CN106324519A - 一种电池系统连接可靠性的测试方法 - Google Patents

一种电池系统连接可靠性的测试方法 Download PDF

Info

Publication number
CN106324519A
CN106324519A CN201610788725.0A CN201610788725A CN106324519A CN 106324519 A CN106324519 A CN 106324519A CN 201610788725 A CN201610788725 A CN 201610788725A CN 106324519 A CN106324519 A CN 106324519A
Authority
CN
China
Prior art keywords
internal resistance
battery system
battery
acceptability
criterion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610788725.0A
Other languages
English (en)
Other versions
CN106324519B (zh
Inventor
王东梅
冯伟峰
梅清晨
温灿国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Lithium Battery Technology Co Ltd
Original Assignee
China Aviation Lithium Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Aviation Lithium Battery Co Ltd filed Critical China Aviation Lithium Battery Co Ltd
Priority to CN201610788725.0A priority Critical patent/CN106324519B/zh
Publication of CN106324519A publication Critical patent/CN106324519A/zh
Application granted granted Critical
Publication of CN106324519B publication Critical patent/CN106324519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本发明涉及一种电池系统连接可靠性的测试方法,包括:1)静态下,测量电池系统各电池包的交流电阻;交流内阻满足合格标准,进行步骤2);2)对电池系统进行充放电,测量电池组在要求SOC下短时充电或放电过程中的整组压差;压差满足合格标准,进行步骤3);3)计算电气回路的直流内阻;直流内阻满足合格标准,该电池系统连接可靠。该方法将电池系统分为电池组及电气回路两部分进行评测,覆盖全面,同时方便故障定位,能够简单方便的排查螺栓漏拧、滑丝、漏焊等问题,及电池组部分的氧化、紧固扭矩不达标、虚焊等连接问题,且确保电气回路部分连接可靠;实现了电池系统连接可靠性的准确、快速评测,保证电池系统的安全性及可靠性。

Description

一种电池系统连接可靠性的测试方法
技术领域
本发明属于动力电池系统技术领域,具体涉及一种电池系统连接可靠性的测试方法。
背景技术
近年来,电动汽车的发展突飞猛进,越来越多的电动汽车逐步走入人们的生活。随着新能源汽车的不断推广,电动汽车的安全性备受瞩目。作为电动汽车动力之源的电池系统,其安全性及可靠性也极其重要,是整车安全的重要保障之一。
一般的,如图1所示,电池系统由多个电池包1#、2#、···K#串联而成,一端为系统正极,另一端为系统负极。如图2所示,电池包由电池组1和电气回路2这两部分组成,电池组1由单体电池经过串并联连接组成,一般采用螺栓连接或焊接方式;电池组1的两端均连接电气回路2,一端的电气回路2末端设有负极接口4,另一端的电气回路上设有保护类元器件3,末端设有正极接口5(一般的,保护类元器件也可连接于负极回路)。电气回路由动力航插、熔断器、接触器、导电排、动力线等连接组成,通常采用螺栓连接方式。电池系统连接的可靠性对系统的性能及安全性影响重大。若电池系统连接不可靠,轻者会降低系统放电容量,减少整车续驶里程,重者将导致连接点烧蚀、系统短路,从而引发起火事故。
充放电过程的温升可作为动力回路连接可靠性的评测指标,但是需要较长的测试时间,并且由于不是每个连接点都有温度监控,因此无法实现全面评测。对于电池系统的电连接可靠性的问题,目前的一般处理手段是采用交流内阻测试仪逐个对各个连接点进行连接内阻测试,并根据各连接点的内阻值判断电连接质量。该方法工作量大,效率低,且存在安全隐患,不适合快速评测的需要。
发明内容
本发明的目的是提供一种电池系统连接可靠性的测试方法,以解决现有技术不能实现电池系统动力回路的连接故障快速、有效检测的问题。
为了实现以上目的,本发明所采用的技术方案是:
一种电池系统连接可靠性的测试方法,包括下列步骤:
1)静态下,测量电池系统各电池包的交流电阻;
如交流内阻满足合格标准,则进行步骤2);
2)对电池系统进行充放电,测量电池组在要求SOC下短时充电或放电过程中的整组压差;如压差满足合格标准,则进行步骤3);
3)计算电气回路的直流内阻;
如直流内阻满足合格标准,则该电池系统连接可靠。
本发明的电池系统连接可靠性的测试方法,采用电池包的交流内阻、电池组的压差及电气回路的直流内阻作为表征电池系统各部分连接可靠性的评测指标。首先在静态下,使用测量仪器测量系统中各电池包的交流内阻,并与其对应的合格标准进行比较;交流内阻的评测标准用于排查电池包内存在的螺栓漏拧、滑丝、漏焊接等问题。将电池系统分为电池组和电气回路两部分,电池组在要求SOC下进行短时间的充电或放电过程中的整组压差评测,压差满足要求时表明电池组部分连接可靠;电气回路部分的连接可靠性通过直流内阻评测,直流内阻满足要求时表明电气回路部分连接可靠;电池组压差及电气回路直流内阻的评测指标用于排查电池包内存在的氧化、紧固力矩不达标、虚焊等问题。
本发明的电池系统连接可靠性的测试方法,首先在静态下测量各电池包的交流内阻,能够简单方便的排查螺栓漏拧、滑丝、漏焊等问题,该步骤无需对系统进行充放电,简单便捷;接着对电池系统进行充放电,测量电池组在要求SOC下短时充电或放电过程中的整组压差,能够直观快速的排查电池组部分的氧化、紧固扭矩不达标、虚焊等连接问题;充放电结束后计算电气回路的直流内阻,保证电气回路部分连接可靠。该测试方法将电池系统分为电池组及电气回路两部分进行评测,覆盖全面,同时方便故障定位;可以有效排查动力回路的连接异常,实现了电池系统连接可靠性的准确、快速评测,保证了电池系统的安全性及可靠性。
步骤1)中,电池包交流内阻合格标准采用如下方法确定:
首先计算电池包样本交流内阻的平均值u和方差v;其次根据交流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定交流内阻的合格标准为(u-mv,u+mv),其中m的取值由设定的生产合格率确定。
步骤2)中,电池组在要求SOC下短时充电或放电过程中的整组压差的合格标准采用如下方法确定:
首先计算电池系统样本中包含的单体电池直流内阻的方差δ,其次根据直流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定压差的合格标准为(0,2mδ×I),其中m的取值由设定的生产合格率确定,I为充电或放电的电流值。
步骤2)中,所述要求SOC为30%SOC~70%SOC;短时充电或放电过程是指充电或放电0.5~5min。
步骤3)中,电气回路的直流内阻等于电池系统的直流内阻减去电池组的直流内阻;电池组的直流内阻等于系统内各单体电池的直流内阻之和。
步骤3)中,电气回路直流内阻合格标准采用如下方法确定:
首先计算电池系统样本中电气回路的直流内阻的平均值μ与方差σ;其次根据直流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定直流内阻的合格标准为(μ-mσ,μ+mσ),其中m的取值由设定的生产合格率确定。
直流内阻的测试方法为:
首先对电池系统使用I1进行放电或充电T1秒,然后静置T2秒;记录T1秒结束时刻的电池系统总压为U01,各单体电池的电压为U11,…,UN1;T2秒结束时刻的电池系统总压为U02,各单体电池的电压为U12,…,UN2;其中N为电池系统中的电池串数;
则电池系统和各单体电池的直流内阻分别为:
电池系统的直流内阻DCR0=∣U01-U02∣/I1
单体电池的直流内阻DCR1=∣U11-U12∣/I1,…,DCRN=∣UN1-UN2∣/I1
进一步的,本发明的电池系统连接可靠性的测试方法,结合对生产的不良率控制,制定了电池包的交流内阻、电池组的压差及电气回路部分的直流内阻这3项指标的合格标准的确定方法,科学合理,对电池系统的连接可靠性判定准确,进一步提高了连接可靠性的评测效率;该方法能够全面、快速、有效的排查电池系统中动力回路的连接故障,提高电池系统的安全性能。
附图说明
图1为电池系统组成示意图;
图2为电池包组成示意图;
图3为正态分布概率图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
具体实施方式提供一种电池系统连接可靠性的测试方法,该方法包括两部分,一部分时能够评判电池系统各部分连接可靠性的评测指标及其测试方法;另一部分是针对各项评测指标的合格标准的制定方法。
假设电池系统样本共包含K个相同的电池包,电池组的串数为N;选取M套电池系统样本进行测试。
实施例1的电池系统连接可靠性的测试方法,包括如下步骤:
1)静态下,使用测试仪表分别测量电池系统中各个电池包的交流电阻,并与相应的合格标准进行比较;
如交流内阻满足合格标准,则进行步骤2);
如交流内阻超出合格标准,则表明电池包的连接存在异常;
2)在50%SOC下,使用电流I对电池系统进行放电或充电1min,查看电池组部分的最大压差,记为ΔU;
如压差满足合格标准,表明电池组部分的连接可靠性正常,则进行步骤3);
如压差超出合格标准,表明电池组部分的连接存在异常;
3)按照表1中的测试工步进行放电测试;
表1直流内阻测试工步
序号 工步名称 电流 时间
1 恒流放电 I1 T1
2 搁置 --- T2
按如下步骤计算电气回路的直流内阻:
①提取工步1结束时刻的系统总压U01,及各单体电池的电压U11,U21,…,UN1(N为系统电池组的总串数);
②提取工步2结束时刻的系统总压U02,及各单体电池的电压U12,U22,…,UN2(N为系统电池组的总串数);
③提取工步1结束时刻的电流I1
④计算电池系统的直流电阻DCR0=∣U01-U02∣/I1
⑤计算各单体电池的直流内阻DCR1=∣U11-U12∣/I1,…,DCRN=∣UN1-UN2∣/I1
⑥计算电池组部分的直流内阻DCR电池组=∑(DCR1+…+DCRN);
⑦计算电气回路的直流内阻DCR电气回路=DCR0-DCR电池组
对比电气回路的直流电阻与合格标准,如直流内阻满足合格标准,表明电气回路部分的连接无异常,则该电池系统连接可靠;
如电气回路的直流内阻超出合格标准,表明电气回路部分的连接异常。
上述的电池系统连接可靠性的测试方法中,所用的合格标准的确定方法如下:
一、电池包交流内阻合格标准的确定:
(1)统计M套样本中各电池包的交流内阻:ACR11,…,ACR1K,ACR21,…,ACR2K,…,ACRM1,…,ACRMK
(2)计算电池包交流内阻的平均值u及标准差v;
(3)根据交流内阻服从正态分布的概率区间(如图3所示),并结合生产的不良率控制,设定99.73%的生产合格率,m=3,则电池包交流内阻ACR电池包的合格标准为:u-3v<ACR电池包<u+3v;满足该标准时,判定合格。
二、电池组压差ΔU合格标准的确定:
(1)统计M套系统的单体电池直流内阻:DCR11,…,DCR1N,DCR21,…,DCR2N,…,DCRM1,…,DCRMN
(2)计算各套系统内单体电池直流内阻的标准差:δ1,…,δM
(3)计算平均标准差:
(4)根据直流内阻服从正态分布的概率区间(如图3所示),并结合生产的不良率控制,设定99.73%的生产合格率,m取3,则50%SOC下放电或充电1min的压差ΔU的合格标准为:满足该标准时,判定合格。
三、电气回路的直流内阻DCR电气回路合格标准的确定:
(1)统计M套系统电气回路部分的直流内阻:DCR1电气回路,…,DCRM电气回路
(2)计算电气回路部分直流内阻的平均值μ及标准差σ;
(3)根据直流内阻服从正态分布的概率区间(如图3所示),并结合生产的不良率控制,设定99.73%的生产合格率,m取3,则电气回路部分的直流内阻DCR电气回路的合格标准为:μ-3σ<DCR电气回路<μ+3σ;满足该标准时,判定合格。
实验例
本实验例采用上述的电池系统连接可靠性测试方法的电源系统进行测试,包括如下内容:
所测电源系统由2并36串200Ah磷酸铁锂体系电池组成,共包含3个电池箱。下面给出3套测试系统的电池包交流内阻、电池组压差ΔU、电气回路直流内阻DCR电气回路等的实测数据,判定标准、判定结果以及三项指标合格标准的确定方法。
三套测试系统的测试结果如表2所示。
表2三套测试系统的测试结果
上述电池系统连接可靠性的测试方法中,三项指标合格标准的确定方法如下:
一、电池包交流内阻合格标准的确定(如表3所示):
表3电池包交流内阻(mΩ)统计表
根据交流内阻服从正态分布的概率区间(如图3所示),并结合生产的不良率控制,设定99.73%的生产合格率,m=3,则电池包交流内阻ACR电池包的合格标准(u-3v,u+3v)为:(3.53mΩ,4.08mΩ);满足该标准时,判定合格。
二、电池组压差ΔU合格标准的确定(如表4所示):
表4系统内单体电池直流内阻(mΩ)统计表
根据直流内阻服从正态分布的概率区间(如图3所示),并结合实际生产的不良率控制,设定99.73%的生产合格率,对电池组DCR偏差取的范围,即:电池组DCR的偏差则电池组部分连接可靠性测试压差ΔU的合格标准为:即ΔU≤26mV。
三、电气回路的直流内阻DCR电气回路合格标准的确定(如表5所示):
表5电气回路的直流内阻DCR电气回路的计算与统计表
根据直流内阻服从正态分布的概率区间(如图3所示),并结合生产的不良率控制,设定99.73%的生产合格率,m取3,则电气回路部分的直流内阻DCR电气回路的合格标准(μ-3σ,μ+3σ)为:(16.97mΩ,25.57mΩ)。满足该标准时,判定合格。

