CN106311292A - 一种Ag/Ag3PO4光催化剂及其制备方法和应用 - Google Patents

一种Ag/Ag3PO4光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN106311292A
CN106311292A CN201610714851.1A CN201610714851A CN106311292A CN 106311292 A CN106311292 A CN 106311292A CN 201610714851 A CN201610714851 A CN 201610714851A CN 106311292 A CN106311292 A CN 106311292A
Authority
CN
China
Prior art keywords
photocatalyst
bisphenol
solution
silver nitrate
ag3po4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610714851.1A
Other languages
English (en)
Inventor
张燕辉
胡世荣
林进妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnan Normal University
Original Assignee
Minnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnan Normal University filed Critical Minnan Normal University
Priority to CN201610714851.1A priority Critical patent/CN106311292A/zh
Publication of CN106311292A publication Critical patent/CN106311292A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于降解环境激素双酚A的光催化剂,以硝酸银、磷酸氢二铵为原料,经过一步沉淀‑光照处理得到Ag/Ag3PO4光催化剂。本发明首次将Ag/Ag3PO4光催化剂用于液相降解环境激素双酚A,具有高的降解效率,降解率高达96.5%,矿化率为93.2%,达到净化环境的目的。此外,本发明的催化剂生产工艺简单,可大规模生产,以可见光为驱动能、空气为氧化剂,用于降解环境中的环境激素,有利于环境净化和人类社会的可持续发展。

