CN106294889B - 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法 - Google Patents

一种高强钢轮辐中心孔翻边冲模锥角角度优化方法 Download PDF

Info

Publication number
CN106294889B
CN106294889B CN201510233629.5A CN201510233629A CN106294889B CN 106294889 B CN106294889 B CN 106294889B CN 201510233629 A CN201510233629 A CN 201510233629A CN 106294889 B CN106294889 B CN 106294889B
Authority
CN
China
Prior art keywords
optimization
angle
section
model
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510233629.5A
Other languages
English (en)
Other versions
CN106294889A (zh
Inventor
万兰凤
杨合
殷胜
刘郁丽
姜志远
薛峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Meishan Iron and Steel Co Ltd
Original Assignee
Shanghai Meishan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Meishan Iron and Steel Co Ltd filed Critical Shanghai Meishan Iron and Steel Co Ltd
Priority to CN201510233629.5A priority Critical patent/CN106294889B/zh
Publication of CN106294889A publication Critical patent/CN106294889A/zh
Application granted granted Critical
Publication of CN106294889B publication Critical patent/CN106294889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本发明属于车轮轮辐制造领域,具体是一种高强钢轮辐中心孔翻边冲模锥角角度优化方法。主要解决高强钢轮辐中心孔翻边时存在的翻边开裂等技术问题。本发明通过建立正确的有限元模型模拟实际轮辐中心孔翻边过程,选择合适的韧性断裂准则描述翻边成形时材料的开裂行为,并通过设计合适的算法,进行锥角角度的优化,从而将锥角的角度从预先设定的一个宽区间优化缩小为长度小于设定标准的目标区间,所获区间为理论最优锥角角度所在区间。同时有限元数值模拟技术的应用能提高优化效率,节约成本,实现精确优化。

Description

一种高强钢轮辐中心孔翻边冲模锥角角度优化方法
技术领域
本发明属于车轮轮辐制造领域,具体是一种高强钢轮辐中心孔翻边冲模锥角角度优化方法。
背景技术
车轮轮辐是连接汽车轮辋和轮毂的主要连接件,也是车轮安全的关键部件,制造轮辐传统的材质主要有铝合金和低碳钢。随着汽车工业对安全性能和产品轻量化要求的不断提高,高强钢由于具有较低的屈强比、成本较轻质材料低等在安全性和经济性方面的优点而广泛应用于轮辐成形。
传统的钢制轮辐成形工艺有冲压和旋压两种。冲压成形工艺以生产效率高、生产成本低以及适合批量生产等特点而被广泛应用于钢制轮辐的成形。为了使轮辐最终能够和车轴实现连接,轮辐的冲压成形工艺中包括一道重要的成形工序——中心孔翻边。然而,由于轮辐的中心孔翻边变形量很大,生产时为了提高效率又往往将其与其他工序复合采用而使钢板的翻边变形受到额外的影响,从而导致轮辐的中心孔翻边在成形时经常出现翻边开裂等缺陷,从而报废零件,严重影响了钢制轮辐的成品率。
随着轧制工艺的发展和汽车工业的需求,强度高、成形难度大的高强钢板料在轮辐制造业的应用越来越广泛。高强钢板料在用于轮辐冲压成形时,由于其强度高,成形范围窄,导致成形难度大且成形质量不易控制;再加上轮辐中心孔翻边本身存在的特点,使得高强钢轮辐的中心孔翻边极易出现减薄等缺陷。目前,工厂减少轮辐中心孔翻边开裂主要通过改变中心孔冲模的形状,从而改善材料的流动情况而减轻开裂现象的发生。工厂中使用的中心孔翻边冲模形状主要有:锥形冲模、柱形冲模和抛物线冲模。在诸多形状的中心孔翻边冲模中,柱形冲模对翻边开裂的改善不大,而抛物线冲模加工较为困难。因此,锥形冲模相较其他两种冲模形状在实际生产中获得了更广泛的应用。然而,对于锥形冲模,如何获取其锥角角度是一个难题。现有的设计往往根据设计者经验,或者依靠反复试错法,存在周期长、成本高、结果不够准确等缺点,这就导致锥形冲模无法获得最优锥角进而减轻高强钢轮辐中心孔翻边时存在的开裂现象。目前,在冲压模具角度优化领域,专利(CN 103357734 A)为了减轻筒形件拉深时的开裂情况,提出了一种用于锥形压边圈进行压边的模具设计方案,同时给出了获取锥形压边圈最优锥角角度的优化方法,以实现在模具设计变量和材料特性给定情况下得到最优的锥角角度进而提供实用的筒形件拉深锥形压边配套模具。然而,轮辐中心孔翻边过程中冲模锥角角度优化尚不存在科学的指导方法。为此,急需开发一种高效准确的钢制轮辐中心孔翻边冲模锥角角度优化方法,为实际生产通过改变锥角角度减轻开裂提供指导,推动高强钢轮辐成形工艺的发展。
发明内容
本发明的目的在于提供一种高强钢轮辐中心孔翻边锥形冲模锥角角度的优化方法,主要解决高强钢轮辐中心孔翻边时存在的翻边开裂等技术问题。本发明的思路:通过建立正确的有限元模型模拟实际轮辐中心孔翻边过程,选择合适的韧性断裂准则描述翻边成形时材料的开裂行为,并通过设计合适的算法,进行锥角角度的优化,从而将锥角的角度从预先设定的一个宽区间优化缩小为长度小于设定标准的目标区间,所获区间为理论最优锥角角度所在区间。同时有限元数值模拟技术的应用能提高优化效率,节约成本,实现精确优化。
为达到上述目的,本发明的技术方案是:一种高强钢轮辐中心孔翻边冲模锥角角度优化方法,包括以下步骤:
(1)建立高强钢轮辐中心孔翻边成形的三维有限元模型并验证可靠性:
收集记录实际生产中中心孔翻边所在的成形工序的模具形状尺寸,在有限元模拟软件中建立不同模具和板料的几何模型;根据单向拉伸试验获得所用高强钢材料的力学性能参数,同时,为了描述中心孔翻边开裂现象,选择合适的韧性断裂准则并将其耦合到本构关系中,从而建立起材料模型;
根据实际轮辐成形工序的相关参数,完成有限元建模的其他部分,如:几何模型装配、边界条件和摩擦的设定、网格的划分等;
验证模型可靠性,计算高强钢轮辐中心孔翻边所在成形工序中变形体动能与内能的比值以及伪应变能与内能的比值,若所述动能与内能的比值在成形过程中小于5%,伪应变能与内能的比值小于1%,则可以认为板料变形在准静态下发生的,即模型是稳定的;同时,为进一步验证计算模型的正确性,将轮辐的仿真结果与实际生产所获轮辐成形件结果作对比,若轮辐相关尺寸的仿真结果与所给尺寸相吻合,则验证了所建立模型的正确性;
如果发现所述动能与内能的比值在成形过程中大于等于5%,伪应变能与内能的比值大于等于1%,或者轮辐相关尺寸的仿真结果与给定尺寸不吻合,则返回步骤①重新建模、调试,直至模型满足要求。
(2)选定优化初始角度θ 1 ,优化区间长度θ K 和优化标准θ t ,优化初始角度θ 1 一般即为工厂按照经验等预先设计的冲模锥角角度;优化区间长度θ K 一般选为以θ 1 为中心,左右各取相同长度构成一个区间;优化标准θ t 为一个短区间,体现了优化区间长度的优化程度,其越小表示优化程度越大,同时计算量越大。
(3)生成第一个优化区间,此时,K 1 为以θ 1 为中心,长度为θ K 的一个区间;生成优化角度序列
(4)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列中角度进行设定,并进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为θ 2 ;判断此时下一个优化区间长度 θ K 是否小于等于优化标准θ t ,如果是,则生成并输出下一个优化区间K 2 ,作为优化目标区间,如果为否,则进行下一次优化。(为了继续说明本发明,此处假定优化区间长度大于优化标准)。
(5)生成第二个优化区间,此时,K 2 为以θ 2 为中心,长度为 θ K 的一个区间;生成优化角度序列
(6)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列设定,进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为θ 3 ;判断此时下一个优化区间长度 θ K 是否小于等于优化标准θ t ,如果是,则生成并输出下一个优化区间K 3 ,作为优化目标区间,如果为否,则进行下一次优化。按上述生成优化区间的步骤采用所建立的有限元模型循环操作直至下一步。
(7)生成第i个优化区间i=1,2……n,此时,K i 为以θ i 为中心,长度为 θ K 的一个区间;生成优化角度序列
