CN106321047B - 一种模拟水平井堵塞机理的实验方法 - Google Patents

一种模拟水平井堵塞机理的实验方法 Download PDF

Info

Publication number
CN106321047B
CN106321047B CN201610807212.XA CN201610807212A CN106321047B CN 106321047 B CN106321047 B CN 106321047B CN 201610807212 A CN201610807212 A CN 201610807212A CN 106321047 B CN106321047 B CN 106321047B
Authority
CN
China
Prior art keywords
well
gas
horizontal
formula
horizontal segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610807212.XA
Other languages
English (en)
Other versions
CN106321047A (zh
Inventor
李祖友
鲁光亮
江健
王旭
周兴付
王雨生
姚远
傅春梅
刘丝雨
严小勇
苏黎晖
杨筱璧
熊胜尧
刘沙
胡腾
赵磊
唐雷
王浩儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Southwest Oil and Gas Co
Original Assignee
China Petroleum and Chemical Corp
Sinopec Southwest Oil and Gas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Southwest Oil and Gas Co filed Critical China Petroleum and Chemical Corp
Priority to CN201610807212.XA priority Critical patent/CN106321047B/zh
Publication of CN106321047A publication Critical patent/CN106321047A/zh
Application granted granted Critical
Publication of CN106321047B publication Critical patent/CN106321047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于气田水平井采气工艺领域,具体而言是应用于水平井堵塞机理分析和治理方法研究的模拟水平井堵塞机理的实验方法,包括如下步骤:步骤一:设计模拟水平井的实验装置;步骤二:水平段模拟流动介质确定;步骤三:实验气量设计;步骤四:水平段模拟压差确定;步骤五:根据相似性原理,运用步骤一中的模拟水平井的实验装置完成水平段的堵塞和解堵实验。本发明采用模拟流动法,模拟残留的压裂液、泡排剂、压裂砂,按照比例混合后,在实际的压差和流速条件下将混合物从地层带入井筒,模拟分析水平段的堵塞机理,堵塞条件;在完成堵塞模拟后,采用对应的解堵方式对水平段进行解堵模拟,观察各种措施的解堵效果,为水平段井底净化提供技术依据。

Description

一种模拟水平井堵塞机理的实验方法
技术领域
本发明属于气田水平井采气工艺领域,具体而言是应用于水平井堵塞机理分析和治理方法研究的模拟水平井堵塞机理的实验方法。
背景技术
水平井作为川西气田开采开发的关键技术,普遍采用“多级多段”大型加砂压裂储层改造措施获得工业气流。但由于水平井水平段较长,压裂级数较多,加砂压裂规模大,入地液量大,而平均返排率只有64.91%,因此有一部分压裂残液未被返排出井口而依然滞留于井底。随着气井生产时间的增加,井筒中会析出部分凝析油和蜡质,它们和压裂残液以及压裂砂混合在一起,导致水平井井筒堵塞。地层中的支撑剂也会在流体的作用下流入水平段,形成堆积堵塞。
目前国内关于水平井堵塞机理的认识未开展模拟实验,如《多功能水平气井模拟实验装置》,专利号:ZL201210351312.8提及该装置可模拟水平井空气、水、砂三相流动规律,但未明确该装置模拟水平井空气、水、砂三相流动的方法,从而缺乏模拟分析水平井堵塞机理的方法。
发明内容
本发明是针对现有技术中的上述情况,根据相似性原理,利用水平井模拟结构,采用模拟流动法,模拟分析残留的压裂液、泡排剂、压裂砂按照不同的比例混合所形成的混合物对低压低产水平井的堵塞过程和堵塞条件和堵塞机理。并针对已经形成的堵塞,模拟部分解堵措施,观察解堵效果,为井底净化提供技术依据。
为实现上述技术目的,本发明技术方案如下:
一种模拟水平井堵塞机理的实验方法,其特征在于:包括如下步骤:
步骤一:设计模拟水平井的实验装置:收集气田不同区块水平井的井眼轨迹和井身结构资料,确定实验模拟结构中水平段的段数、段长以及段间分布,用于模拟水平井的真实情况;
步骤二:水平段模拟流动介质确定:收集水平井压裂液入井液量、入井液返排液、残留压裂液主要成分,并确定模拟流动气液固配方及其比例;
步骤三:实验气量设计:将井口产量换算成井底产量,并折算为实验气量,最终确定实验的最终气量。
步骤四:水平段模拟压差确定:统计水平井井口压力、井眼轨迹、井深、地层压力、产量、气液比、含水率,运用水平井井筒压降模型计算井底流压,根据水平段段长,确定模拟流动压差;应用水平井井筒压降模型进行计算,该模型包括两部分,垂直段压降模型和水平段压降模型。本实验,选择最常用的Duns&Ros模型作为水平井垂直段压降模型,以及Lockhart&Martinelli模型作为水平井水平段的压降模型。
步骤五:根据相似性原理,运用步骤一中的模拟水平井的实验装置完成水平段的堵塞和解堵实验。
所述步骤二中的水平段模拟流动介质包括胍胶、杀菌剂、粘土稳定剂、助排剂、多功能增效剂、碳酸钠、基液交联剂、稠化剂、杀菌剂、PH调节剂、粘土稳定剂、破胶剂中的至少一种。
所述步骤三中按如下方法得到实验气量:
1)天然气的体积系数
天然气的体积系数是指天然气在地层条件下所占体积与其在地面标准条件下的体积之比,即
——式1
式中Bg——天然气的体积系数;
Vsc——天然气在地面标准条件下的体积,m3
V——同质量天然气在地层条件下的体积,m3
将标准条件下的温度、压力带入上式(我国工程标准为20℃、0.1013MPa,物理标准为0℃、0.1013MPa),得到
——式2
式中Bg—天然气的体积系数;
—压力,Pa;
—天然气的压缩因子;
—温度,K。
2)气相表观流速
——式3
式中—气相表观流速,m/s;
—气体的体积流量,m3/s;
—过流断面的面积,m2
3)液相表观流速
——式4
式中—液相表观流速,m/s;
—液体的体积流量,m3/s;
统计地层压力及温度,带入式2求得天然气体积系数,根据式1,已知气井井口气体体积流量,可求得井底气体体积流量,再带入式3中,可计算得到井底气相表观流速,根据式4可得到井底液相表观流速,从而确定实验气相流速及液相流速。
所述步骤四中由于井筒中只有气体,井口处于张开状态,井口与井底高程差小,模拟流动压差很小,模拟压差为1~5Pa。
所述步骤五中采用Φ60有机玻璃管模拟水平井井筒及地层,水平段和地层之间用小直径软管连接。
所述步骤一中的模拟水平井的实验装置中模拟地层的水平管进气口与进液口设置于同一端,并在连接模拟地层与井筒水平段的用于模拟地层压裂所产生的裂缝及地层流体流动通道小软管上加装密度仪。
本发明的优点在于:
1、采用模拟流动法,模拟残留的压裂液、泡排剂、压裂砂,按照比例混合后,在实际的压差和流速条件下将混合物从地层带入井筒,模拟分析水平段的堵塞机理,堵塞条件;在完成堵塞模拟后,采用对应的解堵方式对水平段进行解堵模拟,观察各种措施的解堵效果,为水平段井底净化提供技术依据。
2、运用本方法,可模拟水平井地层流体自地层进入井筒的流动状态,从而动态跟踪分析水平井堵塞机理。现有专利ZL201210351312.8《多功能水平气井模拟实验装置》中详细阐述的是如何模拟气水两相的全井筒流动规律,侧重于装置的使用方法。并没有明确指出如何模拟气、水、砂三相流动规律,也未说明采用什么技术方法确定水平井水平段堵塞的临界流速和临界压差。本发明详细阐述了如何利用模拟装置,模拟气液固三相流动。通过运用软件及水平井压降模型设计实验气量及水平段压差,配置不同粘度的混合物,观察其在不同气体流速下的流动状况,以及对产层的封盖堵塞作用,最终确定形成堵塞的临界流速和临界压差。
3、本实验采用的模拟装置较发明专利《多功能水平气井模拟实验装置》中装置的模拟地层部分进行了改进。原有装置中模拟地层部分的水平管,进气口与进液口分布于水平管的两端,存在气液未充分混合达到实验所需密度,就通过模拟射孔的软管进入了井身轨迹中。本实验采用的水平井模拟实验装置,将模拟地层的水平管进气口与进液口设置于同一端,利于气液混合。
附图说明
图1为本发明采用的水平井模拟实验装置的结构示意图。
具体实施方式
实施例1
一种模拟水平井堵塞机理的实验方法,步骤一:设计模拟水平井的实验装置:收集气田不同区块水平井的井眼轨迹和井身结构资料,确定实验模拟结构中水平段的段数、段长以及段间分布,用于模拟水平井的真实情况;
步骤二:水平段模拟流动介质确定:收集水平井压裂液入井液量、入井液返排液、残留压裂液主要成分,并确定模拟流动气液固配方及其比例;
步骤三:实验气量设计:将井口产量换算成井底产量,并折算为实验气量,最终确定实验的最终气量。
步骤四:水平段模拟压差确定:统计水平井井口压力、井眼轨迹、井深、地层压力、产量、气液比、含水率,运用水平井井筒压降模型计算井底流压,根据水平段段长,确定模拟流动压差;应用水平井井筒压降模型进行计算,该模型包括两部分,垂直段压降模型和水平段压降模型。本实验,选择最常用的Duns&Ros模型作为水平井垂直段压降模型,以及Lockhart&Martinelli模型作为水平井水平段的压降模型。
步骤五:根据相似性原理,运用步骤一中的模拟水平井的实验装置完成水平段的堵塞和解堵实验。
本发明采用模拟流动法,模拟残留的压裂液、泡排剂、压裂砂,按照比例混合后,在实际的压差和流速条件下将混合物从地层带入井筒,模拟分析水平段的堵塞机理,堵塞条件;在完成堵塞模拟后,采用对应的解堵方式对水平段进行解堵模拟,观察各种措施的解堵效果,为水平段井底净化提供技术依据。
实施例2
一种模拟水平井堵塞机理的实验方法,步骤一:设计模拟水平井的实验装置:收集气田不同区块水平井的井眼轨迹和井身结构资料,确定实验模拟结构中水平段的段数、段长以及段间分布,用于模拟水平井的真实情况;
步骤二:水平段模拟流动介质确定:收集水平井压裂液入井液量、入井液返排液、残留压裂液主要成分,并确定模拟流动气液固配方及其比例;
步骤三:将井口产量换算成井底产量,并折算为实验气量,最终确定实验的最终气量。
步骤四:水平段模拟压差确定:统计水平井井口压力、井眼轨迹、井深、地层压力、产量、气液比、含水率,运用水平井井筒压降模型计算井底流压,根据水平段段长,确定模拟流动压差;应用水平井井筒压降模型进行计算,该模型包括两部分,垂直段压降模型和水平段压降模型。本实验,选择最常用的Duns&Ros模型作为水平井垂直段压降模型,以及Lockhart&Martinelli模型作为水平井水平段的压降模型。
步骤五:根据相似性原理,运用步骤一中的模拟水平井的实验装置完成水平段的堵塞和解堵实验。
所述步骤二中的水平段模拟流动介质包括胍胶、杀菌剂、粘土稳定剂、助排剂、多功能增效剂、碳酸钠、基液交联剂、稠化剂、杀菌剂、PH调节剂、粘土稳定剂、破胶剂中的至少一种。
所述步骤三中按如下方法得到实验气量:
1)天然气的体积系数
天然气的体积系数是指天然气在地层条件下所占体积与其在地面标准条件下的体积之比,即
——式1
式中Bg——天然气的体积系数;
Vsc——天然气在地面标准条件下的体积,m3
V——同质量天然气在地层条件下的体积,m3
将标准条件下的温度、压力带入上式(我国工程标准为20℃、0.1013MPa,物理标准为0℃、0.1013MPa),得到
——式2
式中Bg—天然气的体积系数;
—压力,Pa;
—天然气的压缩因子;
—温度,K。
2)气相表观流速
——式3
式中—气相表观流速,m/s;
—气体的体积流量,m3/s;
—过流断面的面积,m2
3)液相表观流速
——式4
式中—液相表观流速,m/s;
—液体的体积流量,m3/s;
统计地层压力及温度,带入式2求得天然气体积系数,根据式1,已知气井井口气体体积流量,可求得井底气体体积流量,再带入式3中,可计算得到井底气相表观流速,根据式4可得到井底液相表观流速,从而确定实验气相流速及液相流速。
所述步骤四中由于井筒中只有气体,井口处于张开状态,井口与井底高程差小,模拟流动压差很小,模拟压差为1~5Pa。
所述步骤五中采用Φ60有机玻璃管模拟水平井井筒及地层,水平段和地层之间用小直径软管连接。
所述步骤一中的模拟水平井的实验装置中模拟地层的水平管进气口与进液口设置于同一端,并在连接模拟地层与井筒水平段的用于模拟地层压裂所产生的裂缝及地层流体流动通道小软管上加装密度仪。
本发明采用模拟流动法,模拟残留的压裂液、泡排剂、压裂砂,按照比例混合后,在实际的压差和流速条件下将混合物从地层带入井筒,模拟分析水平段的堵塞机理,堵塞条件;在完成堵塞模拟后,采用对应的解堵方式对水平段进行解堵模拟,观察各种措施的解堵效果,为水平段井底净化提供技术依据。
运用本方法,可模拟水平井地层流体自地层进入井筒的流动状态,从而动态跟踪分析水平井堵塞机理。现有专利ZL201210351312.8《多功能水平气井模拟实验装置》中详细阐述的是如何模拟气水两相的全井筒流动规律,侧重于装置的使用方法。并没有明确指出如何模拟气、水、砂三相流动规律,也未说明采用什么技术方法确定水平井水平段堵塞的临界流速和临界压差。本发明详细阐述了如何利用模拟装置,模拟气液固三相流动。通过运用软件及水平井压降模型设计实验气量及水平段压差,配置不同粘度的混合物,观察其在不同气体流速下的流动状况,以及对产层的封盖堵塞作用,最终确定形成堵塞的临界流速和临界压差。
本实验采用的模拟装置较发明专利《多功能水平气井模拟实验装置》中装置的模拟地层部分进行了改进。原有装置中模拟地层部分的水平管,进气口与进液口分布于水平管的两端,存在气液未充分混合达到实验所需密度,就通过模拟射孔的软管进入了井身轨迹中。本实验采用的水平井模拟实验装置,将模拟地层的水平管进气口与进液口设置于同一端,利于气液混合。
实施例3
在实施例1和实施例2的基础上,本实验采用的模拟装置较发明专利《多功能水平气井模拟实验装置》中装置的模拟地层部分进行了改进。原有装置中模拟地层部分的水平管,进气口与进液口分布于水平管的两端,存在气液未充分混合达到实验所需密度,就通过模拟射孔的软管进入了井身轨迹中。本实验采用的水平井模拟实验装置,将模拟地层的水平管进气口与进液口设置于同一端,利于气液混合,并在连接模拟地层与井筒水平段的用于模拟地层压裂所产生的裂缝及地层流体流动通道小软管上加装密度仪,以监测气液混合的密度。
本实验采用的模拟装置在井口位置设置有压力计和温度计,与井口相连的竖直管道内径为65mm,在竖直管道内设置有密度仪,水平管道与竖直管道之间通过软管相连,软管内设置有密度仪,水平管道处的首位各设置有压力计和温度计,中部设置有密度仪,水平管道共有四根,并排布置,相邻两根水平管道之间的间隔为0.5m,在相邻的水平管道之间通过内径为5mm的两根连接管相连,连接管内设置有压差计和密度仪,第四根水平管道的出口处设置有气体流量计和液体流量计。
并进行如下实验:堵塞模拟实验总共有3组按不同比例混合的混合物,在每组混合物下,模拟气量由小到大共3组,即实验分9组进行模拟分析,并观察实验现象。在此选择第2组混合物的模拟过程对本次堵塞模拟实验的实验流程和实验现象进行介绍和分析。
(1)将配置好的混合物装入模拟地层的有机玻璃管中。
(2)开始对地层模拟管通气,并且将气量逐渐增大。
①在气量较小的情况下,软管入口处的疏松砂粒开始随着流体(包括气体和液体)流入井筒模拟段,并开始堆积。此时的气量为2.267m3/h。
②保持气量不变,砂粒随流体流动一段时间之后停止流动,而液体继续随着气体进入井筒中,先前堆积的混合物也被气体冲开,堆积在两边。总结原因如下:在孔道入口处气体流速较大,因此疏松砂粒被先带走。而离入口较远的砂粒胶结在一起,小气量下无法带动。
③继续增大进气量,砂粒又开始随流体流入井筒。当气量达到12.43m3/h后,砂粒匀速稳定地流入井筒中,且随着进气量的继续增大,混合物的运移速度增大,井筒中的堆积速度加快,并逐渐形成堆积堵塞
④将气量稳定在23.79m3/h不变,观察实验现象发现:在混合物稳定流动一段时间之后停止流动,或者只有少量的砂粒继续随流体流动。在实验气量不变的情况下,砂粒并不是连续流动,而是疏松颗粒先被带入井筒,被胶结的颗粒在气体的不断作用下,通过一定的时间积累,外围的颗粒被剥离出来而被带入井筒。如此持续一段时间之后,在软管的出口两端形成混合物堆积。可以预测,在足够长的时间之后,井筒中也会形成堆积。

Claims (6)

1.一种模拟水平井堵塞机理的实验方法,其特征在于:包括如下步骤:
步骤一:设计模拟水平井的实验装置:收集气田不同区块水平井的井眼轨迹和井身结构资料,确定实验模拟结构中水平段的段数、段长以及段间分布,用于模拟水平井的真实情况;
步骤二:水平段模拟流动介质确定:收集水平井压裂液入井液量、入井液返排液、残留压裂液主要成分,并确定模拟流动气液固配方及其比例;
步骤三:实验气量设计:将井口产量换算成井底产量,并折算为实验气量,最终确定实验的最终气量;
步骤四:水平段模拟压差确定:统计水平井井口压力、井眼轨迹、井深、地层压力、产量、气液比、含水率,运用水平井井筒压降模型计算井底流压,根据水平段段长,确定模拟流动压差;
步骤五:根据相似性原理,运用步骤一中的模拟水平井的实验装置完成水平段的堵塞和解堵实验。
2.根据权利要求1所述的一种模拟水平井堵塞机理的实验方法,其特征在于:所述步骤二中的水平段模拟流动介质包括胍胶、杀菌剂、粘土稳定剂、助排剂、多功能增效剂、碳酸钠、基液交联剂、稠化剂、杀菌剂、PH调节剂、粘土稳定剂、破胶剂中的至少一种。
3.根据权利要求1所述的一种模拟水平井堵塞机理的实验方法,其特征在于:所述步骤三中按如下方法得到实验气量:
1)天然气的体积系数
天然气的体积系数是指天然气在地层条件下所占体积与其在地面标准条件下的体积之比,即
——式1
式中Bg——天然气的体积系数;
Vsc——天然气在地面标准条件下的体积,m3
V——同质量天然气在地层条件下的体积,m3
将我国工程标准条件下的温度20℃、压力0.1013MPa带入上式,得到
——式2
式中Bg—天然气的体积系数;
P —压力,Pa;
Z —天然气的压缩因子;
T —温度,K;
2)气相表观流速
——式3
式中Vsg —气相表观流速,m/s;
Qg —气体的体积流量,m3/s;
A —过流断面的面积,m2
3)液相表观流速
——式4
式中Vsl —液相表观流速,m/s;
Ql —液体的体积流量,m3/s;
统计地层压力及温度,带入式2求得天然气体积系数,根据式1,已知气井井口气体体积流量,可求得井底气体体积流量,再带入式3中,可计算得到井底气相表观流速,根据式4可得到井底液相表观流速,从而确定实验气相流速及液相流速。
4.根据权利要求1所述的一种模拟水平井堵塞机理的实验方法,其特征在于:所述步骤四中由于井筒中只有气体,井口处于张开状态,井口与井底高程差小,模拟流动压差很小,模拟压差为1~5Pa。
5.根据权利要求1所述的一种模拟水平井堵塞机理的实验方法,其特征在于:所述步骤五中采用Φ60有机玻璃管模拟水平井井筒及地层,水平段和地层之间用小直径软管连接。
6.根据权利要求1所述的一种模拟水平井堵塞机理的实验方法,其特征在于:所述步骤一中的模拟水平井的实验装置中模拟地层的水平管进气口与进液口设置于同一端,并在连接模拟地层与井筒水平段的用于模拟地层压裂所产生的裂缝及地层流体流动通道小软管上加装密度仪。
CN201610807212.XA 2016-09-07 2016-09-07 一种模拟水平井堵塞机理的实验方法 Active CN106321047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610807212.XA CN106321047B (zh) 2016-09-07 2016-09-07 一种模拟水平井堵塞机理的实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610807212.XA CN106321047B (zh) 2016-09-07 2016-09-07 一种模拟水平井堵塞机理的实验方法

Publications (2)

Publication Number Publication Date
CN106321047A CN106321047A (zh) 2017-01-11
CN106321047B true CN106321047B (zh) 2019-03-12

Family

ID=57787640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610807212.XA Active CN106321047B (zh) 2016-09-07 2016-09-07 一种模拟水平井堵塞机理的实验方法

Country Status (1)

Country Link
CN (1) CN106321047B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422084B (zh) * 2017-09-13 2019-07-05 中国石油化工股份有限公司 水平气井泡沫排水剂性能的评测方法
CN108181379A (zh) * 2017-12-22 2018-06-19 中国科学院广州能源研究所 管道中全体系固体物监测和解堵效果评价实验装置及方法
CN108301821B (zh) * 2018-02-02 2022-02-01 中国石油天然气集团有限公司 水平井携液可视化实验装置及方法
CN111827910B (zh) * 2020-08-11 2022-04-19 西南石油大学 一种探究水平井钻井中岩屑床形成的实验装置及实验方法
CN114544121A (zh) * 2020-11-26 2022-05-27 中国石油天然气股份有限公司 水平井管道状态模拟试验平台及水平井管道振动模拟装置
CN113153220B (zh) * 2021-04-29 2023-01-20 中国石油天然气股份有限公司 一种气井井筒疏通效果评价方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839967A (zh) * 2012-09-20 2012-12-26 中国石油化工股份有限公司 多功能水平气井模拟实验装置
CN103015985A (zh) * 2012-12-21 2013-04-03 中国石油大学(北京) 一种水平井与直井流入动态二维可视模拟装置
RU2012109065A (ru) * 2012-03-12 2013-09-20 Открытое Акционерное Общество "Газпром Промгаз" Способ добычи сланцевого газа
CN103696745A (zh) * 2014-01-07 2014-04-02 西南石油大学 油气藏水平井动态模拟多功能实验装置
CN104563993A (zh) * 2013-10-11 2015-04-29 中国石油大学(北京) 一种页岩水平井分段压裂或同步压裂模拟实验方法
CN105160134A (zh) * 2015-09-30 2015-12-16 中国石油天然气股份有限公司 致密储层多重介质中油气流动的混合介质模拟方法及装置
CN105239981A (zh) * 2015-10-27 2016-01-13 中国石油大学(北京) 稠油热采水平井段沿程变质量流动模拟实验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2012109065A (ru) * 2012-03-12 2013-09-20 Открытое Акционерное Общество "Газпром Промгаз" Способ добычи сланцевого газа
CN102839967A (zh) * 2012-09-20 2012-12-26 中国石油化工股份有限公司 多功能水平气井模拟实验装置
CN103015985A (zh) * 2012-12-21 2013-04-03 中国石油大学(北京) 一种水平井与直井流入动态二维可视模拟装置
CN104563993A (zh) * 2013-10-11 2015-04-29 中国石油大学(北京) 一种页岩水平井分段压裂或同步压裂模拟实验方法
CN103696745A (zh) * 2014-01-07 2014-04-02 西南石油大学 油气藏水平井动态模拟多功能实验装置
CN105160134A (zh) * 2015-09-30 2015-12-16 中国石油天然气股份有限公司 致密储层多重介质中油气流动的混合介质模拟方法及装置
CN105239981A (zh) * 2015-10-27 2016-01-13 中国石油大学(北京) 稠油热采水平井段沿程变质量流动模拟实验装置

Also Published As

Publication number Publication date
CN106321047A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN106321047B (zh) 一种模拟水平井堵塞机理的实验方法
CN101684727B (zh) 超深井稠油掺稀比例确定的优化方法及其掺稀混配器
CN108982342B (zh) 一种高温高压气藏水平井防砂筛管抗冲蚀性能评价装置及评价方法与应用
CN102839967B (zh) 多功能水平气井模拟实验装置
CN105043933B (zh) 一种高参数压裂液性能测试评价装置
CN203772680U (zh) 一种测量管流摩阻的装置
CN104879094B (zh) 一种井下节流气井井筒模拟实验装置
CN113565482B (zh) 一种用于模拟水平井暂堵压裂的模拟装置和方法
Lu Experimental and computational study of two-phase slug flow
CN108266176A (zh) 一种基于井筒模型的天然气井口流量计算方法
CN106802992A (zh) 一种基于油嘴模型的天然气井口流量确定方法
CN104989351A (zh) 油气井注气过程中干度、温度及压力耦合预测方法
CN105137045A (zh) 一种综合判定宏观渗流过程中泡沫油现象形成的实验装置及应用
CN104033147A (zh) 一种低渗水平井分段压裂耦合流动实验装置
CN106777663B (zh) 一种考虑天然裂缝的压裂液滤失速度计算方法
Ihara et al. Experimental and theoretical investigation of two-phase flow in horizontal wells
CN104034629B (zh) 一种泡沫管流变测试系统及其应用
CN111622745A (zh) 环空压力测试装置及测量井漏量对环空压力影响的方法
CN113642272A (zh) 页岩油气藏渗流-水平井筒流动耦合模型建立方法
CN204666329U (zh) 一种气流携液携砂可视化实验装置
Ibarra et al. Experimental study of a poor boy downhole gas separator under continuous gas-liquid flow
CN108952649B (zh) 在长胶结管内判断乳化发生位置的方法与装置
CN206329294U (zh) 一种模拟氮气钻水平井地层出水实验装置
US5660617A (en) System and method for maintaining multiphase flow with minimal solids degradation
CN105869503B (zh) 测量岩石润湿性对泡沫油影响的实验系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant