CN106283042B - 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法 - Google Patents

一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法 Download PDF

Info

Publication number
CN106283042B
CN106283042B CN201610867338.6A CN201610867338A CN106283042B CN 106283042 B CN106283042 B CN 106283042B CN 201610867338 A CN201610867338 A CN 201610867338A CN 106283042 B CN106283042 B CN 106283042B
Authority
CN
China
Prior art keywords
coating
solid solution
friction coefficient
low
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610867338.6A
Other languages
English (en)
Other versions
CN106283042A (zh
Inventor
王彦芳
石志强
钟鹏
孙旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201610867338.6A priority Critical patent/CN106283042B/zh
Publication of CN106283042A publication Critical patent/CN106283042A/zh
Application granted granted Critical
Publication of CN106283042B publication Critical patent/CN106283042B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法。将Fe基非晶合金粉末采用激光熔覆技术在合金钢基体表面制备合金涂层。其中Fe基非晶粉末的成分为Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。制备时激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3‑5L/min。本发明制备的涂层主要由固溶体组成,与基体之间为冶金结合,具有适中的硬度,低的摩擦系数,高的耐蚀性。

Description

一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法
技术领域
本发明涉及一种低摩擦系数高耐蚀性固溶体合金涂层以及制备该涂层的方法,属于表面涂层和表面改性领域。
背景技术
在工农业生产中,很多装备与构件服役于摩擦、腐蚀的复杂工况环境,需要良好的摩擦相容性,即不能强度硬度太低,极易造成本身磨损,也不可以强度硬度太高,造成对磨件的损伤。在装备或构件表面制备减摩耐蚀涂层是提高材料表面摩擦相容性的重要途径。
Fe基非晶合金具有高的硬度、高的弹性模量及优良的耐蚀性能,且成本低廉,引起广泛关注。目前已开发出的Fe基非晶合金成分与Zr基、Pd基、Cu基非晶合金体系相比,其玻璃形成能力较差,难以作为大尺寸的结构件使用。将非晶合金与表面涂层制备技术相结合,制备非晶涂层可突破非晶合金尺寸上的限制,拓展非晶合金应用领域。目前,已有采用喷涂技术、电火花沉积技术和激光熔覆技术制备涂层的研究报道。然而,一般而言,喷涂非晶涂层的膜基结合力较差,电火花沉积非晶涂层的沉积层一般较薄,均难以适用于复杂工况条件。激光熔覆可制备与基体呈冶金结合的涂层,但由于激光熔覆的工艺特点,很难获得完全的单相非晶组织,一般获得的是非晶与金属间化合物组成的复相组织。由于第二相与非晶相的化学电位差,导致两者容易发生电偶腐蚀,降低非晶基复合涂层的耐蚀性。
固溶体与非晶态合金均具有化学近程有序性与长程无序性,都是Hume-Rothery相,他们之间存在内在关联性。非晶态合金可以看作是具有更高固溶度的单相固溶体合金。采用非晶合金成分材料制备固溶体合金涂层,即可保持非晶态合金高强度,高耐蚀性的特点,也可保持固溶体合金固有的特性,获得低摩擦系数,高耐蚀性的合金涂层,应用于冶金、石油、化工、能源、电力等工业中存在的,在腐蚀环境下承受摩擦磨损作用的机械运动副零部件表面改性与修复,有广阔的应用前景。
发明内容
本发明的目的在于提供一种低摩擦系数高耐蚀性的固溶体合金涂层,解决在腐蚀环境下承受摩擦磨损作用的机械运动副零部件的摩擦相容性问题。同时,本发明还提供一种低摩擦系数高耐蚀性的固溶体合金涂层的制备方法。
本发明的技术方案是:
一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。铁基非晶合金粉末用气体雾化方法制备,为了保证粉末的固体流动性,保证后其激光熔敷层的成型质量,选择粒度范围在30-70μm粉末作为熔覆材料,制备的铁基非晶合金粉末为完全非晶态结构。
上述成分中,各个元素的主要作用是:
Cu可有限固溶到Fe中形成固溶体,提高熔覆层强度。Cu元素还可起到提高熔覆层抗大气腐蚀的性能;
Co可与γ-Fe形成无限互溶固溶体,同时还可提高熔覆层的热强性;
Cr可与α-Fe形成无限互溶固溶体,同时可提高Fe的电极电位,防止电化学腐蚀,是提高熔覆层耐蚀性的重要元素;
Ni可与γ-Fe形成无限互溶固溶体,同时可降低熔覆层脆性,降低熔覆层开裂倾向,减小摩擦系数;
Mo可有限固溶到Fe中,同时还能够细化熔覆层组织,提高熔覆层韧性和耐磨性,降低裂纹敏感性;
B、Si主要是提高粉末的脱氧造渣能力,提高熔覆层的成型质量。
发明人经过长期试验得出本发明采用以下配比,达到的效果最好。以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。
本发明所述的低摩擦系数高耐蚀性固溶体合金涂层的制备采用预涂覆技术,先在合金钢基体上涂覆厚度1-1.5mm的Fe基非晶粉末,利用5kW横流CO2激光器制得,具体工艺参数为:激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸为10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3-5L/min。最终制得的涂层主要由固溶体组成,厚度为0.8mm~1.2mm。本发明中,激光功率太小,且扫描速度太大,此时输入功率较低,不能形成冶金结合的熔覆层;如果激光功率太大,且扫描速度太小,输入功率较高,基材熔化较深,涂层的稀释率较高,就会破坏涂层的成分,影响涂层的显微组织。
由于涂层主要是由Fe基固溶体组成,固溶体中溶入了大量的合金元素,如Cr、Ni、Co、Mo等,这些元素的原子半径与Fe原子相当,主要形成置换固溶体。由于置换固溶体是一种弱强化的固溶强化方式,可提高涂层的强度与硬度,但提高量有限,得到适中的强度与硬度。固溶强化,可提高涂层强度,提高其弹性模量及弹性变形能力,使涂层具有大的弹性比功。在摩擦载荷作用下,可通过弹性变形调节其与摩擦副之间的载荷作用与分布,从而减少或避免对摩擦副的划伤,从而起到降低摩擦系数的作用。材料的耐蚀性主要取决于合金性质和组织结构。固溶体结构均匀单一,且自身的表面活性较高,易在表面迅速形成均匀钝化膜,使腐蚀难以发生。在具体的合金中,其耐蚀性主要取决于合金元素本身的特性。固溶体合金涂层中存在大量的Cr、Ni、Mo、Co等提高合金耐蚀性的元素,因而涂层具有高的耐蚀性。
本发明的固溶体合金涂层,与基体呈冶金结合,具有低的摩擦系数、适中的硬度和高的耐蚀性,应用于冶金、石油、化工、能源、电力等工业中普遍存在的,在腐蚀环境下承受摩擦磨损作用的机械运动副零部件表面改性与修复,有巨大的应用前景。
附图说明
图1为雾化Fe基非晶粉末的X射线衍射检测结果;
图2为不同工艺参数下制备涂层的X射线衍射检测结果;
图3为涂层的微观组织形貌;
图4为涂层的硬度变化曲线;
图5为涂层的摩擦系数变化曲线;
图6为涂层的电化学极化曲线;
图中:1为基体,2为结合区,3为熔覆层。
具体实施方式
下面结合附图和具体实施例对本发明作详细说明。
一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。
实施例1
一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0%;Co:8.4%;Cr:28.0%;Ni:17.0%;Mo:3.3%;Si:1.0%;B:3.1%;其余为Fe。
1)制备非晶合金粉末:
首先将上述所需成分用真空熔炼的方法获得母合金,然后将母合金放入雾化炉中,由气体雾化技术制备非晶合金粉末。雾化后筛选粒度范围在30-100μm粉末作为熔覆粉末。粉末的x射线衍射图如图1所示,由图可见,粉末为完全非晶态。
2)选用304L不锈钢作为基体。熔覆前将试样用600#砂纸磨平,在丙酮溶液中超声清洗10min清洗去油。
3)采用5kW横流CO2激光器对304L不锈钢基体进行激光熔覆。具体工艺参数为,预涂覆厚度1.5mm,激光功率3.6kW,扫描速度200mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3L/min。
4)激光熔覆后,将试样在空气中自然冷却。
实施例2
一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。
步骤(1)、(2)和(4)均与实施例1相同,仅调整步骤(3)中的工艺参数如下:预涂覆厚度1.2mm,激光功率3.6kW,扫描速度300mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为4L/min。
实施例3
一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:3.0%;Co:11%;Cr:32.0%;Ni:21.5%;Mo:4.5%;Si:1.6%;B:4.0%;其余为Fe。
步骤(1)、(2)和(4)均与实施例1、2相同,仅调整步骤(3)中的工艺参数如下:预涂覆厚度1.0mm,激光功率3.6kW,扫描速度400mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为5L/min。
组织结构与性能评价:
以下对实施例1,2和3中所制备的固溶体合金涂层分别通过显微组织观察、物相分析、硬度实验、摩擦磨损实验和电化学实验进行组织结构与性能评价。
(1)对实施例1,2和3中所制备的固溶体合金涂层进行物相分析,涂层的X射线衍射图如图2所示。由图分析可知,涂层主要由涂层主要由Fe(Ni)和(FeCrNi)固溶体组成。
(2)对实施例1,2和3中所制备的固溶体合金涂层进行微观组织分析,如图3所示,由图可知,熔覆层的显微组织形貌分为三个部分:从基体到涂层分别为基体、结合区和熔覆层。基体为奥氏体不锈钢,涂层由“丝条状”树枝晶组成,涂层与基体之间出现了约为5μm的平面晶,实现了涂层与基体的冶金结合。
(3)对实施例1,2和3中所制备的固溶体合金涂层进行硬度分析测试。采用HV-100A型显微硬度计,载荷200g,保载时间10s。沿熔覆层横截面的最大熔深方向,由熔覆层表面至基体每隔0.1mm的距离测一个数据,每个点测试三次,取平均值。不同工艺参数下试样的显微硬度曲线如图4所示。从中可以看出熔覆层硬度分布较为均匀,沿着熔覆层的深度变化不大,平均硬度约为480HV0.2。基体硬度在180HV0.2左右,涂层硬度约是基体硬度的2.5倍。
(4)对实施例1,2和3中所制备的固溶体合金涂层进行摩擦磨损分析测试。采用MMU-5屏摩擦磨损试验机,选用销-盘式滑动干摩擦的方式在室温下测定熔覆层摩擦系数,对磨件为轴承钢(GCr15),表面硬度为HRC63。施加载荷100N,摩擦时间60min,摩擦副转速100r/min。不同工艺参数下熔覆层摩擦系数随时间变化的曲线如图5所示。从图中可以看出,304L基体的磨损过程比较剧烈,摩擦系数变化幅度较大,摩擦系数平均值为0.55左右;在同样的载荷条件下,涂层的摩擦系数在0.08-1.2之间,有较低的摩擦系数。
(5)对实施例1,2和3中所制备的固溶体合金涂层进行电化学极化测试。采用M398电化学综合测试系统,三电极体系测定涂层在3.5%NaCl电解质溶液中的极化曲线。实验中工作电极为熔覆层,参比电极为饱和KCl溶液,辅助电极为金属铂片。不同工艺参数下熔覆层的极化曲线如图6所示。由极化曲线可以看出,熔覆层的电化学性能基本相近,均为典型的活性溶解,无明显的钝化区。不同扫工艺参数下涂层的腐蚀电位均明显高于304L基体,自腐蚀电流密度均远远小于基体,有优于304L不锈钢的耐蚀性。

Claims (2)

1.一种低摩擦系数高耐蚀性固溶体合金涂层,其特征在于:以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe;
所述铁基非晶合金粉末用气体雾化方法制备,粉末粒度为30-70μm,为完全非晶态;
所述涂层的制备工艺参数为:激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸为10mm×1mm;熔覆时,采用Ar气保护,Ar气流量为3-5L/min。
2.根据权利要求1所述的低摩擦系数高耐蚀性固溶体合金涂层,其特征在于:以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。
CN201610867338.6A 2016-09-30 2016-09-30 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法 Expired - Fee Related CN106283042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610867338.6A CN106283042B (zh) 2016-09-30 2016-09-30 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610867338.6A CN106283042B (zh) 2016-09-30 2016-09-30 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106283042A CN106283042A (zh) 2017-01-04
CN106283042B true CN106283042B (zh) 2018-10-19

Family

ID=57716252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610867338.6A Expired - Fee Related CN106283042B (zh) 2016-09-30 2016-09-30 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106283042B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620062A (zh) * 2017-11-08 2018-01-23 长春工程学院 一种抗裂耐腐蚀熔覆层的制备方法
CN108531904A (zh) * 2018-03-30 2018-09-14 昆明理工大学 一种耐磨涂层及其制备方法
CN110241352B (zh) * 2019-06-18 2021-07-16 河海大学 一种用于水轮机的耐磨蚀复合材料及其制备方法与应用
CN111979539A (zh) * 2020-07-07 2020-11-24 燕山大学 一种铜基非晶复合涂层及其制备方法
CN113122841B (zh) * 2021-04-25 2022-04-26 中国海洋大学 一种具有梯度组合结构的耐蚀耐磨涂层及其制备方法
CN113529067A (zh) * 2021-06-04 2021-10-22 太原理工大学 一种用于采煤机导向滑靴的铁合金抗磨涂层及制备方法
CN114635131B (zh) * 2022-03-24 2023-05-02 上海交通大学 合金涂层的制备方法及金属零件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041468A (zh) * 2010-12-07 2011-05-04 华中科技大学 一种铁基非晶涂层的制备方法
CN103302287A (zh) * 2013-06-18 2013-09-18 华北电力大学 一种用于耐磨耐蚀涂层的铁基非晶粉末及制备方法
CN104480462A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种铁基非晶涂层及其激光制备方法
CN105088108A (zh) * 2015-06-25 2015-11-25 中国科学院宁波材料技术与工程研究所 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389126B2 (en) * 2009-04-30 2013-03-05 Chevron U.S.A. Inc. Surface treatment of amorphous coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041468A (zh) * 2010-12-07 2011-05-04 华中科技大学 一种铁基非晶涂层的制备方法
CN103302287A (zh) * 2013-06-18 2013-09-18 华北电力大学 一种用于耐磨耐蚀涂层的铁基非晶粉末及制备方法
CN104480462A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种铁基非晶涂层及其激光制备方法
CN105088108A (zh) * 2015-06-25 2015-11-25 中国科学院宁波材料技术与工程研究所 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Hot corrosion behavior of a centimeter Fe-based amorphous composite coating prepared by laser cladding in molten Na2SO4+K2SO4 salts";Wenyi Liu et al.;《Surface & Coatings Technology》;20150320;第270卷;第33-38页 *
"纯铁表面激光熔覆Fe-Cr-Si-B-C非晶粉末的研究";林仁立;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160315(第3期);B022-313 *

Also Published As

Publication number Publication date
CN106283042A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106283042B (zh) 一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法
Meghwal et al. Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings
Zheng et al. Effect of heat treatment on the structure, cavitation erosion and erosion–corrosion behavior of Fe-based amorphous coatings
He et al. Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application
Singh et al. Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating
Wang et al. Toughening Fe-based amorphous coatings by reinforcement of amorphous carbon
Xu et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating
Li et al. Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder
Nair et al. Effect of Microstructure on Wear and Corrosion Performance of Thermally Sprayed AlCoCrFeMo High‐Entropy Alloy Coatings
Wang et al. Strength improvement of CoCrNi medium-entropy alloy through introducing lattice defects in refined grains
Tianshun et al. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting
Tian et al. Ultrahigh cavitation erosion resistant metal-matrix composites with biomimetic hierarchical structure
Sucharski et al. Optimization of the deposition parameters of HVOF FeMnCrSi+ Ni+ B thermally sprayed coatings
Maslarevic et al. Microstructure and wear behavior of MMC coatings deposited by plasma transferred Arc welding and thermal flame spraying processes
Goyal Mechanical properties and erosive behaviour of 10TiO2-Cr2O3 coated CA6NM turbine steel under accelerated conditions
Suo et al. Investigation of deposition behavior of cold-sprayed magnesium coating
Wu et al. Layered 50Cr6Ni2/Stellite X-40 multi-material fabricated by direct laser deposition: characterization and properties
Zhang et al. Corrosion behavior of Al–3.0 wt% Mg alloy in NaCl solution under magnetic field
Li et al. Surface alloying of gray cast iron with chromium by high current pulsed electron beam treatment
Zhang et al. Corrosion-resistant L12-strengthened high-entropy alloy with high strength and large ductility
Ma et al. Characterization of oxide-dispersion-strengthened (ODS) alloy powders processed by mechano-chemical-bonding (MCB) and balling milling (BM)
Tian et al. Investigation of stress corrosion cracking behavior and mechanism analysis of a 1900 MPa-grade ultra-high-strength stainless steel
Mishra et al. Erosive wear of 446SS ferritic steel: a potential material for heat exchangers application
Maharajan et al. Surface morphology studies and corrosion behaviour of plasma sprayed Cr3C2/8YSZ composite coating on SS316
Zheng et al. Effect of chromium content on the erosion-corrosion behavior of Fe-Cr alloy produced by ball milling liner in weakly alkaline slurry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181019