Claims (7)

1.一种电池系统连接可靠性的测试方法,其特征在于:包括下列步骤:
1)静态下,测量电池系统各电池包的交流电阻;
如交流内阻满足合格标准,则进行步骤2);
2)对电池系统进行充放电,测量电池组在要求SOC下短时充电或放电过程中的整组压差;如压差满足合格标准,则进行步骤3);
3)计算电气回路的直流内阻;
如直流内阻满足合格标准,则该电池系统连接可靠。
2.根据权利要求1所述的电池系统连接可靠性的测试方法,其特征在于:步骤1)中,电池包交流内阻合格标准采用如下方法确定:
首先计算电池包样本交流内阻的平均值u和方差v;其次根据交流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定交流内阻的合格标准为(u-mv,u+mv),其中m的取值由设定的生产合格率确定。
3.根据权利要求1所述的电池系统连接可靠性的测试方法,其特征在于:步骤2)中,电池组在要求SOC下短时充电或放电过程中的整组压差合格标准采用如下方法确定:
首先计算电池系统样本中包含的单体电池直流内阻的方差δ,其次根据直流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定压差的合格标准为(0,2mδ×I),其中m的取值由设定的生产合格率确定,I为充电或放电的电流值。
4.根据权利要求1或3所述的电池系统连接可靠性的测试方法,其特征在于:步骤2)中,所述要求SOC为30%SOC~70%SOC;短时充电或放电过程是指充电或放电0.5~5min。
5.根据权利要求1所述的电池系统连接可靠性的测试方法,其特征在于:步骤3)中,电气回路的直流内阻等于电池系统的直流内阻减去电池组的直流内阻;电池组的直流内阻等于系统内各单体电池的直流内阻之和。
6.根据权利要求1所述的电池系统连接可靠性的测试方法,其特征在于:步骤3)中,电气回路直流内阻合格标准采用如下方法确定:
首先计算电池系统样本中电气回路直流内阻的平均值μ与方差σ;其次根据直流内阻服从正态分布的概率区间,并结合生产的不良率控制,确定直流内阻的合格标准为(μ-mσ,μ+mσ),其中m的取值由设定的生产合格率确定。
7.根据权利要求5或6所述的电池系统连接可靠性的测试方法,其特征在于:直流内阻的测试方法为:
首先对电池系统使用I1进行放电或充电T1秒,然后静置T2秒;记录T1秒结束时刻的电池系统总压为U01,各单体电池的电压为U11,…,UN1;T2秒结束时刻的电池系统总压为U02,各单体电池的电压为U12,…,UN2;其中N为电池系统中的电池串数;
则电池系统和各单体电池的直流内阻分别为:
电池系统的直流内阻DCR0=∣U01-U02∣/I1
单体电池的直流内阻DCR1=∣U11-U12∣/I1,…,DCRN=∣UN1-UN2∣/I1
CN201610788725.0A 2016-08-31 2016-08-31 一种电池系统连接可靠性的测试方法 Active CN106324519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610788725.0A CN106324519B (zh) 2016-08-31 2016-08-31 一种电池系统连接可靠性的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610788725.0A CN106324519B (zh) 2016-08-31 2016-08-31 一种电池系统连接可靠性的测试方法

Publications (2)

Publication Number Publication Date
CN106324519A true CN106324519A (zh) 2017-01-11
CN106324519B CN106324519B (zh) 2019-02-26

Family

ID=57789260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610788725.0A Active CN106324519B (zh) 2016-08-31 2016-08-31 一种电池系统连接可靠性的测试方法

Country Status (1)

Country Link
CN (1) CN106324519B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597315A (zh) * 2017-01-25 2017-04-26 天津市捷威动力工业有限公司 电连接接触可靠性检测方法
CN107064226A (zh) * 2017-02-17 2017-08-18 欣旺达电动汽车电池有限公司 一种焊接测试方法
CN107462838A (zh) * 2017-08-02 2017-12-12 合肥国轩高科动力能源有限公司 一种锂离子动力电池模组虚焊检测方法
CN107607592A (zh) * 2017-10-10 2018-01-19 深圳军洋科技发展有限公司 焊接可靠性测试方法及设备
CN107861064A (zh) * 2017-07-24 2018-03-30 广州微宏电源科技有限公司 一种多串联动力电池组电性能检测方法
CN110018386A (zh) * 2019-05-24 2019-07-16 奇瑞汽车股份有限公司 电池组连接可靠性的评价方法
CN112230166A (zh) * 2020-03-31 2021-01-15 蜂巢能源科技有限公司 模组线束通断测试装置及测试方法、模组下线测试系统
CN112698233A (zh) * 2020-12-15 2021-04-23 合肥国轩高科动力能源有限公司 一种锂离子动力电池包虚焊检测方法及系统
CN113109727A (zh) * 2021-03-29 2021-07-13 蜂巢能源科技有限公司 叠片式锂电池电芯内阻一致性分析方法及分析系统
CN113721168A (zh) * 2021-08-31 2021-11-30 东风商用车有限公司 动力电池连接可靠性检测方法、装置、设备及存储介质
CN113740744A (zh) * 2021-08-18 2021-12-03 广州小鹏汽车科技有限公司 电池健康状态监控方法和装置、车辆和存储介质
CN114114044A (zh) * 2021-11-15 2022-03-01 天津市捷威动力工业有限公司 一种极耳-母排模组焊接过电流可靠性的评估方法
CN114894359A (zh) * 2022-03-31 2022-08-12 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983888A (zh) * 2014-05-29 2014-08-13 上虞安卡拖车配件有限公司 一种电池包连接状态判断方法
CN104237643A (zh) * 2014-08-28 2014-12-24 宁德时代新能源科技有限公司 动力电池包内连接电阻检测方法
CN104808098A (zh) * 2014-12-08 2015-07-29 惠州市亿能电子有限公司 一种验证电芯模组焊接可靠性的方法
CN105607007A (zh) * 2015-12-23 2016-05-25 国联汽车动力电池研究院有限责任公司 电池系统电连接可靠性检测方法
CN205301482U (zh) * 2015-12-25 2016-06-08 苏州格瑞动力电源科技有限公司 一种锂离子电池组的虚焊检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983888A (zh) * 2014-05-29 2014-08-13 上虞安卡拖车配件有限公司 一种电池包连接状态判断方法
CN104237643A (zh) * 2014-08-28 2014-12-24 宁德时代新能源科技有限公司 动力电池包内连接电阻检测方法
CN104808098A (zh) * 2014-12-08 2015-07-29 惠州市亿能电子有限公司 一种验证电芯模组焊接可靠性的方法
CN105607007A (zh) * 2015-12-23 2016-05-25 国联汽车动力电池研究院有限责任公司 电池系统电连接可靠性检测方法
CN205301482U (zh) * 2015-12-25 2016-06-08 苏州格瑞动力电源科技有限公司 一种锂离子电池组的虚焊检测装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597315A (zh) * 2017-01-25 2017-04-26 天津市捷威动力工业有限公司 电连接接触可靠性检测方法
CN107064226A (zh) * 2017-02-17 2017-08-18 欣旺达电动汽车电池有限公司 一种焊接测试方法
CN107861064A (zh) * 2017-07-24 2018-03-30 广州微宏电源科技有限公司 一种多串联动力电池组电性能检测方法
CN107861064B (zh) * 2017-07-24 2024-05-07 广州微宏电源科技有限公司 一种多串联动力电池组电性能检测方法
CN107462838A (zh) * 2017-08-02 2017-12-12 合肥国轩高科动力能源有限公司 一种锂离子动力电池模组虚焊检测方法
CN107607592A (zh) * 2017-10-10 2018-01-19 深圳军洋科技发展有限公司 焊接可靠性测试方法及设备
CN110018386A (zh) * 2019-05-24 2019-07-16 奇瑞汽车股份有限公司 电池组连接可靠性的评价方法
CN112230166A (zh) * 2020-03-31 2021-01-15 蜂巢能源科技有限公司 模组线束通断测试装置及测试方法、模组下线测试系统
CN112698233B (zh) * 2020-12-15 2022-09-13 合肥国轩高科动力能源有限公司 一种锂离子动力电池包虚焊检测方法及系统
CN112698233A (zh) * 2020-12-15 2021-04-23 合肥国轩高科动力能源有限公司 一种锂离子动力电池包虚焊检测方法及系统
CN113109727A (zh) * 2021-03-29 2021-07-13 蜂巢能源科技有限公司 叠片式锂电池电芯内阻一致性分析方法及分析系统
CN113109727B (zh) * 2021-03-29 2022-08-23 蜂巢能源科技有限公司 叠片式锂电池电芯内阻一致性分析方法及分析系统
CN113740744A (zh) * 2021-08-18 2021-12-03 广州小鹏汽车科技有限公司 电池健康状态监控方法和装置、车辆和存储介质
CN113740744B (zh) * 2021-08-18 2023-08-25 广州小鹏汽车科技有限公司 电池健康状态监控方法和装置、车辆和存储介质
CN113721168A (zh) * 2021-08-31 2021-11-30 东风商用车有限公司 动力电池连接可靠性检测方法、装置、设备及存储介质
CN114114044A (zh) * 2021-11-15 2022-03-01 天津市捷威动力工业有限公司 一种极耳-母排模组焊接过电流可靠性的评估方法
CN114894359A (zh) * 2022-03-31 2022-08-12 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置
CN114894359B (zh) * 2022-03-31 2023-08-15 东风汽车集团股份有限公司 一种燃料电池电堆紧固力检测方法及装置