Description

一种Ag/Ag3PO4光催化剂及其制备方法和应用
技术领域
本发明属于环境净化以及环境的可持续发展领域,具体涉及一种Ag/Ag3PO4光催化剂及其制备方法和应用。
背景技术
2015年4月16日国务院国发(2015)17号文件《水污染防治行动计划》中要求严格控制环境激素类化学品污染。2017年底前完成环境激素类化学品生产使用情况调查,监控评估水源地、农产品种植区及水产品集中养殖区风险,实施环境激素类化学品淘汰、限制、替代等措施。然而,在过去的十年里,一部分野生动物和人类的生殖、免疫、神经、内分泌等系统出现了各种异常现象。其中,生殖异常最为突出,其表现是在全球范围内出现了大量男性精子密度减少、精子质量下降的现象。出现这些现象与一种环境污染物有关,学术名称为内分泌干扰因素,我们通常叫它为环境激素。人类等生物体内含有可调节自身发育过程和保持自身代谢平衡的天然激素,环境激素通过干扰这些天然激素的合成、分泌、运输、结合、反应和代谢等过程,从而影响生物体的免疫、神经和生殖系统等功能。因此,不仅要实施环境激素类化学品淘汰、限制、替代等措施,还需要研究工作者投入更多精力研究如何降解环境中已有的环境激素。
目前,清除环境中环境激素的主要方法有吸附法、生物降解法和光催化降解法。其中光催化氧化作为一项绿色技术,在降解环境激素方面具有巨大的潜力,如有一些半导体材料TiO2、ZnO、CeO2、CdS和ZnS粒子等已探索研究光催化降解环境激素领苯二甲酸酯。然而,以TiO2为代表的金属氧化物存在着可见光利用率低和量子效率低的瓶颈,难以工业化;而以CdS为代表的金属硫化物面临着严重的光腐蚀,难以大规模应用。因此,探索合适的光催化材料用于光催化降解环境激素是人们共同的愿望。
在众多半导体材料中,Ag3PO4自2009年被发现具有光催化降解染料能力以来,引起了研究者广泛关注,但这七年多来,研究工作者一直集中在Ag3PO4晶面控制、负载、掺杂、耦合第二类半导体方面的研究,并将这些复合材料用于光催化降解染料,从而研究其提高光催化活性的原因。但Ag3PO4在光催化过程中本身就会分解,染料降解的因素比较多,本身Ag3PO4价格也比较贵,因此,如何将Ag3PO4自稳定并且拓展Ag3PO4在光催化领域的应用是研究这类光催化材料根本意义所在。
发明内容
本发明的目的在于提供光催化性能好、无二次污染、环境友好、生产工艺简单、可大规模生产的用于降解环境激素双酚A的Ag/Ag3PO4光催化剂,所得Ag/Ag3PO4具有光催化液相降解环境激素双酚A的功能。
所述的双酚A结构式如下:
为实现上述目的,本发明采用如下技术方案:
一种Ag/Ag3PO4光催化剂,呈球形,球的直径为300-600nm,或由300-600 nm球状颗粒聚集在一起呈块状。
所述Ag/Ag3PO4光催化剂的制备方法,具体包括以下步骤:
(1)将硝酸银(AgNO3)分散于去离子水中,形成硝酸银溶液;
(2)步骤(1)所得溶液边搅拌边缓慢滴加磷酸氢二铵((NH4)2HPO4)溶液,继续搅拌6 h;
(3)步骤(2)所得固体过滤分离,洗涤至中性,干燥即得Ag3PO4
(4)取步骤(3)所制备的Ag3PO4分散于去离子水中,置于可见光下照射2 h,过滤分离,洗涤,干燥即得Ag/Ag3PO4光催化剂。
所述硝酸银和磷酸氢二铵的摩尔比为3:1。
所述的Ag/Ag3PO4催化剂用于光催化液相降解环境激素双酚A,其具体步骤如下:
(1)称取一定量催化剂置于光催化反应器中,加入一定量去离子水,超声分散均匀后,再加入双酚A溶液,形成催化剂和双酚A的混合溶液;
(2)将混合溶液置于光催化反应体系中,未开灯前为暗室,搅拌使其达到吸附-脱附平衡,接着,取第一个样,标记此时双酚A溶液浓度为C 0
(3)开灯(光源为氙灯,光源波长为420-780 nm)并计时,在线取样,样品离心移去催化剂后,通过紫外-可见分光光度计测定溶液中剩余双酚A溶液浓度C,并通过总有机碳分析仪测量溶液中剩余有机碳的浓度;
(4)以紫外-可见吸收光谱中276 nm处变化得到双酚A的降解率,以总有机碳分析仪中有机碳浓度的变化得到双酚A的矿化率。
所述的Ag3PO4和Ag/Ag3PO4在波长420-780 nm的可见光下照射50 min,Ag3PO4对双酚A的降解率达87.2%、矿化率为86.7%;Ag/Ag3PO4对双酚A的降解率达96.5%、矿化率为93.2%。
本发明的显著优点在于:
(1)本发明将Ag/Ag3PO4光催化剂用于液相降解环境激素双酚A,具有高催化效率,降解率高达96.5%,矿化率为93.2%,将有机污染物矿化成CO2和H2O。
(2)Ag/Ag3PO4光催化剂生产工艺简单、可大规模生产,用于液相降解有机污染物,有利于环境净化和水体污染净化。
附图说明
图1是Ag3PO4和Ag/Ag3PO4的粉末X射线衍射(XRD)图;
图2是Ag3PO4和Ag/Ag3PO4的紫外-可见漫反射(UV-vis DRS)图;
图3是Ag3PO4(图3a)和Ag/Ag3PO4(图3b)的扫描电镜(SEM)图。
具体实施方式
对比例1
将1.02 g硝酸银(AgNO3)分散于100 mL去离子水中,形成硝酸银溶液;然后,边搅拌边缓慢滴加50 mL 0.04mol/L磷酸氢二铵((NH4)2HPO4)溶液,继续搅拌反应6 h;接着,将所得固体过滤分离,洗涤至pH为中性,干燥即得Ag3PO4
称取0.1g Ag3PO4置于光催化反应器中,加入60mL去离子水,超声分散均匀后,再加入60mL 40 ppm的双酚A溶液,形成0.1g催化剂和20ppm 120 mL双酚A的混合溶液;将混合溶液置于光催化反应体系中,未开灯前为暗室,搅拌使其达到吸附-脱附平衡,接着,取第一个样,标记此时双酚A溶液浓度为C 0 ;开灯(光源为氙灯,光源波长为420-780 nm)并计时,在线取样,样品离心移去催化剂后,通过紫外-可见分光光度计测定溶液中剩余双酚A溶液浓度C,并通过总有机碳分析仪测量溶液中剩余有机碳的浓度;以紫外-可见吸收光谱中276 nm处变化得到双酚A的降解率,以总有机碳分析仪中有机碳浓度的变化得到双酚A的矿化率。Ag3PO4对双酚A的降解率达87.2%,矿化率为86.7%。
实施例1
将1.02 g硝酸银(AgNO3)分散于100 mL去离子水中,形成硝酸银溶液;然后,边搅拌边缓慢滴加50 mL 0.04mol/L磷酸氢二铵((NH4)2HPO4)溶液,继续搅拌反应6 h;接着,将所得固体过滤分离,洗涤至pH为中性,干燥即得Ag3PO4;取0.3 g所制备的Ag3PO4分散于去离子水中,置于可见光照射2 h,过滤分离,洗涤,干燥即得Ag/Ag3PO4
称取0.1g Ag/Ag3PO4置于光催化反应器中,加入60mL去离子水,超声分散均匀后,再加入60mL 40 ppm的双酚A溶液,形成0.1g催化剂和20ppm 120 mL双酚A的混合溶液;将混合溶液置于光催化反应体系中,未开灯前为暗室,搅拌使其达到吸附-脱附平衡,接着,取第一个样,标记此时双酚A溶液浓度为C 0 ;开灯(光源为氙灯,光源波长为420-780 nm)并计时,在线取样,样品离心移去催化剂后,通过紫外-可见分光光度计测定溶液中剩余双酚A溶液浓度C,并通过总有机碳分析仪测量溶液中剩余有机碳的浓度;以紫外-可见吸收光谱中276nm处变化得到双酚A的降解率,以总有机碳分析仪中有机碳浓度的变化得到双酚A的矿化率。Ag/Ag3PO4对双酚A的降解率达96.5%,矿化率为93.2%。
图1是Ag3PO4和Ag/Ag3PO4的XRD图。从图中可以看到,两个样品的XRD谱图类似,只是Ag/Ag3PO4比Ag3PO4多一个小峰,衍射峰的2θ值在38.1°可归属为Ag(JCPDS No. 65-2871)的(111)晶面;另外,衍射峰的2θ值在20.9°、29.7°、33.3°、36.6°、47.8°、52.7°、55.0°、57.3°、61.6°、69.9°和71.9°分别对应Ag3PO4(JCPDS No. 06-0505)的(110)、(200)、(210)、(211)、(310)、(222)、(320)、(321)、(400)、(420)和(421)晶面。说明分散于水中的Ag3PO4在光照条件下会分解,当少量Ag3PO4分解生成Ag单质后,达到自稳定形成Ag/Ag3PO4复合材料。
图2是Ag3PO4和Ag/Ag3PO4的UV-vis DRS图。从图可以看到,Ag3PO4和Ag/Ag3PO4在紫外区和可见区均有一定吸收,则反射率较小。
图3是Ag3PO4(图3a)和Ag/Ag3PO4(图3b)的SEM图。从图中可以看出,Ag3PO4呈球形,球的直径为300-600nm;经可见光照射处理之后得到Ag/Ag3PO4也呈球形,球的直径为300-600nm,但有300-600 nm球状颗粒聚集在一起呈块状。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种Ag/Ag3PO4光催化剂,其特征在于:所述Ag/Ag3PO4光催化剂呈球形,球的直径为300-600nm,或由300-600nm球状颗粒聚集在一起呈块状。
2.一种制备如权利要求1所述的Ag/Ag3PO4光催化剂的方法,其特征在于:包括以下步骤:
(1)将硝酸银分散于去离子水中,形成硝酸银溶液;
(2)步骤(1)所得溶液边搅拌边缓慢滴加磷酸氢二铵溶液,继续搅拌6 h;
(3)步骤(2)所得固体过滤分离,洗涤至中性,干燥即得Ag3PO4
(4)取步骤(3)所制备的Ag3PO4分散于去离子水中,置于可见光下照射2 h,过滤分离,洗涤,干燥即得Ag/Ag3PO4光催化剂。
3.根据权利要求2所述的Ag/Ag3PO4光催化剂的制备方法,其特征在于:所述硝酸银和磷酸氢二铵的摩尔比为3:1。
4. 一种如权利要求1所述的Ag/Ag3PO4光催化剂的应用,其特征在于:所述的Ag/Ag3PO4光催化剂用于降解环境激素双酚A,在波长420-780 nm的可见光下照射50 min,Ag/Ag3PO4对双酚A的降解率达96.5%、矿化率为93.2%。
CN201610714851.1A 2016-08-25 2016-08-25 一种Ag/Ag3PO4光催化剂及其制备方法和应用 Pending CN106311292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610714851.1A CN106311292A (zh) 2016-08-25 2016-08-25 一种Ag/Ag3PO4光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610714851.1A CN106311292A (zh) 2016-08-25 2016-08-25 一种Ag/Ag3PO4光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106311292A true CN106311292A (zh) 2017-01-11

Family

ID=57790305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610714851.1A Pending CN106311292A (zh) 2016-08-25 2016-08-25 一种Ag/Ag3PO4光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106311292A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107398289A (zh) * 2017-06-20 2017-11-28 江苏大学 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途
CN108187754A (zh) * 2017-12-16 2018-06-22 河西学院 一种负载型Ag/Ag3PO4光催化剂及其制备方法
CN108325542A (zh) * 2018-02-02 2018-07-27 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN112958138A (zh) * 2021-03-05 2021-06-15 重庆科技学院 一种复合光催化剂AgIn5S8/g-C3N4及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014777A2 (en) * 2002-10-16 2005-02-17 Board Of Regents, The University Of Texas System Methods and compositions for increasing the efficacy of biologically-active ingredients
CN104909428A (zh) * 2015-05-14 2015-09-16 南京大学 一种Ag3PO4/TiO2催化剂与低温等离子体联合处理难生化降解有机废水的装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014777A2 (en) * 2002-10-16 2005-02-17 Board Of Regents, The University Of Texas System Methods and compositions for increasing the efficacy of biologically-active ingredients
CN104909428A (zh) * 2015-05-14 2015-09-16 南京大学 一种Ag3PO4/TiO2催化剂与低温等离子体联合处理难生化降解有机废水的装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
余锐等: "球状Ag-Ag3PO4等离子体光催化剂的制备及其在降解罗丹明B中的应用", 《安徽师范大学学报(自然科学版)》 *
王光辉著: "《分子识别作用下环境内分泌干扰物光降解及机制》", 11 March 2011, 北京:中国环境科学出版社 *
马旭等: "光催化氧化技术降解水中双酚A的研究进展", 《环境工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107398289A (zh) * 2017-06-20 2017-11-28 江苏大学 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途
CN108187754A (zh) * 2017-12-16 2018-06-22 河西学院 一种负载型Ag/Ag3PO4光催化剂及其制备方法
CN108325542A (zh) * 2018-02-02 2018-07-27 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN108325542B (zh) * 2018-02-02 2020-12-08 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN112958138A (zh) * 2021-03-05 2021-06-15 重庆科技学院 一种复合光催化剂AgIn5S8/g-C3N4及其制备方法和应用

Similar Documents

Publication Publication Date Title
Khan et al. Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts
Sabzehmeidani et al. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning
Hu et al. Novel composite BiFeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation
CN106311292A (zh) 一种Ag/Ag3PO4光催化剂及其制备方法和应用
Zhang et al. A facile method for the preparation of colored Bi4Ti3O12− x nanosheets with enhanced visible-light photocatalytic hydrogen evolution activity
CN103252244A (zh) 一种可见光响应型氯氧铋光催化剂的制备及其应用方法
Salehi et al. Optimization of reactive black 5 degradation using hydrothermally synthesized NiO/TiO2 nanocomposite under natural sunlight irradiation
Wang et al. Solvothermal synthesis of ZnO nanoparticles for photocatalytic degradation of methyl orange and p-nitrophenol
CN109261172A (zh) 一种碘氧化铋/溴氧化铋异质结光催化剂的制备方法和用途
Zhang et al. Enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight of novel CQDs/Bi2O2CO3 composite
Nwaji et al. Gold nanoparticle-decorated Bi2S3 nanorods and nanoflowers for photocatalytic wastewater treatment
CN108543542B (zh) 一种三维多孔复合光催化剂的制备方法及应用
Zhang et al. Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution
CN108671951B (zh) 一种氮化碳复合光催化剂及其制备方法和应用
Gao et al. Photocatalytic self-cleaning cotton fabrics coated by Cu2 (OH) PO4 under VIS/NIR irradiation
Wang et al. Degradation of landfill leachate using UV-TiO2 photocatalysis combination with aged waste reactors
Abbasi-Asl et al. Ag2C2O4/Ag3PO4 composites as efficient photocatalyst for solar light driven degradation of dyes pollutants
Gryparis et al. Self-cleaning coatings for the protection of cementitious materials: the effect of carbon dot content on the enhancement of catalytic activity of TiO2
Rattan Paul et al. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation
Yao et al. TiO2-coated copper zinc tin sulfide photocatalyst for efficient photocatalytic decolourization of dye-containing wastewater
Zohra et al. Enhanced photocatalytic degradation of dyes and antibiotics with biosynthesized FeMn2O4 nanocomposite under sunlight irradiation: isotherm and kinetic study
Palanimuthu et al. S pirulina carbon dots: a promising biomaterial for photocatalytic textile industry Reactive Red M8B dye degradation
Wang et al. Preparation of a high-performance N-defect ZnO@ g-C3N4 nanocomposite and its photocatalytic degradation of tetracycline
Amini et al. Cu-S codoping TiO2/SiO2 and TiO2/SiO2/Fe3O4 core-shell nanocomposites as a novel purple LED illumination active photocatalyst for degradation of diclofenac: the effect of different scavenger agents and optimization
Ponkshe et al. Solar light–driven photocatalytic degradation and mineralization of beta blockers propranolol and atenolol by carbon dot/TiO 2 composite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication