CN106295857A - 一种风电功率超短期预测方法 - Google Patents

一种风电功率超短期预测方法 Download PDF

Info

Publication number
CN106295857A
CN106295857A CN201610614796.9A CN201610614796A CN106295857A CN 106295857 A CN106295857 A CN 106295857A CN 201610614796 A CN201610614796 A CN 201610614796A CN 106295857 A CN106295857 A CN 106295857A
Authority
CN
China
Prior art keywords
model
prediction
wind power
prime
forecast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610614796.9A
Other languages
English (en)
Inventor
黄琦
李坚
何亚
张真源
井实
易建波
桂勋
周统汉
梁浩
鲁尔洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610614796.9A priority Critical patent/CN106295857A/zh
Publication of CN106295857A publication Critical patent/CN106295857A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种风电功率超短期预测方法,利用GA‑BP神经网络、支持向量机、小波神经网络和ARMA时间序列4种单项预测模型的前几个时刻的预测精度均值作为预测时刻风电功率的诱导值,解决了预测时刻诱导值未知的问题;再采用误差信息矩阵进行冗余度分析,然后利用Theil不等系数建立基于IOWA算子的优化模型,通过分析和实测风电功率预测数据表明:结合Theil不等系数和诱导有序加权算数平均算子(IOWA)的组合模型能有效提高风电功率预测精度,增强了风电并网的稳定性和经济性。

Description

一种风电功率超短期预测方法
技术领域
本发明属于风电功率预测技术领域,更为具体地讲,涉及一种风电功率超短期预测方法。
背景技术
随着经济的发展,社会对能源的需求不断增长,由于传统的化石能源的日益枯竭,以及环境污染日益严重,清洁的可再生能源得到了迅速发展,特别是风力发电,其比重在电力系统的总容量中也越来越大。由于风力资源的间歇性与波动性,导致了风电功率的随机性和难以预测性。随着风电场的快速建设,风电的大规模并网对电网调度、电能质量以及电力系统的稳定运行带来了严峻考验。在目前大力建设智能电网的趋势下,对风电场风电功率的准确预测是保障电力系统安全稳定的有效途径。
按照时间尺度划分,风电功率预测一般分为超短期预测、短期预测和中长期预测三类,而高精度的超短期预测是保障电力系统安全稳定的关键。目前,国内外常用的风电功率超短期预测方法主要是统计模型,有时间序列模型、神经网络、支持向量机模型、卡尔曼模型、灰色预测模型、空间相关法和小波分析等。随着风电技术的深入。传统的单一预测模型暴露了其难以克服的缺点,除了预测精度不高外,每种方法都有其优劣程度和适用对象。例如卡尔曼滤波法难以对噪声的统计特性进行估计,模糊逻辑法学习能力较弱,灰色预测方法适合处理小样本数据等。
发明内容
本发明的目的在于克服现有技术的不足,提供一种风电功率超短期预测方法,利用Theil不等系数建立基于IOWA算子的优化模型,有效的提高了风电功率的预测精度,增强了风电并网的稳定性和经济性。
为实现上述发明目的,本发明一种风电功率超短期预测方法,其特征在于,包括以下步骤:
(1)、从风电场SCADA系统中提取风电功率历史数据序列;
(2)、将GA-BP神经网络模型、支持向量机(SVM)模型、小波神经网络模型和自回归滑动平均作为风电功率超短期预测模型,再将风电功率历史数据序列分别导入到4种预测模型,得到4组预测期风电功率序列yi(t),其中t=1,2,…,n,i=1,2,…,4;
(3)、构建误差信息矩阵E,对4种预测模型进行冗余度分析,确定出参加组合的优选预测模型:
E=[(eit)n×4]T[(eit)n×4]
其中,eit表示第i种预测模型在第t时刻的预测误差,即eit=y(t)-yi(t),y(t)为t时刻风电功率的实测值,与yi(t)的预测时刻相对应;
计算误差信息矩阵E的代数余子式Y4×4,再将代数余子式Y4×4每列的元素求和,得到矩阵M1×4
根据矩阵M1×4判断4种预测模型的冗余度,如果矩阵M1×4的第i列元素为非正,则第i列对应的第i种预测模型为冗余模型,剔除所有冗余模型后,得到优选预测模型;
(4)、基于优选预测模型,利用Theil不等系数建立基于IOWA算子的优化模型,再利用该模型求取最优权重系数矩阵L;
(5)、将最优权重系数矩阵L和待预测数据带入IOWA算子,得到风功率预测结果。
进一步的,所述的步骤(4)中建立基于IOWA算子的优化模型的具体步骤为;
(2.1)、将优选预测模型预测时刻的前M个时刻的预测精度求均值pit,并将此均值作为下一时刻IOWA算子中的诱导值;
p i t = 1 M Σ j = t - M t - 1 p i j
其中,i=1,2,…,m,m表示优选预测模型种类;t=1,2,…,N,N表示预测总时刻;pij为第i种预测模型在第j时刻的预测精度;
(2.2)、构造诱导矩阵YD;
其中,(pmN,ymN)中pmN和ymN分别表示第m种优选预测模型在第N时刻的预测精度和预测值;
(2.3)、将诱导矩阵YD每一列按照诱导值pit从大到小的顺序排序,得到诱导有序矩阵YX:
(2.4)、令优选预测模型中每个单项预测模型的权重系数为L=(l1,l2,…,lm),其中l1+l2+…+lm=1;
利用诱导有序矩阵YX计算IOWA算子yiowa-t
y i o w a - t = IOWA L ( < p 1 t &prime; , y 1 t &prime; > , < p 2 t &prime; , y 2 t &prime; > ... < p m t &prime; , y m t &prime; > ) = &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) = l 1 y 1 t &prime; + l 2 y 2 t &prime; + ... + l m y m t &prime;
其中,p′-index(it)将m种单项预测模型第t时刻预测精度序列p1t,p2t,…,pmt按从大到小的顺序排列的第i个大的预测精度的下标,即yp′-index(it)对应的序列是{yp′-index(it),y1t,y2t,…,y′mt};
将IOWA算子yiowa-t带入以Theil不等系数建立的基于IOWA算子的优化模型;
min&mu; i o w a = &Sigma; t = 1 N ( x t - &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 &Sigma; t = 1 N y t 2 + &Sigma; t = 1 N ( &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 s . t . &Sigma; i = 1 m l i = 1 , l i &GreaterEqual; 0
最后通过此优化模型,求取最优权重系数矩阵L。
本发明的发明目的是这样实现的:
本发明一种风电功率超短期预测方法,利用GA-BP神经网络、支持向量机、小波神经网络和ARMA时间序列4种单项预测模型的前几个时刻的预测精度均值作为预测时刻风电功率的诱导值,解决了预测时刻诱导值未知的问题;再采用误差信息矩阵进行冗余度分析,然后利用Theil不等系数建立基于IOWA算子的优化模型,通过分析和实测风电功率预测数据表明:结合Theil不等系数和诱导有序加权算数平均算子(IOWA)的组合模型能有效提高风电功率预测精度,增强了风电并网的稳定性和经济性。
附图说明
图1是历史风电功率数据曲线示意图;
图2是本发明一种风电功率超短期预测方法流程图;
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
为了方便描述,先对具体实施方式中出现的相关专业术语进行说明:
SCADA(Supervisory Control And Data Acquisition):数据采集与监视控制系统;
GA-BP(Genetic Algorithm-Back Propagation):遗传算法-反向传播;
SVM(Support Vector Machine):支持向量机;
AR(Auto-Regressive):自回归;
MA(Moving Average):滑动平均;
ARMA(Auto-Regressive and Moving Average):自回归滑动平均;
IOWA(Induced Ordered Weighted Averaging):诱导有序加权平均算子;
MRE(Mean Relative Error):平均相对误差;
MAE(Mean Absolute Error):平均绝对误差;
RMSE(Root Mean Squared Interpolation Error):均方根误差;
CC(Correlative Coefficient):相关系数;
PSO(Particle Swarm Optimization):粒子群。
以美国某一风电场的实测风电功率数据为例,研究本发明提出的组合预测方法在风电功率预测的应用。该风电场共有103台额定功率为30KW的风力发电机。由于风电场风力发电机之间的距离相距较远,所以忽略风机之间尾流效应的影响。采集的历史风电功率数据的时间间隔为10min,根据预测模型的数据需求,选取风电场一个月的4320个时刻中前4100个时刻用于建模预测。其中前4100个时间节点的风电功率数据作为模型的训练数据,4101至4200之间的100个时间节点风速数据作为测试数据对模型进行预测。预测步长取1,以滚动预测法进行预测。4320个历史风电功率数据如图1所示。
下面通过实例和附图,对本发明的技术方案作进一步具体的说明。
在本实施例中,如图2所示,本发明一种风电功率超短期预测方法,包括以下步骤:
S1、从风电场SCADA系统中提取风电功率历史数据序列;
在本实施例中,对提取的4100个时刻的风电功率历史数据进行数据预处理,当风电功率值为负值时,将其设为0;若历史风电功率出现漏采集时,采用平均内插值法进行插值处理,使数据序列连续。
S2、将GA-BP神经网络模型、支持向量机(SVM)模型、小波神经网络模型和自回归滑动平均(ARMA)模型作为风电功率超短期预测模型,再将风电功率历史数据序列分别导入到4种预测模型,得到4组预测期风电功率序列yi(t),其中t=1,2,…,n,i=1,2,…,4,分别对应GA-BP神经网络模型、支持向量机(SVM)模型、小波神经网络模型和自回归滑动平均(ARMA)模型;;
在本实施例中,选用的GA-BP神经网络预测模型,是根据平均相对误差MRE和均方根误差RMSE均最小原则,来确定GA-BP神经网络风电功率预测模型的输入层节点数、隐含层节点数和遗传优化算法的种群数目。最终确定GA-BP神经网络预测模型的输入层节点数是5个,隐含层节点数是12个,遗传优化算法的种群数是20个;
小波神经网络预测模型,选用的是Morlet小波基函数。根据平均相对误差MRE和均方根误差RMSE均最小原则,来确定小波神经网络风电功率预测模型的输入层节点数、隐含层节点数。最终确定小波神经网络的输入层节点数是4个,隐含层节点数是15个;
GA-BP神经网络预测模型和小波神经网络预测模型的输入层和隐含层之间的连接权重以及隐含层与输出层之间的连接权重是由Matlab的神经网络模型工具箱在对历史数据进行模拟训练时自动获得。
支持向量机预测模型是选用的径向基核函数,各学习参数采用粒子群(PSO)优化算法进行自适应学习获得。最终得到该方法中各参数的取值为:最佳惩罚参数C=13.9288,最佳核函数参数g=0.0625。
自回归滑动平均(ARMA)预测模型是经过模型参数估计和模型定阶来确定自回归过程AR(p),移动平均过程MA(q)的取值,最终确定选用阶数为ARMA(3,1)的自回归滑动平均预测模型。
S3、构建误差信息矩阵E,对4种预测模型进行冗余度分析,确定出参加组合的优选预测模型:
E=[(eit)n×4]T[(eit)n×4]
其中,eit表示第i种预测模型在第t时刻的预测误差,即eit=y(t)-yi(t),y(t)为t时刻风电功率的实测值,与yi(t)的预测时刻相对应;
计算误差信息矩阵E的代数余子式Y4×4,再将代数余子式Y4×4每列的元素求和,得到矩阵M1×4
根据矩阵M1×4判断4种预测模型的冗余度,如果矩阵M1×4的第i列元素为非正,则第i列对应的第i种预测模型为冗余模型,剔除所有冗余模型后,得到优选预测模型;
在本实施例中,按照图1所给数据,按照上述方法可以得到:
E = 10 6 &times; 2.3800 1.8862 2.0630 1.9851 1.8862 2.1311 2.1521 2.0806 2.0630 2.1521 2.9336 2.1974 1.9851 2.0806 2.1974 2.1369
计算其代数余子式,得到:
Y = 10 18 &times; 0.1514 0.0677 - 0.0061 - 0.2003 0.0677 0.7707 - 0.0166 - 0.7963 - 0.0061 - 0.0166 0.1160 - 0.0975 - 0.2003 - 0.7963 - 0.0975 1.0980
其每列元素的代数和如下:
M=1016×[1.2710 2.5588 -0.4155 0.3974]
由上可知,误差信息矩阵的代数余子式的第3列元素的代数和是负数,则小波神经网络模型是冗余模型,在建立组合预测模型时,舍去小波神经网络模型。
S4、基于优选预测模型,利用Theil不等系数建立基于IOWA算子的优化模型,再利用该模型求取最优权重系数矩阵L;
具体步骤为;
S4.1、将优选预测模型预测时刻的前M个时刻的预测精度求均值pit,并将此均值作为下一时刻IOWA算子中的诱导值;
p i t = 1 M &Sigma; j = t - M t - 1 p i j
其中,i=1,2,…,m,m表示优选预测模型种类;t=1,2,…,N,N表示预测总时刻;pij为第i种预测模型在第j时刻的预测精度;
在本实施例中,以平均相对误差MRE和均方根误差RMSE均最小原则,将优选预测模型预测时刻的前11个时刻预测精度的均值作为下一时刻IOWA算子中的诱导值;
S4.2、构造诱导矩阵YD;
其中,(pmN,ymN)中pmN和ymN分别表示第m种优选预测模型在第N时刻的预测精度和预测值;
S4.3、将诱导矩阵YD每一列按照诱导值pit从大到小的顺序排序,得到诱导有序矩阵YX:
S4.4、令优选预测模型中每个单项预测模型的权重系数为L=(l1,l2,…,lm),其中l1+l2+…+lm=1;在本实施例中,L=[0.1057,0.7284,0.1695],
对应的单项预测模型分别为GA-BP神经网络模型、支持向量机(SVM)模型和自回归滑动平均(ARMA)模型;
利用诱导有序矩阵YX计算IOWA算子yiowa-t
y i o w a - t = IOWA L ( < p 1 t &prime; , y 1 t &prime; > , < p 2 t &prime; , y 2 t &prime; > ... < p m t &prime; , y m t &prime; > ) = &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) = l 1 y 1 t &prime; + l 2 y 2 t &prime; + ... + l m y m t &prime;
其中,p′-index(it)将m种单项预测模型第t时刻预测精度序列p1t,p2t,…,pmt按从大到小的顺序排列的第i个大的预测精度的下标,即yp′-index(it)对应的序列是{yp′-index(it),y′1t,y′2t,…,y′mt};
将IOWA算子yiowa-t带入以Theil不等系数建立的基于IOWA算子的优化模型;
min&mu; i o w a = &Sigma; t = 1 N ( x t - &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 &Sigma; t = 1 N y t 2 + &Sigma; t = 1 N ( &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 s . t . &Sigma; i = 1 m l i = 1 , l i &GreaterEqual; 0
最后通过此优化模型,求取最优权重系数矩阵L。
S5、将最优权重系数矩阵L和待预测数据带入IOWA算子,得到风功率预测结果。
下面利用平均相对误差(MRE)、平均绝对误差(MAE)和均方根误差(RMSE)和相关系数(CC)对风电功率超短期预测结果进行误差分析。其公式如下:
M R E = 1 N &Sigma; t = 1 N | x t - y t x t |
R M S E = 1 N &Sigma; t = 1 N ( x t - y t ) 2
C C = cov ( X , Y ) D X D Y
其误差分析结果如表1所示;
单项模型 MRE/% MAE/KW RMSE/KW CC
GA-BP 14.98 90.7662 154.2710 0.9559
SVM 13.39 84.0029 145.9818 0.9620
小波 15.57 101.3213 171.2778 0.9478
ARMA(3,1,1) 13.41 85.6160 146.1810 0.9616
IOWA组合 11.61 81.2143 139.1065 0.9663
表1
从表1分析可知,IOWA组合预测模型的各个评价指标都比单项预测模型有较大提高,表明,组合预测模型在综合去除冗余预测模型,在优选单项预测模型预测结果的基础上,可以有效的提高风电功率超短期预测的准确性,减小了预测误差。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (2)

1.一种风电功率超短期预测方法,其特征在于,包括以下步骤:
(1)、从风电场SCADA系统中提取风电功率历史数据序列;
(2)、将GA-BP神经网络模型、小波神经网络模型、支持向量机(SVM)模型和自回归滑动平均(ARMA)模型作为风电功率超短期预测模型,再将风电功率历史数据序列分别导入到4种预测模型,得到4组预测期风电功率序列yi(t),其中t=1,2,…,n,i=1,2,…,4;
(3)、构建误差信息矩阵E,对4种预测模型进行冗余度分析,确定出参加组合的优选预测模型:
E=[(eit)n×4]T[(eit)n×4]
其中,eit表示第i种预测模型在第t时刻的预测误差,即eit=y(t)-yi(t),y(t)为t时刻风电功率的实测值,与yi(t)的预测时刻相对应;
计算误差信息矩阵E的代数余子式Y4×4,再将代数余子式Y4×4每列的元素求和,得到矩阵M1×4
根据矩阵M1×4判断4种预测模型的冗余度,如果矩阵M1×4的第i列元素为非正,则第i列对应的第i种预测模型为冗冗余模型,剔除所有冗余模型后,得到优选预测模型;
(4)、基于优选预测模型,利用Theil不等系数建立基于IOWA算子的优化模型,再利用该模型求取最优权重系数矩阵L;
(5)、将最优权重系数矩阵L和待预测数据带入IOWA算子,得到风功率预测结果。
2.根据权利要求1所述的一种风电功率超短期预测方法,其特征在于,所述的步骤(4)中建立基于IOWA算子的优化模型的具体步骤为;
(2.1)、将优选预测模型预测时刻的前M个时刻的预测精度求均值pit,并将此均值作为下一时刻IOWA算子中的诱导值;
p i t = 1 M &Sigma; j = t - M t - 1 p i j
其中,i=1,2,…,m,m表示优选预测模型种类;t=1,2,…,N,N表示预测总时刻;pij为第i种预测模型在第j时刻的预测精度;
(2.2)、构造诱导矩阵YD;
其中,(pmN,ymN)中pmN和ymN分别表示第m种优选预测模型在第N时刻的预测精度和预测值;
(2.3)、将诱导矩阵YD每一列按照诱导值pit从大到小的顺序排序,得到诱导有序矩阵YX:
(2.4)、令优选预测模型中每个单项预测模型的权重系数为L=(l1,l2,…,lm),其中l1+l2+…+lm=1;
利用诱导有序矩阵YX计算IOWA算子yiowa-t
y i o w a - t = IOWA L ( < p 1 t &prime; , y 1 t &prime; > , < p 2 t &prime; , y 2 t &prime; > ... < p m t &prime; , y m t &prime; > ) = &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) = l 1 y 1 t &prime; + l 2 y 2 t &prime; + ... + l m y m t &prime;
其中,p′-index(it)将m种单项预测模型第t时刻预测精度序列p1t,p2t,…,pmt按从大到小的顺序排列的第i个大的预测精度的下标,即yp′-index(it)对应的序列是{yp′-index(it),y′1t,y′2t,…,y′mt};
将IOWA算子yiowa-t带入以Wheil不等系数建立的基于IOWA算子的优化模型;
min&mu; i o w a = &Sigma; t = 1 N ( x t - &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 &Sigma; t = 1 N y t 2 + &Sigma; t = 1 N ( &Sigma; i = 1 m l i y p &prime; - i n d e x ( i t ) ) 2 s . t . &Sigma; i = 1 m l i = 1 , l i &GreaterEqual; 0
最后通过此优化模型,求取最优权重系数矩阵L。
CN201610614796.9A 2016-07-29 2016-07-29 一种风电功率超短期预测方法 Pending CN106295857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610614796.9A CN106295857A (zh) 2016-07-29 2016-07-29 一种风电功率超短期预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610614796.9A CN106295857A (zh) 2016-07-29 2016-07-29 一种风电功率超短期预测方法

Publications (1)

Publication Number Publication Date
CN106295857A true CN106295857A (zh) 2017-01-04

Family

ID=57663391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610614796.9A Pending CN106295857A (zh) 2016-07-29 2016-07-29 一种风电功率超短期预测方法

Country Status (1)

Country Link
CN (1) CN106295857A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656152A (zh) * 2017-09-05 2018-02-02 西安工程大学 一种基于ga‑svm‑bp变压器故障诊断方法
CN108667069A (zh) * 2018-04-19 2018-10-16 河海大学 一种基于偏最小二乘法回归的短期风电功率预测方法
CN109193791A (zh) * 2018-11-10 2019-01-11 东北电力大学 一种基于改进shapley值的风电汇聚趋势性分状态量化方法
CN109214575A (zh) * 2018-09-12 2019-01-15 河海大学 一种基于小波长短期记忆网络的超短期风电功率预测方法
CN109376939A (zh) * 2018-11-01 2019-02-22 三峡大学 一种基于自适应神经网络的电网稳定性实时预测方法
CN110175639A (zh) * 2019-05-17 2019-08-27 华北电力大学 一种基于特征选取的短期风电功率预测方法
CN110782059A (zh) * 2018-07-31 2020-02-11 北京金风科创风电设备有限公司 风力发电机组关键性能指标预测方法、装置、设备及介质
CN116703194A (zh) * 2023-04-03 2023-09-05 无锡市人民医院 一种真实世界大数据的肺移植质控评价方法及管理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682207A (zh) * 2012-04-28 2012-09-19 中国科学院电工研究所 风电场风速超短期组合预测方法
CN103023065A (zh) * 2012-11-20 2013-04-03 广东工业大学 一种基于相对误差熵值法的风电短期功率预测方法
CN105303250A (zh) * 2015-09-23 2016-02-03 国家电网公司 一种基于最优权系数的风电功率组合预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682207A (zh) * 2012-04-28 2012-09-19 中国科学院电工研究所 风电场风速超短期组合预测方法
CN103023065A (zh) * 2012-11-20 2013-04-03 广东工业大学 一种基于相对误差熵值法的风电短期功率预测方法
CN105303250A (zh) * 2015-09-23 2016-02-03 国家电网公司 一种基于最优权系数的风电功率组合预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
公维祥: "风电场风电功率短期智能组合预测技术", 《CNKI 中国优秀硕士学位论文全文数据库》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656152B (zh) * 2017-09-05 2019-11-26 西安工程大学 一种基于ga-svm-bp变压器故障诊断方法
CN107656152A (zh) * 2017-09-05 2018-02-02 西安工程大学 一种基于ga‑svm‑bp变压器故障诊断方法
CN108667069A (zh) * 2018-04-19 2018-10-16 河海大学 一种基于偏最小二乘法回归的短期风电功率预测方法
CN108667069B (zh) * 2018-04-19 2021-10-19 河海大学 一种基于偏最小二乘法回归的短期风电功率预测方法
CN110782059A (zh) * 2018-07-31 2020-02-11 北京金风科创风电设备有限公司 风力发电机组关键性能指标预测方法、装置、设备及介质
CN109214575A (zh) * 2018-09-12 2019-01-15 河海大学 一种基于小波长短期记忆网络的超短期风电功率预测方法
CN109214575B (zh) * 2018-09-12 2021-08-31 河海大学 一种基于小波长短期记忆网络的超短期风电功率预测方法
CN109376939A (zh) * 2018-11-01 2019-02-22 三峡大学 一种基于自适应神经网络的电网稳定性实时预测方法
CN109193791B (zh) * 2018-11-10 2021-05-25 东北电力大学 一种基于改进shapley值的风电汇聚趋势性分状态量化方法
CN109193791A (zh) * 2018-11-10 2019-01-11 东北电力大学 一种基于改进shapley值的风电汇聚趋势性分状态量化方法
CN110175639A (zh) * 2019-05-17 2019-08-27 华北电力大学 一种基于特征选取的短期风电功率预测方法
CN110175639B (zh) * 2019-05-17 2021-06-11 华北电力大学 一种基于特征选取的短期风电功率预测方法
CN116703194A (zh) * 2023-04-03 2023-09-05 无锡市人民医院 一种真实世界大数据的肺移植质控评价方法及管理系统

Similar Documents

Publication Publication Date Title
CN106295857A (zh) 一种风电功率超短期预测方法
Wu et al. Multi-timescale forecast of solar irradiance based on multi-task learning and echo state network approaches
Catalao et al. An artificial neural network approach for short-term wind power forecasting in Portugal
CN102102626B (zh) 风电场短期功率预测方法
CN107862466A (zh) 考虑系统双侧随机性的源荷跨时空互补效益评价方法
CN104376389B (zh) 基于负载均衡的主从式微电网功率负荷预测系统及其方法
CN105868853B (zh) 一种短期风电功率组合概率预测方法
CN106295899B (zh) 基于遗传算法与支持向量分位数回归的风电功率概率密度预测方法
CN104009494B (zh) 一种环境经济发电调度方法
CN103559540B (zh) 基于自适应神经模糊推理系统的风速超短期在线预测方法
CN102938562B (zh) 一种区域内风电总功率的预测方法
CN103218674A (zh) 基于bp神经网络模型的光伏发电系统输出功率预测方法
CN106875033A (zh) 一种基于动态自适应的风电集群功率预测方法
CN104951834A (zh) 基于遗传算法和粒子群集成的lssvm风速预测方法
CN105303250A (zh) 一种基于最优权系数的风电功率组合预测方法
CN103927460A (zh) 一种基于rbf的风电场短期风速预测方法
CN102509027B (zh) 一种基于交叉熵理论的风电功率组合预测方法
CN105574615A (zh) 一种基于空间相关性与ga的小波-bp神经网络风电功率预测方法
CN103065202A (zh) 一种基于组合核函数的风电场超短期风速预测方法
CN104463356A (zh) 一种基于多维信息人工神经网络算法的光伏发电功率预测方法
CN106779177A (zh) 基于粒子群优化的多分辨率小波神经网络用电量预测方法
CN105931134A (zh) 一种含并网光伏电站的系统可靠性评估方法
CN103886223B (zh) 功率预测方法和系统
CN105184683A (zh) 一种基于风电场运行数据的概率聚类分群方法
CN107895202A (zh) 基于多视角风速模式挖掘的短期风速预测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104