-01 | -4.1608E-03 | 3.0739E-04 | 3.1556E-04 | -4.3582E-03 | 1.1467E-03 | 4.7376E-04 | 8.5438E-04 |
S10 | -1.5301E+00 | 1.6089E-01 | -7.9049E-02 | 2.4130E-02 | -1.5038E-02 | -1.5099E-03 | 1.3398E-03 | 2.8697E-03 | 1.7816E-03 |
表23
表24给出了实施例8中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图16D示出了实施例8的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表25
在实施例9中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 9.7938E-02 | 1.2568E-02 | 2.6695E-02 | 4.0337E-04 | 5.3881E-03 | 4.3381E-03 | 2.4056E-03 | 1.0466E-03 | 1.6987E-04 |
S2 | 6.4345E-05 | -5.3920E-02 | 2.0523E-02 | 2.6050E-04 | -4.3965E-04 | 2.2075E-03 | 1.0244E-03 | 4.9371E-04 | 2.9781E-05 |
S3 | -1.0294E-01 | -4.9401E-02 | 4.9016E-03 | 6.1660E-03 | -1.7122E-03 | -3.7807E-04 | 5.4564E-05 | 2.2195E-04 | 8.3614E-05 |
S4 | -2.4209E-01 | 4.3830E-02 | -1.4039E-02 | 6.1564E-03 | -1.9045E-03 | 1.4473E-04 | -2.4957E-04 | 2.5907E-05 | 4.0831E-06 |
S5 | -2.8078E-01 | 2.8077E-02 | -8.6781E-03 | 1.1279E-03 | -4.9470E-04 | 8.7172E-05 | -5.4968E-05 | 3.7849E-05 | -8.5808E-06 |
S6 | -9.5205E-02 | -5.7208E-03 | -3.9614E-04 | -4.3886E-04 | 7.7674E-05 | -4.0642E-05 | 1.6655E-05 | -1.6968E-05 | 7.2917E-06 |
S7 | -1.8466E-01 | -5.5745E-02 | -7.0139E-03 | -1.1537E-03 | 5.2496E-04 | -6.1894E-05 | 4.0386E-05 | -9.2670E-05 | 1.7125E-05 |
S8 | -2.7324E-01 | -5.4973E-02 | 6.8423E-04 | 3.2319E-03 | 1.0963E-03 | -4.1312E-06 | -2.0767E-05 | -5.7928E-05 | 3.5614E-05 |
S9 | -1.0632E+00 | 9.4744E-02 | 1.4562E-02 | -5.7307E-03 | 4.5670E-03 | -5.3982E-03 | 5.8594E-04 | -7.0905E-04 | 8.0403E-04 |
S10 | -1.3106E+00 | 1.6383E-01 | -4.6333E-02 | 2.4064E-02 | -4.2887E-03 | -2.9795E-03 | -1.7797E-03 | -1.4045E-03 | 1.2595E-03 |
表26
表27给出了实施例9中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图18D示出了实施例9的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜头。图19示出了根据本申请实施例10的光学成像镜头的结构示意图。
如图19所示,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、滤光片E6以及成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表28示出了实施例10的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表28
在实施例10中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 6.6461E-02 | -1.2992E-02 | 1.4573E-02 | -3.8313E-03 | -5.1765E-04 | -2.6136E-04 | 8.9442E-05 | 5.6462E-05 | 1.7606E-05 |
S2 | 5.6237E-02 | -4.1109E-02 | 3.9939E-03 | -1.4483E-04 | -1.2452E-03 | 9.6918E-05 | 1.8566E-04 | 1.8041E-04 | 2.7307E-05 |
S3 | -7.3212E-02 | -5.1400E-02 | 5.4987E-03 | 6.7643E-03 | 5.0199E-04 | -9.3699E-04 | -1.2210E-04 | 3.7701E-05 | 1.0478E-04 |
S4 | -2.3458E-01 | 2.9497E-02 | -5.8761E-03 | 7.3686E-03 | 6.8426E-05 | 2.5596E-04 | 5.7491E-05 | 9.3461E-05 | 3.0605E-05 |
S5 | -3.0454E-01 | 2.9749E-02 | -6.0049E-03 | 1.6267E-03 | -1.8114E-04 | -3.1048E-06 | -3.5123E-05 | 4.4673E-06 | 1.1430E-05 |
S6 | -1.0387E-01 | -5.1352E-03 | 1.8980E-04 | -2.8188E-04 | 1.3302E-04 | -4.8006E-05 | 4.2367E-06 | -1.6739E-05 | 1.1749E-05 |
S7 | -1.5717E-01 | -4.1617E-02 | -8.4120E-03 | -6.6755E-04 | 1.2593E-04 | 1.7642E-04 | 2.6087E-05 | 4.2800E-05 | -1.2992E-05 |
S8 | -1.7606E-01 | -4.6307E-02 | -5.5104E-03 | 1.8699E-03 | 9.2617E-04 | 2.8251E-04 | 1.2175E-04 | 6.8328E-05 | 4.6905E-05 |
S9 | -1.0771E+00 | 1.1852E-01 | -8.5870E-03 | -3.3704E-03 | 5.0802E-03 | -3.0401E-03 | 9.0328E-04 | -6.6747E-04 | 2.4221E-04 |
S10 | -1.2389E+00 | 1.5382E-01 | -6.6653E-02 | 2.5215E-02 | -2.6747E-03 | -9.2697E-04 | -1.1347E-03 | -1.1012E-03 | 3.1790E-04 |
表29
表30给出了实施例10中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的相对F数Fno。
表30
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图20D示出了实施例10的光学成像镜头的相对照度曲线,其表示不同的像高处所对应的相对照度。根据图20A至图20D可知,实施例10所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
f1/f2 | 1.88 | 1.56 | 1.30 | 1.30 | 1.81 | 1.87 | 1.88 | 1.90 | 1.85 | 1.97 |
f5/f4 | -0.72 | -0.69 | -0.48 | -0.57 | -0.77 | 0.67 | 0.67 | -0.55 | -0.71 | -0.64 |
R7/R3 | 1.28 | 1.19 | 1.26 | 1.72 | 1.29 | 2.34 | 2.70 | 1.09 | 1.57 | 1.47 |
R4/R5 | 1.76 | 1.67 | 1.09 | 0.96 | 1.74 | 1.72 | 1.32 | 1.13 | 1.33 | 1.09 |
R9/R10 | 2.07 | 1.63 | 2.14 | 2.66 | 1.77 | 1.52 | 1.45 | 2.49 | 1.75 | 2.28 |
T45/T34 | 0.61 | 0.41 | 0.48 | 0.70 | 0.69 | 0.17 | 0.18 | 0.59 | 0.62 | 0.42 |
CT4/CT5 | 2.02 | 1.17 | 1.87 | 1.84 | 1.98 | 1.00 | 1.22 | 1.71 | 1.93 | 1.82 |
SAG31/SAG51 | 0.48 | 0.44 | 0.19 | 0.20 | 0.44 | 0.59 | 0.22 | 0.22 | 0.19 | 0.23 |
CT1/(T12+T23) | 1.58 | 0.75 | 1.71 | 1.55 | 1.52 | 1.58 | 1.34 | 1.35 | 0.85 | 0.91 |
f123/f | 1.35 | 1.26 | 1.17 | 1.27 | 1.37 | 0.99 | 0.99 | 1.26 | 1.31 | 1.29 |
SD(mm) | 3.78 | 3.82 | 3.67 | 3.63 | 3.76 | 3.44 | 3.33 | 3.28 | 3.04 | 3.22 |
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (13)
1.光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
具有负光焦度的第一透镜,其像侧面为凹面;
具有负光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;
具有正光焦度的第三透镜,其物侧面为凸面;
具有光焦度的第四透镜,其物侧面为凸面;
具有负光焦度的第五透镜,其物侧面为凸面,像侧面为凹面;
所述光学成像镜头中具有光焦度的透镜的数量是五;以及
所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123与所述光学成像镜头的总有效焦距f满足0.5<f123/f<1.5;
所述第五透镜的有效焦距f5与所述第四透镜的有效焦距f4满足-1.0<f5/f4<1.0。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足1.0<f1/f2<2.0。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足1.0≤CT4/CT5<2.5。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第二透镜的物侧面的曲率半径R3满足1.0<R7/R3<3.0。
5.根据权利要求4所述的光学成像镜头,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第三透镜的物侧面的曲率半径R5满足0.5<R4/R5<2.0。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足1.0<R9/R10<3.0。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0<T45/T34<1.0。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31与所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51满足0<SAG31/SAG51<1.0。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1、所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12以及所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足0.5<CT1/(T12+T23)<2.0。
10.根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角Semi-FOV满足31.4°≤Semi-FOV<40°。
11.根据权利要求10所述的光学成像镜头,其特征在于,所述光学成像镜头的相对F数Fno满足1.40≤Fno<1.50。
12.根据权利要求10所述的光学成像镜头,其特征在于,所述光学成像镜头的工作波段为850nm至950nm的光波波段。
13. 根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头还包括光阑,所述光阑至所述第五透镜的像侧面在所述光轴上的距离SD满足3.0 mm<SD<4.0 mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910091778.0A CN109633867B (zh) | 2019-01-30 | 2019-01-30 | 光学成像镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910091778.0A CN109633867B (zh) | 2019-01-30 | 2019-01-30 | 光学成像镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109633867A CN109633867A (zh) | 2019-04-16 |
CN109633867B true CN109633867B (zh) | 2024-04-09 |
Family
ID=66062832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910091778.0A Active CN109633867B (zh) | 2019-01-30 | 2019-01-30 | 光学成像镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109633867B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI710794B (zh) | 2020-03-30 | 2020-11-21 | 大立光電股份有限公司 | 成像用光學透鏡組、取像裝置及電子裝置 |
TWI769719B (zh) | 2021-02-26 | 2022-07-01 | 大立光電股份有限公司 | 光學影像擷取鏡頭組、取像裝置及電子裝置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105572847A (zh) * | 2016-03-02 | 2016-05-11 | 浙江舜宇光学有限公司 | 超广角摄像镜头 |
CN106291871A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106338810A (zh) * | 2015-07-09 | 2017-01-18 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106338811A (zh) * | 2015-07-09 | 2017-01-18 | 先进光电科技股份有限公司 | 光学成像系统 |
CN108693631A (zh) * | 2017-04-10 | 2018-10-23 | 康达智株式会社 | 摄像镜头 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2299306B1 (en) * | 2008-06-30 | 2017-08-23 | Konica Minolta Opto, Inc. | Wide-angle optical system, and imaging device |
-
2019
- 2019-01-30 CN CN201910091778.0A patent/CN109633867B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291871A (zh) * | 2015-06-26 | 2017-01-04 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106338810A (zh) * | 2015-07-09 | 2017-01-18 | 先进光电科技股份有限公司 | 光学成像系统 |
CN106338811A (zh) * | 2015-07-09 | 2017-01-18 | 先进光电科技股份有限公司 | 光学成像系统 |
CN105572847A (zh) * | 2016-03-02 | 2016-05-11 | 浙江舜宇光学有限公司 | 超广角摄像镜头 |
CN108693631A (zh) * | 2017-04-10 | 2018-10-23 | 康达智株式会社 | 摄像镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN109633867A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107621683B (zh) | 光学成像镜头 | |
CN108646394B (zh) | 光学成像镜头 | |
CN108732724B (zh) | 光学成像系统 | |
CN107643586B (zh) | 摄像透镜组 | |
CN114114656B (zh) | 光学成像镜头 | |
CN108873256B (zh) | 光学成像系统 | |
CN109343204B (zh) | 光学成像镜头 | |
CN113866953B (zh) | 光学成像镜头 | |
CN108089317B (zh) | 光学成像镜头 | |
CN113238349B (zh) | 光学成像镜头 | |
CN107490841B (zh) | 摄像透镜组 | |
CN109683287B (zh) | 光学成像镜头 | |
CN108761730B (zh) | 摄像镜头 | |
CN109254385B (zh) | 光学成像镜头 | |
CN108919463B (zh) | 光学成像镜头 | |
CN108279483B (zh) | 摄像镜头组 | |
CN116449535A (zh) | 摄像镜头 | |
CN107436477B (zh) | 光学成像镜头 | |
CN109613678B (zh) | 成像镜头 | |
CN108490587B (zh) | 成像镜头 | |
CN117706735A (zh) | 光学成像镜头 | |
CN110554479B (zh) | 光学成像镜头 | |
CN110133829B (zh) | 光学成像镜头 | |
CN110515186B (zh) | 光学成像镜头 | |
CN110596866A (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |