CN106286247A - 一种天然气压缩机电控直驱余隙调节方法与ePocket装置 - Google Patents

一种天然气压缩机电控直驱余隙调节方法与ePocket装置 Download PDF

Info

Publication number
CN106286247A
CN106286247A CN201510287044.1A CN201510287044A CN106286247A CN 106286247 A CN106286247 A CN 106286247A CN 201510287044 A CN201510287044 A CN 201510287044A CN 106286247 A CN106286247 A CN 106286247A
Authority
CN
China
Prior art keywords
clearance
piston
cylinder
control method
servomotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510287044.1A
Other languages
English (en)
Inventor
常海城
李侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
(shanghai) Compressor Technology Service Co Ltd
Original Assignee
(shanghai) Compressor Technology Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (shanghai) Compressor Technology Service Co Ltd filed Critical (shanghai) Compressor Technology Service Co Ltd
Priority to CN201510287044.1A priority Critical patent/CN106286247A/zh
Publication of CN106286247A publication Critical patent/CN106286247A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种基于伺服电机直驱控制技术的活塞压缩机余隙调节方法与节能装置,其特征在于:使用伺服电机及控制技术,通过直驱机构机械连接,直接驱动余隙活塞发生位移,对活塞压缩机余隙腔的容积大小进行无级调节。