Also Published As

Publication number Publication date
CN106324519B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN106324519A (zh) 一种电池系统连接可靠性的测试方法
CN107132484B (zh) 一种电池系统的综合测试系统
CN102393489B (zh) 电车动力电池高压回路电阻的在线监测控制方法及装置
US20120182021A1 (en) Differential current monitoring for parallel-connected batteries
CN104749482A (zh) 一种电池电芯的焊接可靠性测试方法
CN103018566A (zh) 一种锂离子电池直流内阻测试方法及电池筛选方法
CN105548908B (zh) 一种动力电池组的内阻一致性检测方法
CN202230137U (zh) 一种电动汽车用动力电池绝缘检测系统
CN104391252A (zh) 一种汽车铅酸蓄电池健康状态检测方法
CN112666431B (zh) 一种电动汽车直流高压系统全状态绝缘检测控制方法
CN108333548A (zh) 绝缘电阻测量设备及故障自诊断方法
CN206710509U (zh) 一种直流系统绝缘电阻监测电路及系统
KR101189582B1 (ko) 배터리 전압 측정 라인의 단선 검출용 전압 측정 장치
US11271411B2 (en) Combined starting power supply
CN111817256B (zh) 一种基于精准测量的电池紧急断开系统及使用方法
CN104655973B (zh) 一种ups系统中检测电池模块短路的方法和装置
CN114966454A (zh) 一种电池采样线虚接的检测方法、系统、设备及存储介质
CN219204121U (zh) 一种bdu高压电路、动力电池和汽车
Barai et al. Scale-up of lithium-ion battery model parameters from cell level to module level–identification of current issues
CN108226640A (zh) 一种车载高压绝缘检测装置及方法
EP2916138B1 (en) Battery pack test system and method for testing said battery pack
CN207730912U (zh) 一种车载高压绝缘检测装置
CN106908734A (zh) 通讯基站蓄电池组中失效电池的检测方法
CN114428216A (zh) 电池电流检测方法及装置、存储介质
KR102030823B1 (ko) 배터리 관리 시스템 및 그것의 동작 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220111

Address after: No.1 Jiangdong Avenue, Jintan District, Changzhou City, Jiangsu Province

Patentee after: Zhongchuangxin Aviation Technology Co.,Ltd.

Address before: No.66, Binhe North Road, high tech Development Zone, Luoyang City, Henan Province

Patentee before: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

TR01 Transfer of patent right