CN106282743A - Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法 - Google Patents

Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法 Download PDF

Info

Publication number
CN106282743A
CN106282743A CN201610651162.0A CN201610651162A CN106282743A CN 106282743 A CN106282743 A CN 106282743A CN 201610651162 A CN201610651162 A CN 201610651162A CN 106282743 A CN106282743 A CN 106282743A
Authority
CN
China
Prior art keywords
ods
cnt
hardness
ball
doped carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610651162.0A
Other languages
English (en)
Inventor
刘永长
张亚然
李冲
刘晨曦
郭倩颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610651162.0A priority Critical patent/CN106282743A/zh
Publication of CN106282743A publication Critical patent/CN106282743A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种采用ODS掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法;按ODS铁素体钢的化学成分称量原材料,熔融后进行雾化,形成预合金粉末;将预合金粉与球料进行球麽,氩气气氛保护下球磨40‑48小时,加入碳纳米管后再球磨5‑6小时;进行真空等离子热压烧结,得到ODS掺杂碳纳米管试样。本发明在ODS钢中掺入碳纳米管,碳纳米管作为增强体可改善基体性能,同时碳纳米管融入基体在烧结过程中微区产生马氏体相变,有效提高强度和硬度,添加碳纳米管前硬度为245.37HV,抗拉强度为538.25Mpa,添加碳纳米管后硬度可达到699.4HV,强度可达到610.5Mpa。

Description

ODS掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法
技术领域
本发明属ODS钢生产技术领域,特别涉及一种引入碳纳米管诱导马氏体相变,增强强度和硬度的方法。
背景技术
铁素体钢具有高辐照稳定性、高抗肿胀性,可应用于聚变能源系统[1]。氧化物弥散强化(Oxide Disperion Strengthed,ODS)铁素体钢一般是通过机械合金化(MechanicalAlloying,MA)技术使合金基体中弥散分布高稳定性的纳米颗粒而获得[2]。纳米级颗粒不仅可以阻碍位错的运动,而且可以通过限制阳离子的扩散来阻止合金表面氧化层的增长,提高合金表面氧化层与基体的结合力。因此,ODS化除了提高合金的高温强度外,还可以进一步改善合金的抗氧化、耐腐蚀能力[3.4]。与传统的铁素体钢相比,ODS铁素体钢具备两个重要性能:(a)具有高辐照稳定性、高抗肿胀性及抗辐照蠕变性;(b)由于纳米氧化物颗粒的均匀分布,表现出优异的高温强度[5.6]。碳纳米管具有优异的机械性能和物理性能:碳纳米管具有很高的弹性模量,可超过1TPa(金刚石的弹性模量为:1.2TPa),甚至可以达到1.8TPa[7.8];碳纳米管的强度也很高,是钢强度的10-100倍,其弹性应变可达5%,最高可达12%,约为钢60倍[9.10],而其密度一般为1-2g/cm3。在2800℃的高温真空环境下,其性质不发生改变,导热性能比金刚石高出2倍。由于优异的机械和物理性能,碳纳米管被广泛应用于复合材料增强相。碳纳米管用于增强金属的研究已有许多报道,如碳纳米管增强镁基,铝基,钴基等,碳纳米管的加入是符合材料的力学和物理性能有所提高[11-13]。但是,碳纳米管用于增强ODS钢的研究并不多,本专利将碳纳米管掺入ODS钢中,来实现ODS钢性能的改善,进一步提高强硬度。
发明内容
针对上述现有技术,本发明提供了一种采用ODS掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法,ODS体系根据化学成分不同涉及到种类较多,其中典型的ODS铁素体钢的化学成分有Fe-9Cr、Fe-12Cr、Fe-14Cr、Fe-20Cr,其他合金元素如Ti、W、Ta、C的添加能赋予ODS钢更优异的性能,为了实现本发明的目的,具体技术方案如下:
一种采用ODS掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法,步骤如下:
(1)按ODS铁素体钢的化学成分称量原材料,熔融后进行雾化,形成预合金粉末;
(2)将预合金粉与球料进行球麽,氩气气氛保护下球磨40-48小时,加入碳纳米管后再球磨5-6小时;
(3)进行真空等离子热压烧结,得到ODS掺杂碳纳米管试样。
所述预合金粉与球料质量比为1:10-1:15。
所述球麽转速为360-400r/min。
所述加入碳纳米管量为混合粉末的0.2‐0.6%wt
所述真空等离子热压烧结,条件是在1100-1150℃保温5-8min,压力为40Mpa。
本发明的主旨是是将碳纳米管掺杂在ODS钢中,对ODS钢进行强化,碳纳米管作为增强体使ODS钢的强硬度提高,本发明特点在于在ODS钢中掺入碳纳米管,碳纳米管作为增强体可改善基体性能,同时碳纳米管融入基体在烧结过程中微区产生马氏体相变,有效提高强度和硬度,添加碳纳米管前硬度为245.37HV,抗拉强度为538.25Mpa,添加碳纳米管后硬度可达到699.4HV,强度可达到610.5Mpa。
附图说明
图1试样烧结后,碳纳米管在基体中分布图;
图2烧结后的试样中典型的马氏体板条的透射电镜照片图;
图3烧结后基体中的碳纳米管团簇图;
图4烧结后试样的拉曼光谱图;
图5原始碳纳米管的拉曼光谱图;
图6球磨后粉末的差热分析曲线图。
具体实施方式
以下为本发明的具体实施案例,本发明以Fe-14Cr-2W-0.2V-0.07Ta为例:
(1)按照表1所给出Fe-14Cr的成分称量原材料,熔融后进行雾化,形成预合金粉末。
(2)将Fe-14Cr预合金粉末按照球料比为1:10-1:15,转速为360-400r/min,氩气气氛保护下球磨40-48小时,加入碳纳米管后再球磨5-6小时。
(3)进行真空等离子热压烧结,在1100-1150℃保温5-8min,压力为40Mpa。经过烧结的试样直径为20mm,高度约为4mm。
但本发明不限于下述实施例。
实施例1:将Fe-14Cr预合金粉末加入质量分数为0.3%的Y2O3按照球料比为1:10,即每个球磨罐中11.94g预合金粉末,0.036gY2O3,120g钢球,转速为360r/min,氩气气氛保护下球磨40小时,加入质量分数为混合粉末0.2%的碳纳米管即0.024g,再球磨5小时。随后进行真空等离子热压烧结,在1100℃保温5min,压力为40Mpa,得到烧结试样。
采用该工艺增强的ODS钢硬度由245.37HV增加至379.92HV,强度由528.25Mpa增加至550.33Mpa。
实施例2:将Fe-14Cr预合金粉末加入质量分数为0.3%的Y2O3按照球料比为1:12,即每个球磨罐中11.928g预合金粉末,0.036gY2O3,144g钢球,转速为380r/min,氩气气氛保护下球磨45小时,加入质量分数为混合粉末0.3%的碳纳米管即0.036g,再球磨6小时。随后进行真空等离子热压烧结,在1100℃保温7min,压力为40Mpa,得到烧结试样。
采用该工艺增强的ODS钢硬度由245.37HV增加至463.84HV,强度由528.25Mpa增加至566.15Mpa。
实施例3:将Fe-14Cr预合金粉末加入质量分数为0.3%的Y2O3按照球料比为1:15,即每个球磨罐中11.916g预合金粉末,0.036gY2O3,180g钢球,转速为400r/min,氩气气氛保护下球磨48小时,加入质量分数为混合粉末0.4%的碳纳米管即0.048g,再球磨6小时。随后进行真空等离子热压烧结,在1150℃保温8min,压力为40Mpa,得到烧结试样。
采用该工艺增强的ODS钢硬度由245.37HV增加至699.44HV,强度由528.25Mpa增加至610.50Mpa。
由图1可以看到碳纳米管在基体中的分布,通过图4拉曼光谱可以看到碳纳米管的G峰1580和D峰1360,说明基体仍然存在结构完整的碳纳米管,可以看出碳纳米管在掺杂过程中可以存在。另一方面,通过诱导马氏体相变来提高强硬度。通过图4和图5的对比,由拉曼光谱可以看到碳纳米管的G峰1580和D峰1360,D与G比值越小,则样品中完整有序碳纳米管的相对含量就越高、纯度就越大,碳纳米管阵列的石墨化越好,无定形碳杂质越少,说明基体仍然存在结构完整的碳纳米管,但是完整碳纳米管的比例降低。由图3看出,碳纳米管在球磨过程中会碎化,碳原子扩散,使得小范围内碳含量升高,在烧结过程中诱导马氏体相变,从而提高强度和硬度,图2可以看到典型的马氏体板条,图6的差热分析曲线的可看到在240℃左右明显的马氏体放热峰,对试样进行微型试样拉伸和维氏硬度测量,结果发现,采用上述工艺增强的ODS钢强度和硬度显著提高。
尽管上面结合实例对本发明进行了描述,但是本发明并不局限与上述具体实施方式,上述的具体实施方式仅仅是示意性,而不是限制性,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。
设备信息
透射:日本电子JEM-2100F透射电子显微镜
XRD:德国布鲁克D8Advanced X射线衍射仪
硬度:上海恒一MH-6L显微硬度计
微型试样拉伸:CSS-2210长春试验机研究所
拉曼光谱:英国RENISHAW inVia reflex
DSC:宁波天恒仪器厂
参考文献
[1]Hoelzer D T,Pint B A,Wright I G.A microstructural study of theoxide scale formation on ODS Fe–13Cr steel[J].Journal of Nuclear Materials,2000,283:1306-1310.
[2]Klimiankou M,Lindau R,A.HRTEM study of yttrium oxideparticles in ODS steels for fusion reactor application[J].Journal of crystalgrowth,2003,249(1):381-387.
[3]Sokolov M A,Hoelzer D T,Miller M K,et al.Fracture Toughness andTensile Properties of Nanostructured Ferritic Steel[C]//EleventhInternational Conference on Composites/Nano Engineering,Hilton-Head Island,SC.2004.
[4]Liao L,LI M.Preparation and Tensile Properties of 14CrODS FerriticSteel[J].Journal of Materials Engineering,2012,2(4):42-46.
[5]Alamo A,Lambard V,Averty X,et al.Assessment of ODS-14%Cr ferriticalloy for high temperature applications[J].Journal of Nuclear Materials,2004,329:333-337.
[6]Henry J,Averty X,Dai Y,et al.Tensile properties of ODS-14%Crferritic alloy irradiated in a spallation environment[J].Journal of NuclearMaterials,2009,386:345-348.
[7]Hafner J H,Bronikowski M J,Azamian B R,et al.Catalytic growth ofsingle-wall carbon nanotubes from metal particles[J].Chemical PhysicsLetters,1998,296(1):195-202.
[8]Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277(5334):1971-1975.
[9]Forro L,Salvetat J P,Bonard J M,et al.Electronic and mechanicalproperties of carbon nanotubes[M]//Science and Application ofnanotubes.Springer US,2002:297-320.
[10]Nagy J B,Fonseca A.Synthesis and characterization of carbonnanotubes[J].Le Journal de Physique IV,2001,11(PR3):Pr3-411-Pr3-422.
[11]Goh C S,Wei J,Lee L C,et al.Ductility improvement and fatiguestudies in Mg-CNT nanocomposites[J].Composites Science and Technology,2008,68(6):1432-1439.
[12]Habibi M K,Hamouda AM S,Gupta M.Enhancing tensile and compressivestrength of magnesium using ball milled Al+CNT reinforcement[J].CompositesScience and Technology,2012,72(2):290-298.
[13]Kim B J,Oh S Y,Yun H S,et al.Synthesis of Cu–CNT NanocompositePowder by Ball Milling[J].Journal of nanoscience and nanotechnology,2009,9(12):7393-7397.

Claims (5)

1.一种采用ODS掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法,其特征是步骤如下:
(1)按ODS铁素体钢的化学成分称量原材料,熔融后进行雾化,形成预合金粉末;
(2)将预合金粉与球料进行球麽,氩气气氛保护下球磨40-48小时,加入碳纳米管后再球磨5-6小时;
(3)进行真空等离子热压烧结,得到ODS掺杂碳纳米管试样。
2.如权利要求1所述的方法,其特征是预合金粉与球料质量比为1:10-1:15。
3.如权利要求1所述的方法,其特征是球麽转速为360-400r/min。
4.如权利要求1所述的方法,其特征是加入碳纳米管量为混合粉末的0.2-0.6%wt。
5.如权利要求1所述的方法,其特征是真空等离子热压烧结,条件是在1100-1150℃保温5-8min,压力为40Mpa。
CN201610651162.0A 2016-08-09 2016-08-09 Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法 Pending CN106282743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610651162.0A CN106282743A (zh) 2016-08-09 2016-08-09 Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610651162.0A CN106282743A (zh) 2016-08-09 2016-08-09 Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法

Publications (1)

Publication Number Publication Date
CN106282743A true CN106282743A (zh) 2017-01-04

Family

ID=57667875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610651162.0A Pending CN106282743A (zh) 2016-08-09 2016-08-09 Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法

Country Status (1)

Country Link
CN (1) CN106282743A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330408A (zh) * 2017-01-18 2018-07-27 天津大学 一种高强度含铝铁素体ods钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839613B1 (ko) * 2006-09-11 2008-06-19 주식회사 씨앤테크 카본나노튜브를 활용한 복합소결재료 및 그 제조방법
WO2012167336A1 (pt) * 2011-06-07 2012-12-13 Universidade Estadual De Ponta Grossa Tubos, dutos ou risers de aço à base de grafeno, métodos de fabricação dos mesmos e sua utilização para o transporte de petróleo, gás e biocombustíveis
CN102978434A (zh) * 2012-12-13 2013-03-20 北京科技大学 一种短纤维与颗粒协同增强铜基复合材料及其制备方法
KR20130110243A (ko) * 2012-03-28 2013-10-10 이성균 Cnt 그래핀이 함유된 합금
CN103352164A (zh) * 2013-06-25 2013-10-16 南昌大学 利用预制块制备碳纳米管铸钢复合材料的方法
JP5509409B2 (ja) * 2009-08-31 2014-06-04 国立大学法人信州大学 金型材料
CN105483420A (zh) * 2015-12-11 2016-04-13 苏州第一元素纳米技术有限公司 一种纳米碳增强的耐磨复合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839613B1 (ko) * 2006-09-11 2008-06-19 주식회사 씨앤테크 카본나노튜브를 활용한 복합소결재료 및 그 제조방법
JP5509409B2 (ja) * 2009-08-31 2014-06-04 国立大学法人信州大学 金型材料
WO2012167336A1 (pt) * 2011-06-07 2012-12-13 Universidade Estadual De Ponta Grossa Tubos, dutos ou risers de aço à base de grafeno, métodos de fabricação dos mesmos e sua utilização para o transporte de petróleo, gás e biocombustíveis
KR20130110243A (ko) * 2012-03-28 2013-10-10 이성균 Cnt 그래핀이 함유된 합금
CN102978434A (zh) * 2012-12-13 2013-03-20 北京科技大学 一种短纤维与颗粒协同增强铜基复合材料及其制备方法
CN103352164A (zh) * 2013-06-25 2013-10-16 南昌大学 利用预制块制备碳纳米管铸钢复合材料的方法
CN105483420A (zh) * 2015-12-11 2016-04-13 苏州第一元素纳米技术有限公司 一种纳米碳增强的耐磨复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐常恩: "Y2O3/碳纳米管/镍基复合材料的制备及其性能研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330408A (zh) * 2017-01-18 2018-07-27 天津大学 一种高强度含铝铁素体ods钢及其制备方法
CN108330408B (zh) * 2017-01-18 2019-10-01 天津大学 一种高强度含铝铁素体ods钢及其制备方法

Similar Documents

Publication Publication Date Title
Dong et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms
Zhou et al. Preparation and characterization of Mo/Al2O3 composites
Wang et al. Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys
Xu et al. The synthesis and characterization of ultrafine grain NiAl intermetallic
Zhou et al. Processing and characterization of a hipped oxide dispersion strengthened austenitic steel
Lin et al. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability
Li et al. The influence of Cr content on the mechanical properties of ODS ferritic steels
Zhuang et al. Preparation method and underlying mechanism of MWCNTs/Ti6Al4V nanocomposite powder for selective laser melting additive manufacturing
CN109794613A (zh) 一种纳米ZrC增强FeCrAl合金的制备方法
Yao et al. Microstructure, mechanical properties, and strengthening mechanisms of nanostructural Y-Zr-O oxide dispersion-strengthened (ODS) Mo alloys
Cao et al. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content
Wang et al. Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy
Wang et al. Influence of Al addition on the microstructure and mechanical properties of Zr-containing 9Cr-ODS steel
Wei et al. Microstructural evolution and mechanical properties of carbon nanotubes–reinforced TZM composites synthesized by powder metallurgy
Lyu et al. Microstructure and mechanical properties of WC–Ni multiphase ceramic materials with NiCl2· 6H2O as a binder
Jeje et al. Synthesis and characterization of TiN nanoceramic reinforced Ti–7Al–1Mo composite produced by spark plasma sintering
Zang et al. Achieving highly promising strength-ductility synergy of powder bed fusion additively manufactured titanium alloy components at ultra-low temperatures
Srinivasan et al. Investigation on the Mechanical Properties of Powder Metallurgy‐Manufactured AA7178/ZrSiO4 Nanocomposites
Ma et al. Characterization of oxide-dispersion-strengthened (ODS) alloy powders processed by mechano-chemical-bonding (MCB) and balling milling (BM)
CN106282743A (zh) Ods掺杂碳纳米管诱导马氏体相变,提高强度硬度的方法
Zhao et al. Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing
Wang et al. The effect of Si increase on microstructure and mechanical properties of multi-nano-oxide dispersion strengthened steel
CN101307406A (zh) 无钼Ti(C,N)基金属陶瓷及其制备方法
CN1292862C (zh) 一种添加碳纳米管调整硬质合金含碳量的方法
Wang et al. Large‐scale synthesis and growth mechanism of boron nitride nanocomposite assembled by nanosheets and nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104