Description

一种天然气压缩机电控直驱余隙调节方法与 ePocket 装置
技术领域
本发明提出一种基于伺服电机控制技术的活塞压缩机余隙调节方法与商品名为ePocket的节能装置。
背景技术
可变余隙调节是活塞式压缩机气量调节的一种方式,其技术渊源最早可以追溯到1932年申请的专利US1856460 (Variable clearance pocket for compressors), 采用手轮调节的方式改变余隙腔的容积,从而达到气量调节的目的。随着现代电液伺服控制技术的发展,国外Dresser Rand、Thomassen等压缩机制造公司都发展出基于电液伺服技术的余隙无级调节系统,如Dresser Rand 公司的HVVCP电液余隙无级调节系统;国内武汉理工大学研究成果《活塞活塞式压缩机余隙无级调节装置》也获得国家专利并成功实现了该技术工厂化应用,专利号ZL200820066897.8。以上发明和应用均证明可变余隙调节是一种有效的活塞压缩机气量调节方法。
余隙自动无级调节技术是在手动调节和气动固定余隙调节的基础上,通过采用智能化的控制系统使得压缩机余隙容积连续可调的调节方法。电液执行机构控制余隙无级调节装置实现压缩机排气压力和排气量的自动调节,该技术已在一些企业成功应用,节能效果显著,如下面三个使用案例,充分证明了连续余隙调节方式应用的可行性、可靠性与显著的节能效果(摘录自公开文献《武汉理工大学应用型科技成果汇编》)
1、中石化某分公司制氢装置3#压缩于2009年12月配备活塞式压缩机余隙无级调节系统,仅投资55万元,减少功耗138kw,节电约35%左右, 年节电120万千瓦时,年节省电费70余万元。
2、中石化某分公司双列三缸活塞式压缩机,由THEMOSNE公司制造,型号为C25-4压缩机,于 2010年9月配备活塞式压缩机余隙无级调节系统,投资65万元,减少功耗71kw,节电约10%左右, 年节电57万度,节省电费34万元。
3、中石油某分公司三级活塞活塞式压缩机,由由沈阳气体压缩机股份有限公式制造,型号为4M80-50/9.5-25 -15/25-125BX,于2011年10月配备活塞式压缩机余隙无级调节系统,投资105万元,减少功耗265kw,节电约11%左右, 年节电220万度,节省电费150万元,使用不到一年便收回投资。
采用电液伺服控制原理和方法的余隙无级调节装置能够有效达到活塞压缩机60%~100%的气量调节范围,但是由于采用液压驱动方式,余隙腔活塞在发生位移时需要直接克服压缩机气缸内的气体推力,需要配备大型油站提供液压能源;由于使用液压比例控制阀,对油液清洁要求比较高,不利于压缩机的野外环境下操作维护。总之是一种有效但实现方式比较复杂的装置。同时,制造成本由于电液伺服系统本身的配置复杂性也比较高,以上缺点在一定程度上制约了它的广泛应用。对于日渐兴起的国内天然气应用市场,由于天然气输送压缩机分布在野外,使用复杂的基于液压能源的余隙调节装置带来操作和管理上的困难。所以需要发展一种结构简单可靠、成本相对低廉、便于现场管理、野外操作的专门用于天然气活塞压缩机的智能化余隙无级调节系统。
发明内容
本发明的目的在于提供一种结构简单可靠、成本相对低廉的电控直驱可变余隙的活塞式压缩机气量无级调节方法与调节系统,主要应用于天然气活塞式压缩机的气量无级调节,为国外进口的天然气活塞式压缩机进行余隙腔无级调节的节能改造提供了一种技术手段,对石油、化工及其它通用行业的活塞压缩机的节能也具备应用前景。
本发明采用电控直驱伺服控制方案,系统分为可调余隙气缸、直驱装置、电控单元三个组成部分,电控单元可以根据主控变量与设定值的偏差,运算得到伺服电机的调节位置,根据位置指令通过直驱装置推动余隙缸活塞运动,对气缸盖侧的余隙容积进行调节,实现对压缩机排气量60%~100%的无级调节功能。
电动伺服系统的电控单元(ECU2)能够实现主控量与活塞位置的换算并实现余隙缸活塞位置的闭环控制。
本发明的实施步骤包括:
步骤1):拆下每级气缸盖侧的缸盖或固定余隙腔,用可调余隙气缸取代。可调余隙气缸分为余隙调节腔和平衡工作腔,余隙活塞内侧的空腔为余隙调节腔,外侧的空腔为平衡工作腔。平衡工作腔通过平衡腔孔、管路与同一级入口管路或上一级入口管路的低温低压进气相通,即引入同一级或上一级的气缸低温低压进气进入平衡腔,对本级余隙调节腔内的高压气体起到减少余隙活塞两侧工作压差、冷却余隙腔内高压气体的作用;
步骤2):压缩机气缸、余隙调节气缸、直驱装置通过装配止口用螺栓紧固为一体,保证同轴度,以保证直驱装置工作的可靠性;
步骤3):电控单元(ECU2)根据主控变量与设定值的偏差,运算得到伺服电机的调节位置,根据位置指令通过直驱装置推动余隙缸活塞运动,对气缸盖侧的余隙容积进行调节,实现对压缩机排气量60%~100%的无级调节功能。主控变量包括:压缩机排气压力、进气压力、级间压力、气量负荷;
步骤 4)电动伺服系统的电控单元(ECU2)实现主控变量与活塞位置的换算并实现余隙缸活塞位置的闭环控制。通过可编程控制单元,直驱装置使得余隙缸活塞按输入信号作直线位移,从而实现各级余隙容积变化的伺服控制,最终实现压缩机排气压力、进气压力、级间压缩比的控制;
步骤5) 余隙调节系统的电控单元(ECU2)与DCS通讯,反馈系统故障报警信号、接收系统压力、负荷控制信号。
余隙调节系统的电控单元(ECU2)能够接收DCS的压力和负荷控制信号,或手动设置输入,然后进行运算控制,实现对电动伺服装置的位置闭环控制。
余隙调节系统的电控单元(ECU2)主要对2路电动伺服装置进行控制,并通过通讯总线对DCS反馈系统故障信号。主要功能:1)实现双闭环控制,控制框图如图2所示;2)级间压力控制、输出压力控制功能;3)位置闭环功能;4)系统运算转化功能;5)系统状态监测、故障报警与处理功能。
直驱装置设机械和电气限位,完全排除余隙活塞与气缸活塞相碰的情况。机械限位的方式之一:采用阶梯形状的余隙活塞,完全避免与气缸活塞相碰的风险。
余隙调节系统按使用场合采用防爆元器件,防爆等级可达到ExdIICT4+H2。
所述直驱装置是指对余隙活塞的直接驱动装置总成,总成包括:伺服电机、减速装置、双置推力轴承、重载滚珠传动杆(一种经特别设计的丝杠)、重载传动螺母(一种经特别设计的丝杠螺母)、连接导向套。
所述伺服电机能够根据活塞位置实现自闭环控制。
所述双置推力轴承,设计为在直驱装置轴承座前后端各设有推力轴承,推力轴承包括且不限于以下形式:推力球轴承、推力滚子轴承(包括圆柱滚子轴承, 推力调心滚子轴承,推力圆锥滚子轴承,推力滚针轴承)。余隙活塞能够承受的压缩机气缸最大气体推力,当设置平衡腔时,设计应用范围可以达到80吨活塞力,如果没有设置平衡腔,设计应用范围可以达到40吨活塞力。
附图说明
图1 电控直驱余隙调节系统实施例结构示意图
图2 电控直驱余隙调节系统控制框图
具体实施方式
下面结合附图和实施例对本发明的技术方案和实施方式作进一步说明。
如图1:拆下每级气缸盖侧的缸盖或固定余隙腔,用可调余隙气缸取代。可调余隙气缸分为余隙调节腔和平衡工作腔,余隙活塞内侧的空腔为余隙调节腔,外侧的空腔为平衡工作腔。平衡工作腔通过平衡腔孔、管路与同一级入口管路或上一级入口管路的低温低压进气相通,即引入同一级或上一级的气缸低温低压进气进入平衡腔,对本级余隙调节腔内的高压气体起到减少余隙活塞两侧工作压差、冷却余隙腔内高压气体的作用。压缩机气缸、余隙调节气缸、直驱装置通过装配止口用螺栓紧固为一体,保证同轴度,以保证直驱装置工作的可靠性。直驱装置设机械和电气限位,完全排除余隙活塞与气缸活塞相碰的情况。直接驱动装置总成包括:伺服电机、减速装置、双置推力轴承、重载滚珠传动杆(一种经特别设计的丝杠)、重载传动螺母(一种经特别设计的丝杠螺母)、连接导向套。伺服电机根据活塞位置实现自闭环控制。双置推力轴承,设计为在直驱装置轴承座前后端各设有推力轴承,以承载余隙活塞发生位移时产生的推力。
如图2:电控单元(ECU2)根据主控变量与设定值的偏差,运算得到伺服电机位置,根据位置指令通过直驱装置推动余隙缸活塞运动,对气缸盖侧的余隙容积进行调节,实现对压缩机排气量60%~100%的无级调节功能。主控变量包括:压缩机排气压力、进气压力、级间压力、气量负荷;电动伺服系统的电控单元(ECU2)实现主控变量与活塞位置的换算并实现余隙缸活塞位置的闭环控制。通过可编程控制单元,直驱装置使得余隙缸活塞按输入信号作直线位移,从而实现各级余隙容积变化的伺服控制,最终实现压缩机排气压力、进气压力、级间压缩比的控制;余隙调节系统的电控单元(ECU2)主要对2路电动伺服装置进行控制,并通过通讯总线对DCS反馈系统故障信号。主要功能:1)实现双闭环控制;2)级间压力控制、输出压力控制功能;3)位置闭环功能;4)系统运算转化功能;5)系统状态监测、故障报警与处理功能。

Claims (14)

1.一种基于伺服电机直驱控制技术的活塞压缩机余隙调节方法与节能装置,其特征在于:使用伺服电机及控制技术,通过直驱机构机械连接,直接驱动余隙活塞发生位移,对活塞压缩机余隙腔的容积大小进行无级调节。
2.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:本发明采用电控直驱伺服控制方案,装置分为可调余隙气缸、伺服电机、直驱机构、电控单元四个组成部分。
3.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:电控单元可以根据主控变量与设定值的偏差,运算得到伺服电机的调节位置,根据位置指令通过直驱机构推动余隙缸活塞运动,对气缸盖侧的余隙容积进行调节,实现对压缩机排气量60%~100%的无级调节功能。
4.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:电动伺服系统的电控单元(ECU2)能够实现主控量与活塞位置的换算并实现余隙缸活塞位置的闭环控制。
5.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:可调余隙气缸分为余隙调节腔和平衡工作腔,引入同一级或上一级的气缸低温低压进气进入平衡腔,对本级余隙调节腔内的高压气体起到减少余隙活塞两侧工作压差、冷却余隙腔内高压气体的作用。
6.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:压缩机气缸、余隙调节气缸、直驱机构通过装配止口用螺栓紧固为一体,并处于同一装配中心线。
7.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:直驱机构通过可编程控制单元使得余隙缸活塞按输入信号作直线位移,从而实现各级余隙容积变化的伺服控制。
8.根据权利要求2所述的直驱机构,其特征在于:所述直驱机构总成包括:伺服电机、减速机构、双置推力轴承、重载滚珠传动杆、传动丝杠、重载传动螺母、丝杠螺母、连接导向套。
9.根据权利要求8所述的双置式推力轴承,其特征在于:直驱机构轴承座前后端各设有推力轴承,推力轴承包括且不限于以下形式:推力球轴承、推力滚子轴承(包括圆柱滚子轴承, 推力调心滚子轴承,推力圆锥滚子轴承,推力滚针轴承)。
10.根据权利要求2所述的直驱机构,其特征在于:直驱机构设机械和电气限位。
11.根据权利要求10 所述的机械限位,其特征在于:采用阶梯形状的余隙活塞。
12.根据权利要求2所述的伺服电机,其特征在于:所述伺服电机能够根据活塞位置实现自闭环控制。
13.根据权利要求8所述的直驱机构总成,其特征在于:所述直驱机构总成包括:伺服电机、传动丝杠、丝杠螺母。
14.根据权利要求1所述的活塞压缩机余隙调节方法与节能装置,其特征在于:装置控制和传动机构部件包括:伺服电机、传动丝杠、丝杠螺母。
CN201510287044.1A 2015-06-01 2015-06-01 一种天然气压缩机电控直驱余隙调节方法与ePocket装置 Pending CN106286247A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510287044.1A CN106286247A (zh) 2015-06-01 2015-06-01 一种天然气压缩机电控直驱余隙调节方法与ePocket装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510287044.1A CN106286247A (zh) 2015-06-01 2015-06-01 一种天然气压缩机电控直驱余隙调节方法与ePocket装置

Publications (1)

Publication Number Publication Date
CN106286247A true CN106286247A (zh) 2017-01-04

Family

ID=57656089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510287044.1A Pending CN106286247A (zh) 2015-06-01 2015-06-01 一种天然气压缩机电控直驱余隙调节方法与ePocket装置

Country Status (1)

Country Link
CN (1) CN106286247A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108999772A (zh) * 2018-08-28 2018-12-14 沈阳远大压缩机自控系统有限公司 往复式压缩机自动电驱全流量余隙无级调节系统及方法
CN113090551A (zh) * 2021-03-05 2021-07-09 张宇佳 一种水泵的气压调节装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1856460A (en) * 1930-09-10 1932-05-03 Ingersoll Rand Co Variable clearance pocket for compressors
JP2009228648A (ja) * 2008-03-25 2009-10-08 Kobe Steel Ltd 往復動圧縮機の容量調整装置及びこれを用いた容量調整方法
CN201696274U (zh) * 2009-12-30 2011-01-05 中石油昆仑天然气利用有限公司 Cng母站压缩机进气压力无级工况调节机构
CN201909005U (zh) * 2011-01-24 2011-07-27 吉林大学 一种电伺服控制推杆
CN103291596A (zh) * 2013-06-18 2013-09-11 合肥通用机械研究院 一种基于余隙调节的压缩机流量调节系统
CN203883608U (zh) * 2014-06-10 2014-10-15 南宁市合辰科技有限公司 电动推杆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1856460A (en) * 1930-09-10 1932-05-03 Ingersoll Rand Co Variable clearance pocket for compressors
JP2009228648A (ja) * 2008-03-25 2009-10-08 Kobe Steel Ltd 往復動圧縮機の容量調整装置及びこれを用いた容量調整方法
CN201696274U (zh) * 2009-12-30 2011-01-05 中石油昆仑天然气利用有限公司 Cng母站压缩机进气压力无级工况调节机构
CN201909005U (zh) * 2011-01-24 2011-07-27 吉林大学 一种电伺服控制推杆
CN103291596A (zh) * 2013-06-18 2013-09-11 合肥通用机械研究院 一种基于余隙调节的压缩机流量调节系统
CN203883608U (zh) * 2014-06-10 2014-10-15 南宁市合辰科技有限公司 电动推杆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108999772A (zh) * 2018-08-28 2018-12-14 沈阳远大压缩机自控系统有限公司 往复式压缩机自动电驱全流量余隙无级调节系统及方法
CN113090551A (zh) * 2021-03-05 2021-07-09 张宇佳 一种水泵的气压调节装置
CN113090551B (zh) * 2021-03-05 2022-11-25 佛山市兴沃机电有限公司 一种水泵的叶轮室容积调节装置

Similar Documents

Publication Publication Date Title
CN202628454U (zh) 一种往复式压缩机气量调节系统
CN201391499Y (zh) 智能型电液式执行机构
CN103291596B (zh) 一种基于余隙调节的压缩机流量调节系统
CN103047123B (zh) 一种往复压缩机无级气量调节方法
CN201396344Y (zh) 数字式电液同步控制系统
CN106286247A (zh) 一种天然气压缩机电控直驱余隙调节方法与ePocket装置
CN105179314A (zh) 一种新型轴流风机静叶调节系统
CN202824153U (zh) 一种铝带铸轧机预应力油缸液压控制系统
CN205225899U (zh) 双向液压增压器装置
CN202137352U (zh) 一种压铸机的泵站输出装置
CN205478243U (zh) 无人值守式节能型空压站控制系统
CN202883335U (zh) 一种柴油加氢装置中压缩机气量调节系统
CN203130454U (zh) 活塞往复式压缩机气量无级调节机构
CN203614516U (zh) 多级可调式液压油缸
CN204025238U (zh) 一种高压电气比例压力调节系统
CN203717298U (zh) 一种空压机节能装置
CN203130453U (zh) 一种压缩机气量调节液压执行器
CN204717356U (zh) 一种管网气体调节装置
CN202764095U (zh) 橡胶硫化机伺服节能系统
CN103967762B (zh) 一种压缩机气量调节液压执行器
CN201507490U (zh) 大型油缸超低恒速液压控制装置
CN219452545U (zh) 集中供油伺服油箱结构
CN104929994A (zh) 气液转换节能工作站
CN114354159B (zh) 一种自动调节的被动液压加载寿命试验系统
CN106641731B (zh) 一种流体输配系统调压节能装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104