(8)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列设定,进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为
(9)在进行第i+1次优化之前,比较 θ K θ t 的大小,如果 θ K θ t ,则生成并输出下一个优化区间K i+1 作为目标区间,如果 θ K >θ t ,则继续进行第i+1次优化,直至优化区间长度小于优化标准。
至此,利用有限元模拟的方法及设计的算法,将以θ 1 为中心,以θ K 为长度的优化区间优化为以长度小于θ t 的目标区间,此目标区间中包括理论上的最优锥角角度,实现了对冲模锥角的优化,获得了优化后的锥角角度。如果需要提高优化精度,只要减小优化标准,增加优化次数便能获得满意的结果,而有限元模拟的使用避免了大量调模、制造模具、试生产等造成的人力物力及时间的浪费,节约成本的同时提高了效率。值得注意的是,当损伤值序列D中的最小值出现在优化区间两端时(此时理论最优锥角角度可能不在优化区间内),仍然可以通过使用该算法进行优化区间的外扩而同时缩短优化区间长度,但是此时由于区间的减半可能出现理论最优锥角角度收敛较慢的情况,因此,需要将初始优化区间的长度尽量加大,以防止由于理论最优锥角角度不在优化区间导致的收敛较慢而影响优化效率。
本发明的有益效果是:通过建立正确的高强钢轮辐中心孔翻边工序的有限元模型,以损伤值作为衡量轮辐中心孔翻边开裂几率大小的指标,经过设定的算法,将较宽的优化区间缩小为较小的目标区间,获得理论最优锥角角度所在的较精确的区间。从而能够有效改进工艺设计方案并优化模具参数,提高轮辐产品质量,避免试错法的缺陷,进而在高强钢轮辐生产时降低生产成本和缩短产品研发周期,推动高强钢车轮的应用和发展。
附图说明
图1是高强钢轮辐中心孔翻边冲模锥角角度优化方法流程图;
图2是本发明实施例中所用翻边冲模及锥角角度示意图;
图3是本发明实施例建立板料和成形模具几何模型示意图;
图4是本发明实施例有限元模型示意图;
图5是本发明实施例模型动能/内能、伪应变能/内能的比值图;
图6是本发明实施例试验与模拟壁厚变化率对比示意图;
其中:1.上模芯 2. 板料 3.下模芯 4.压边圈 5.下模芯套。
具体实施方式
本发明是一种高强钢轮辐中心孔翻边冲模锥角角度优化方法。现以某公司车轮轮辐反拉深-翻边复合成形工序为对象,梅钢B550CL高强钢作为轮辐材料,给出本发明的具体实施例,对反拉深-翻边复合成形工序中的中心孔翻边冲模锥角角度进行优化(锥角角度如图2),参照图1,其步骤如下:
(1)建立高强钢轮辐中心孔翻边成形的三维有限元模型并验证可靠性:
本实施例选用的有限元模拟软件为ABAQUS,首先根据反拉深-翻边复合成形工序的板料和模具形状尺寸,建立板料和模具的几何模型如图3所示(由于对称性,建模为实际的1/4);采用单向拉伸试验获得高强钢B550CL的力学性能参数,建立其板料的材料模型。为了描述材料在翻边过程的开裂行为,本实施例选用了韩国学者YK KO等人2007年在Journal of Materials Processing Technology(材料加工技术杂志)发表的论文“Prediction of fracture in hub-hole expanding process using a new ductilefracture criterion” (一种用于预测轮辐中心孔扩孔工序开裂的新型韧性断裂准则)中的断裂准则,表达式为D=,通过ABAQUS的VUMAT接口将耦合了韧性断裂准则的本构子程序嵌入到有限元模型中;
根据实际轮辐成形工序的相关参数,将几何模型进行装配,完成边界条件和摩擦的设定并对网格进行划分,最终建立的有限元模型如图4;
为了验证模型可靠性,计算轮辐拉深冲孔过程中变形体动能与内能的比值以及伪应变能与内能的比值,如图5所示。由图可见,模拟过程中的大部分时间内动能与内能的比值较小(小于5%),因此轮辐成形过程中没有明显的动态效应;此外模型的伪应变能与内能的比值也很小(小于1%),说明模型的沙漏情况较轻,因此计算模型中采用的网格精度是足够的,因此建立的有限元模型是稳定合理的;
为进一步验证计算模型的正确性,在试验所得轮辐和模拟结果上相同位置取16个节点,分别计算其壁厚变化率,如图6所示。从图中可以看出,模拟与试验结果的壁厚变化率分布趋势一致,最大误差不过5%,从而说明了所建模型的准确性。
(2)根据工程设计角度和生产经验,选定优化初始角度θ 1 为10°,优化区间长度θ K 为10°,优化标准θ t 为3°。
(3)生成第一个优化区间K 1 =[5°,15°]和第一个优化角度序列(5°,7.5°,10°,12.5°,15°)。
(4)采用所建立的有限元模型,将模型中冲模的锥角角度(如图2所示,冲模安装在上模芯1的对称中心处)依次设为优化角度序列(5°,7.5°,10°,12.5°,15°),进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,生成的损伤值序列D=(1.472,1.570,1.538,1.393,1.395),可以发现最小的D值1.393对应的角度为12.5°,记为θ 2 ;由于下一个优化区间长度 θ K 等于5°,大于优化标准θ t ,所以继续进行下一次优化。
(5)生成第二个优化区间K 2 =[10°,15°]和优化角度序列(10°,11.25°,12.5°,13.75°,15°)。
(6)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列设定,进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(1.538,1.418,1.393,1.360,1.395),对比损伤值序列中的损伤值,取最小的D值1.360对应的角度13.75°,记为θ 3 ;此时下一个优化区间长度 θ K =2.5°小于优化标准θ t ,则生成并输出K 3 =[12.5°,15°]作为优化目标区间。
至此,通过有限元建模和设定算法,将优化区间从[5°,15°]优化为[12.5°,15°],实现了对冲模锥角角度的优化。
以上所述,仅是本发明的实施实例,并非对本发明的技术范围作任何限制,如果想要提高精度,可以通过缩短实施例中优化标准的长度来实现。故凡是根据本发明的技术实质对以上实例所作的任何细微修改,均属于本发明技术方案的范围内。

Claims (2)

1.一种高强钢轮辐中心孔翻边冲模锥角角度优化方法,其特征是包括以下步骤:
(1)建立高强钢轮辐中心孔翻边成形的三维有限元模型并验证可靠性:
收集记录实际生产中中心孔翻边所在的成形工序的模具形状尺寸,在有限元模拟软件中建立不同模具和板料的几何模型;根据单向拉伸试验获得所用高强钢材料的力学性能参数,同时,为了描述中心孔翻边开裂现象,选择合适的韧性断裂准则并将其耦合到本构关系中,从而建立起材料模型;
根据实际轮辐成形工序的相关参数,完成有限元建模的其他部分:几何模型装配、边界条件和摩擦的设定、网格的划分;
验证模型可靠性,计算高强钢轮辐中心孔翻边所在成形工序中变形体动能与内能的比值以及伪应变能与内能的比值,若所述动能与内能的比值在成形过程中小于5%,伪应变能与内能的比值小于1%,则可以认为板料变形在准静态下发生的,即模型是稳定的;同时,为进一步验证计算模型的正确性,将轮辐的仿真结果与实际生产所获轮辐成形件结果作对比,若轮辐相关尺寸的仿真结果与所给尺寸相吻合,则验证了所建立模型的正确性;
如果发现所述动能与内能的比值在成形过程中大于等于5%,伪应变能与内能的比值大于等于1%,或者轮辐相关尺寸的仿真结果与给定尺寸不吻合,则返回步骤①重新建模、调试,直至模型满足要求;
(2)选定优化初始角度θ 1 ,优化区间长度θ K 和优化标准θ t ,优化初始角度θ 1 即为工厂预先设定的冲模锥角角度,优化区间长度θ K 选为以θ 1 为中心,左右各取相同长度构成一个区间;优化标准θ t 为一个短区间,体现优化区间长度的优化程度;
(3)生成第一个优化区间,此时,K 1 为以θ 1 为中心,长度为θ K 的一个区间;生成优化角度序列
(4)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列中角度进行设定,并进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为θ 2 ;判断此时下一个优化区间长度 θ K 是否小于等于优化标准θ t ,如果是,则生成并输出下一个优化区间K 2 ,作为优化目标区间,如果为否,则进行下一次优化;
(5)生成第二个优化区间,此时,K 2 为以θ 2 为中心,长度为 θ K 的一个区间;生成优化角度序列
(6)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列设定,进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为θ 3 ;判断此时下一个优化区间长度 θ K 是否小于等于优化标准θ t ,如果是,则生成并输出下一个优化区间K 3 ,作为优化目标区间,如果为否,则进行下一次优化;按上述生成优化区间的步骤采用所建立的有限元模型循环操作直至下一步;
(7)生成第i个优化区间i=1,2……n,此时,K i 为以θ i 为中心,长度为 θ K 的一个区间;生成优化角度序列
(8)采用所建立的有限元模型,将模型中冲模几何模型的锥角角度按照优化角度序列设定,进行模拟计算,获得优化角度序列中每个角度所对应的损伤值,并生成损伤值序列D=(D 1 D 2 D 3 D 4 D 5 ),对比损伤值序列中的损伤值,取最小的D值对应的角度,记为
(9)在进行第i+1次优化之前,比较 θ K θ t 的大小,如果 θ K θ t ,则生成并输出下一个优化区间K i+1 作为目标区间,如果 θ K >θ t ,则继续进行第i+1次优化,直至优化区间长度小于优化标准。
2.根据权利要求1所述的一种高强钢轮辐中心孔翻边冲模锥角角度优化方法,其特征是:当损伤值序列D中的最小值出现在优化区间两端时,仍然可以进行优化区间的外扩而同时缩短优化区间长度;为了提高优化效率,此时需要加大初始优化区间的长度。
CN201510233629.5A 2015-05-11 2015-05-11 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法 Active CN106294889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510233629.5A CN106294889B (zh) 2015-05-11 2015-05-11 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510233629.5A CN106294889B (zh) 2015-05-11 2015-05-11 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法

Publications (2)

Publication Number Publication Date
CN106294889A CN106294889A (zh) 2017-01-04
CN106294889B true CN106294889B (zh) 2019-03-26

Family

ID=57630693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510233629.5A Active CN106294889B (zh) 2015-05-11 2015-05-11 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法

Country Status (1)

Country Link
CN (1) CN106294889B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044952B (zh) * 2020-08-13 2021-06-01 西北工业大学 一种f+p型非调质钢的3d-spd超细晶棒材成形方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357734A (zh) * 2013-07-16 2013-10-23 上海梅山钢铁股份有限公司 一种锥形压边拉深冲压方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205501A (ja) * 2001-01-11 2002-07-23 Hitachi Metals Ltd 車両用軽合金ホイール

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357734A (zh) * 2013-07-16 2013-10-23 上海梅山钢铁股份有限公司 一种锥形压边拉深冲压方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
车轮轮辐中心孔翻边工艺参数优化;纪莲清,魏秀兰;《锻压技术》;20040630(第6期);6-8
轮辐翻边成形冲模参数优化;王红卫,高红霞;《锻压设备与制造技术》;20040131(第1期);87-88

Also Published As

Publication number Publication date
CN106294889A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN104077439B (zh) 一种新型高强钢轮辐拉深冲孔复合工序的数值模拟方法
CN104573237B (zh) 一种基于摩擦磨损cae分析的模具优化方法
CN101339574B (zh) 基于回弹补偿的混凝土搅拌叶片模具型面设计系统及方法
CN108062427A (zh) 基于数值计算的梯度控速降低涡轮盘锻造残余应力的方法
CN102672059B (zh) 根据仿真冲压工件厚度确定出模具凹凸模修改型面的方法
CN101811156A (zh) 基于cae分析法获取板材成型回弹量的方法
CN104765912A (zh) 一种铝板冲压工艺的稳健性优化方法
CN104077442A (zh) 基于有限元分析的大型整体薄壁件加工精度控制方法
CN104809304A (zh) 一种基于变间隙压边的铝板冲压成形工艺优化方法
CN104200037A (zh) 一种小双曲度钣金件的成形模具设计方法
CN104493430B (zh) 贮箱圆筒段壁板整体蠕变时效成形方法
CN104698969A (zh) 一种基于拟合法的回弹补偿方法
CN102814447A (zh) 高速列车制动盘盘毂锻造模具及其设计方法
CN109127945A (zh) 轻量化车身覆盖件冲压成形精度的调控方法
CN105893661A (zh) 一种多工位级进模模具母体结构拓扑优化方法
CN103514325A (zh) 轮辐三旋轮错距强力旋压工艺的有限元数值模拟方法
CN106202686B (zh) 一种涡轮盘等温模锻预成形坯料的多目标设计方法
CN106294889B (zh) 一种高强钢轮辐中心孔翻边冲模锥角角度优化方法
CN105426629B (zh) 一种汽车覆盖件拉延模具结构强度计算方法
CN107025354A (zh) 一种基于极差分析的车窗升降板成形工艺优化方法
CN110941900A (zh) 一种能够精确控制材料流动分配的叶片锻件预制坯设计方法
CN101789031B (zh) 基于压力中心优化的级进模带料设计系统
CN105880332A (zh) 液压空心管件回弹控制方法及装置
Han et al. Thickness improvement in non-homogeneous tube hydroforming of a rectangular component by contact sequence
CN107092745A (zh) 一种基于方差分析的车窗升降板成形工艺优化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant