CN106328491A - 一种氧化镧介电薄膜的低温液相制备方法 - Google Patents

一种氧化镧介电薄膜的低温液相制备方法 Download PDF

Info

Publication number
CN106328491A
CN106328491A CN201610821753.8A CN201610821753A CN106328491A CN 106328491 A CN106328491 A CN 106328491A CN 201610821753 A CN201610821753 A CN 201610821753A CN 106328491 A CN106328491 A CN 106328491A
Authority
CN
China
Prior art keywords
lanthana
dielectric film
lanthanum oxide
liquid phase
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610821753.8A
Other languages
English (en)
Inventor
夏国栋
王素梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201610821753.8A priority Critical patent/CN106328491A/zh
Publication of CN106328491A publication Critical patent/CN106328491A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明属于新材料及半导体领域,特别涉及一种氧化镧介电薄膜的低温液相制备方法。包括如下步骤:称取可溶性的镧盐,量取溶剂,配置浓度为0.01‑0.5摩尔/升的氧化镧前驱体溶液,经过0.1‑3小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液;制备氧化镧薄膜:将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行50‑150 ℃的预热处理,然后经过一定功率、时间和温度的光波退火,根据氧化镧薄膜的厚度要求可多次涂覆前驱体氧化镧溶液并退火处理,即得到氧化镧介电薄膜。本发明所得氧化镧薄膜介电性能高,在晶体管、电容器等微电子领域有重要应用前景。通过本发明的工艺可以避免通常的高温溶液工艺、工艺周期长或昂贵设备等,成本低,适合工业化大规模生产。

Description

一种氧化镧介电薄膜的低温液相制备方法
技术领域
本发明属于新材料及半导体领域,特别涉及一种氧化镧介电薄膜的低温液相制备方法,氧化镧薄膜在晶体管、电容器等微电子领域有重要应用前景。
背景技术
自上个世纪七十年代以来电路器件集成度按照摩尔定律的预测基本保持每十八个月翻倍,在这过去五十多年的时间里,在各个领域的研究者不断提升其使用的电子器件的性能,同时降低这些电子器件的制造成本以保证定律延续。然而在硅基集成电路核心器件金属-氧化物-场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)的特征尺寸缩小到22nm工艺节点以下时其栅极介质层的等效氧化层厚度需要缩小到10nm以下,这时过去集成工艺中广泛使用的二氧化硅栅介质无法继续满足MOSFET特征尺寸的继续缩小。业界普遍认为使用具有更高介电常数的栅介质材料代替传统二氧化硅栅介质进行工艺集成是保证MOSFET特征尺寸进一步缩小最为可行的工艺方案,更高的介电常数将能使栅介质层在具有更小的等效氧化层厚度的同时具有更大的实际物理厚度,这很大程度上缓解了过薄的二氧化硅栅极造成的栅极泄漏电流过大的问题。2007年,英特尔在其45nm产品中引入了HfO2介质作为HKMG结构的高介电常数栅极,2011年台湾积体电路公司在其28nm产品中同样引入了HKMG结构以提高器件性能。然而HfO2介质具有结晶温度低、介电常数不够高等缺陷,而氧化镧则被认为新一代高介电常数栅介质候选之一,具有结晶温度较高、介电常数也较高等优点。
目前制备氧化镧薄膜的方法多种多样,主要包括气相法和液相法两大类。例如,磁控溅射、电子束蒸发、原子层沉积及化学气相沉积等方法都被用来制备氧化镧薄膜。然而,这些气相方法通常需要真空环境,增加了设备的复杂及成本的提高。例如,公开号为CN102094190A的中国发明专利公开了一种镧基高介电常数薄膜的制备方法:采用原子层淀积工艺,以双氧水作为原子层淀积工艺所需的氧化反应前躯体,有效克服了以水作为氧化反应前躯体氧化能力弱而导致反应不易进行的缺陷,此方法可以制备高质量的镧基高介电常数薄膜。近年来,液相方法日益引起了广泛的关注和迅速的发展,例如溶胶-凝胶法、喷雾热解法等。近年来发展的液相法合成氧化镧薄膜的研究报道有许多。虽然液相法可以制备较高性能的氧化镧薄膜,但液相法通常需要高温(高于400℃)退火,才能促使前驱体薄膜分解并致密化,形成致密无针孔的氧化镧薄膜。因此,寻找一种新的低温液相技术制备技术,对于氧化镧薄膜在各种领域的大规模应用是极为重要和迫切的。
发明内容
本发明的目的在于提供一种氧化镧介电薄膜的低温液相制备方法,实现氧化镧的简易高效制备,更易于大规模生产和应用。本发明的创新点主要在于:发展了新的低温光波方法高效合成高介电性能的氧化镧薄膜。
本发明的技术方案,具体包括以下步骤:
(1) 制备前驱体溶液:称取可溶性的镧盐,量取溶剂,配置浓度为0.01-0.5摩尔/升的氧化镧前驱体溶液,经过0.1-3小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液;
( 2) 制备氧化镧薄膜:将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行50-150 ℃的预热处理,然后经过一定功率、时间和温度的光波退火,根据氧化镧薄膜的厚度要求可多次涂覆氧化镧前驱体溶液并退火处理,即得到氧化镧介电薄膜。
本发明所述制备方法的步骤(1)中,所述的可溶性的镧盐为硝酸镧、氯化镧、硫酸镧或乙酸镧中的一种或两种以上。
本发明所述制备方法的步骤(1)中,所述的溶剂为乙二醇甲醚、乙醇、水、乙二醇或二甲基甲酰胺中的一种或两种以上。
本发明所述制备方法的步骤(1)中,所述涂覆方法为旋转涂覆法、滴涂法、浸涂法、喷雾法或喷墨打印法。
本发明所述制备方法的步骤(1)中,所述的光波的生成仪器为用作厨具的光波炉或具有卤素灯管的加热仪器。
本发明所述制备方法的步骤(1)中,所述的光波退火的功率为100-900 W。
本发明所述制备方法的步骤(1)中,所述的光波退火的时间为5-120分钟。
本发明所述制备方法的步骤(1)中,所述的光波退火过程中的温度为150-300 ℃。
本发明的有益效果是:本发明工艺简单容易操作,原料廉价易得,所制备的氧化镧薄膜介电性能高,有望在晶体管、电容器等微电子器件中得到应用。通过本发明的工艺可以避免通常的高温溶液工艺、工艺周期长或昂贵设备等,成本低,适合工业化大规模生产。
附图说明
下面结合附图对本发明作进一步的说明。
附图1为实施例之一的氧化镧薄膜的电容-频率曲线;
附图2是实施例之一的氧化镧薄膜的漏电流密度-偏压曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明。
实施例1:
称取1.225 g氯化镧,量取10毫升水溶液,配置浓度为0.5摩尔/升的氧化镧前驱体溶液,经过3小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液。将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行50 ℃的预热处理,然后经过100W、120分钟和120 ℃的光波退火,即得到氧化镧介电薄膜。
实施例2:
称取0.032 g乙酸镧,量取10毫升乙二醇甲醚溶液,配置浓度为0.01摩尔/升的氧化镧前驱体溶液,经过0.1小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液。将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行150 ℃的预热处理,然后经过900W、5分钟和300 ℃的光波退火,即得到氧化镧介电薄膜。
实施例3:
称取0.217 g硝酸镧,量取5毫升乙醇溶液,配置浓度为0.1摩尔/升的氧化镧前驱体溶液,经过1小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液。将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行90 ℃的预热处理,然后经过300W、60分钟和200 ℃的光波退火,即得到氧化镧介电薄膜。
实施例4:
称取4.245 g硫酸镧,量取15毫升二甲基甲酰胺溶液,配置浓度为0.5摩尔/升的氧化镧前驱体溶液,经过3小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液。将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行70 ℃的预热处理,然后经过700W、30分钟和280 ℃的光波退火,即得到氧化镧介电薄膜。
实施例5:
称取0.433 g硝酸镧,量取20毫升乙二醇溶液,配置浓度为0.05摩尔/升的氧化镧前驱体溶液,经过2小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液。将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行120 ℃的预热处理,然后经过500W、20分钟和250 ℃的光波退火,即得到氧化镧介电薄膜。
上述实施例结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制。所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的对本发明的各种修改或变形,仍在本发明的保护范围以内。

Claims (7)

1.一种氧化镧介电薄膜的低温液相制备方法,其特征在于包括如下步骤:
(1) 制备氧化镧前驱体溶液:称取可溶性的镧盐,量取溶剂,配置浓度为0.01-0.5摩尔/升的氧化镧前驱体溶液,经过0.1-3小时的磁力搅拌和超声分散形成澄清透明的氧化镧前驱体溶液;
(2) 制备氧化镧薄膜:将氧化镧前驱体溶液涂覆到清洗好的衬底上形成氧化镧前驱体薄膜,进行50-150 ℃的预热处理,然后经过一定功率、时间和温度的光波退火,根据氧化镧薄膜的厚度要求可多次涂覆前驱体氧化镧溶液并退火处理,即得到氧化镧介电薄膜;
所述的光波的生成仪器为用作厨具的光波炉或具有卤素灯管的加热仪器。
2.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述的可溶性的镧盐为硝酸镧、氯化镧、硫酸镧或乙酸镧中的一种或两种以上。
3.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述的溶剂为乙二醇甲醚、乙醇、水、乙二醇或二甲基甲酰胺中的一种或两种以上。
4.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述涂覆方法为旋转涂覆法、滴涂法、浸涂法、喷雾法或喷墨打印法。
5.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述的光波退火的功率为100-900 W。
6.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述的光波退火的时间为5-120分钟。
7.根据权利要求1所述的一种氧化镧介电薄膜的低温液相制备方法,其特征在于:所述的光波退火过程中的温度为150-300 ℃。
CN201610821753.8A 2016-09-14 2016-09-14 一种氧化镧介电薄膜的低温液相制备方法 Pending CN106328491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610821753.8A CN106328491A (zh) 2016-09-14 2016-09-14 一种氧化镧介电薄膜的低温液相制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610821753.8A CN106328491A (zh) 2016-09-14 2016-09-14 一种氧化镧介电薄膜的低温液相制备方法

Publications (1)

Publication Number Publication Date
CN106328491A true CN106328491A (zh) 2017-01-11

Family

ID=57786722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610821753.8A Pending CN106328491A (zh) 2016-09-14 2016-09-14 一种氧化镧介电薄膜的低温液相制备方法

Country Status (1)

Country Link
CN (1) CN106328491A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192653A (zh) * 2018-08-16 2019-01-11 华南师范大学 一种高介电氧化镧薄膜及其制备方法和应用
CN109411326A (zh) * 2018-09-11 2019-03-01 肇庆市华师大光电产业研究院 一种增加乙酰丙酮镧在dmf中溶解度的方法
CN109698071A (zh) * 2017-10-24 2019-04-30 王文建 一种高比容一体化电极的制备方法及高比容电容器
CN110828663A (zh) * 2019-10-31 2020-02-21 西交利物浦大学 基于镧氧化物的rram及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684992B1 (ko) * 2006-04-06 2007-02-22 한국화학연구원 신규의 란타늄 화합물 및 그 제조 방법
CN102117887A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种低电压有机薄膜晶体管及其制备方法
CN102933496A (zh) * 2010-06-08 2013-02-13 住友金属矿山株式会社 金属氧化物膜的制造方法及金属氧化物膜、使用该金属氧化物膜的元件、带有金属氧化物膜的基板以及使用该基板的器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684992B1 (ko) * 2006-04-06 2007-02-22 한국화학연구원 신규의 란타늄 화합물 및 그 제조 방법
CN102117887A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种低电压有机薄膜晶体管及其制备方法
CN102933496A (zh) * 2010-06-08 2013-02-13 住友金属矿山株式会社 金属氧化物膜的制造方法及金属氧化物膜、使用该金属氧化物膜的元件、带有金属氧化物膜的基板以及使用该基板的器件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698071A (zh) * 2017-10-24 2019-04-30 王文建 一种高比容一体化电极的制备方法及高比容电容器
CN109192653A (zh) * 2018-08-16 2019-01-11 华南师范大学 一种高介电氧化镧薄膜及其制备方法和应用
CN109411326A (zh) * 2018-09-11 2019-03-01 肇庆市华师大光电产业研究院 一种增加乙酰丙酮镧在dmf中溶解度的方法
CN109411326B (zh) * 2018-09-11 2023-06-02 肇庆市华师大光电产业研究院 一种增加乙酰丙酮镧在dmf中溶解度的方法
CN110828663A (zh) * 2019-10-31 2020-02-21 西交利物浦大学 基于镧氧化物的rram及其制备方法

Similar Documents

Publication Publication Date Title
CN106431397A (zh) 一种高介电氧化锆薄膜的低温溶液制备方法
CN106328491A (zh) 一种氧化镧介电薄膜的低温液相制备方法
CN104009093B (zh) 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN106206292A (zh) 一种高迁移率铟镓锌氧薄膜晶体管的低温液相制备方法
Hsu et al. Effect of annealing temperature on spatial atomic layer deposited titanium oxide and its application in perovskite solar cells
CN106409668A (zh) 一种氧化铝介电薄膜的低温溶液制备方法
Jao et al. Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy
Matias et al. A comparison between solution-based synthesis methods of ZrO2 nanomaterials for energy storage applications
CN106298455A (zh) 一种制备高介电氧化钇薄膜的低温液相方法
CN108588693A (zh) 采用全无机前驱体溶液制备钇掺杂二氧化铪铁电薄膜的方法及应用
CN108707879A (zh) 一种铪掺杂二氧化锆铁电薄膜的制备方法及应用
Carlos et al. Printed zinc tin oxide diodes: from combustion synthesis to large-scale manufacturing
CN107902694A (zh) 一种快速制备氧化锆薄膜的低温液相方法
CN106373865A (zh) 一种氧化铪介电薄膜的低温液相制备方法
CN103194741B (zh) 一种氧化铝前驱体溶液及其制备方法与应用
CN106952828A (zh) 一种p型金属氧化物薄膜晶体管的制备方法
CN106653858A (zh) 一种低温制备高迁移率铟锆氧薄膜晶体管的溶液方法
Pan et al. High sensing performance of nanoimprinted HfO2 sensing membrane for electrode-insulator-semiconductor pH sensors
CN106328492A (zh) 一种制备高迁移率氧化铟薄膜晶体管的低温溶液方法
CN106128941A (zh) 一种低温制备铟镓锌氧透明半导体薄膜的液相方法
Sathiya Priya et al. Effect of Cu and Sm doping on the ferroelectric character of bismuth ferrite thin films
Yang et al. Application of Amorphous Zirconium-Yttrium-Aluminum-Magnesium-Oxide Thin Film with a High Relative Dielectric Constant Prepared by Spin-Coating
CN106783564A (zh) 一种氧化铟透明半导体薄膜的低温溶液制备方法
CN106653859A (zh) 一种低温液相制备高迁移率铟锌氧薄膜晶体管的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111