CN106280157A - 一种AgNO3/PVA复合膜的制备方法 - Google Patents

一种AgNO3/PVA复合膜的制备方法 Download PDF

Info

Publication number
CN106280157A
CN106280157A CN201610655623.1A CN201610655623A CN106280157A CN 106280157 A CN106280157 A CN 106280157A CN 201610655623 A CN201610655623 A CN 201610655623A CN 106280157 A CN106280157 A CN 106280157A
Authority
CN
China
Prior art keywords
parts
pva
dissolved
preparation
distilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610655623.1A
Other languages
English (en)
Inventor
潘忠宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610655623.1A priority Critical patent/CN106280157A/zh
Publication of CN106280157A publication Critical patent/CN106280157A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

一种AgNO3/PVA复合膜的制备方法,包括如下步骤:将32份(重量份数,下同)PVA溶解于368份蒸馏水,形成8%的均相溶液;称量3份硝酸银溶解于5份蒸馏水中,完全溶解后加入到125份的8%的PVA水溶液中,保持搅拌1.5‑2h;将混合溶液涂覆在玻璃板上,室温下干燥36‑48h,揭膜然后将薄膜置于30‑35℃、恒湿(RH=60%)干燥36‑48h。本发明的有益效果是:具有操作简单,还原程度可控,所得到的聚合物薄膜具有导电性。

Description

一种AgNO3/PVA复合膜的制备方法
技术领域
本发明设计AgNO3/PVA复合膜,具体的是一种AgNO3/PVA复合膜的制备方法。
背景技术
金属-聚合物杂化纳米复合材料由于潜在具有金属和聚合物的优良特性备受关注。银-聚合物纳米复合材料属于金属聚合物杂化材料的一种,由于纳米银具有很稳定的物理化学性能,在电学、光学和催化等众多方面具有十分优异的性能。制备银聚合物复合材料的方法可以将制备好的纳米银粒子通过物理共混方法分散在聚合物基体中,其中纳米银粒子的制备方法有物理法和化学法,物理方法原理简单,缺点是对仪器设备要求高,生产成本高。化学法有溶胶凝胶法、电化学还原法、液相化学还原法、热处理法和光化学还原法等。化学法制备的银颗粒最小可达几纳米,得到的银颗粒不易转移和分散。最理想的制备银聚合物复合材料的方法是聚合物和银化合物在均相的状态下混合均匀,然后通过一定的处理方式实现银粒子的还原,从而获得掺杂均匀的复合材料。
发明内容
本发明所要解决的技术问题在于提供一种AgNO3/PVA复合膜的制备方法,解决现有物理化学方法所存在的问题。
本发明采用的制备方法,包括如下步骤:
a、将32份(重量份数,下同)PVA溶解于368份蒸馏水,形成8%的均相溶液;
b、称量3份硝酸银溶解于5份蒸馏水中,完全溶解后加入到125份的8%的PVA水溶液中,保持搅拌1.5-2h;
c、将混合溶液涂覆在玻璃板上,室温下干燥36-48h,揭膜然后将薄膜置于30-35℃、 恒湿(RH=60%)干燥36-48h。
本发明的有益效果是:具有操作简单,还原程度可控,所得到的聚合物薄膜具有导电性。
具体实施方式
以下结合实例进一步说明本发明的内容,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
实施例1:将32g PVA0588溶解于368g蒸馏水,形成8%的均相溶液;称量3g硝酸银溶解于5g蒸馏水中,完全溶解后加入到125g的8%的PVA水溶液中,保持搅拌1.5h;将混合溶液涂覆在玻璃板上,室温下干燥36h,揭膜然后将薄膜置于30℃、恒湿(RH=60%)干燥36h。
实施例2:将32g PVA0588溶解于368g蒸馏水,形成8%的均相溶液;称量3g硝酸银溶解于5g蒸馏水中,完全溶解后加入到125g的8%的PVA水溶液中,保持搅拌2h;将混合溶液涂覆在玻璃板上,室温下干燥48h,揭膜然后将薄膜置于35℃、恒湿(RH = 60%)干燥48h。
所得的AgNO3/PVA膜厚度约为60~70μm,硝酸银相当于聚乙烯醇的质量分数为30%(30wt%)。
硝酸银的加入显著改变了PVA的热性能,根据实验DSC曲线在180℃出现一个明显的放热峰, PVA的熔融峰消失。TG分析表明150~210℃,质量损失约为16%,最大失重率在180℃。XRD和SEM表明单质银的生成和在薄膜表面富集。随着热处理温度的增加,银纳米粒子尺寸也增大,纳米粒子相互靠近并聚集。随着温度的增加,表面导电率缓慢增加。当温度从150℃升至180℃,薄膜表面电导率从3.16×10-9S·cm-1增加至2.05×10-3S·cm-1,增加了6个数量级。这种温度敏感性的材料在温度触发传感器和温度报警领域有潜在的运用。

Claims (1)

1.一种AgNO3/PVA复合膜的制备方法,包括如下步骤:
a、将32份(重量份数,下同)PVA溶解于368份蒸馏水,形成8%的均相溶液;
b、称量3份硝酸银溶解于5份蒸馏水中,完全溶解后加入到125份的8%的PVA水溶液中,保持搅拌1.5-2h;
c、将混合溶液涂覆在玻璃板上,室温下干燥36-48h,揭膜然后将薄膜置于30-35℃、 恒湿(RH=60%)干燥36-48h。
CN201610655623.1A 2016-08-11 2016-08-11 一种AgNO3/PVA复合膜的制备方法 Pending CN106280157A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610655623.1A CN106280157A (zh) 2016-08-11 2016-08-11 一种AgNO3/PVA复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610655623.1A CN106280157A (zh) 2016-08-11 2016-08-11 一种AgNO3/PVA复合膜的制备方法

Publications (1)

Publication Number Publication Date
CN106280157A true CN106280157A (zh) 2017-01-04

Family

ID=57668283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610655623.1A Pending CN106280157A (zh) 2016-08-11 2016-08-11 一种AgNO3/PVA复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN106280157A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344484A (zh) * 2008-09-01 2009-01-14 楚雄师范学院 高效检测生物大分子和微生物纳米银膜制备方法
CN101717522A (zh) * 2009-12-01 2010-06-02 西安交通大学 具有电阻突变性的复合高分子薄膜材料的制备方法
CN101759374A (zh) * 2008-12-25 2010-06-30 西北工业大学 一种基于三维纳米银树枝状结构的可见光频段左手超材料的制备方法
CN103614863A (zh) * 2013-12-19 2014-03-05 哈尔滨工业大学 Pva/金属纳米粒子复合纳米纤维膜的制备方法
CN104558993A (zh) * 2014-12-24 2015-04-29 武汉工程大学 一种改性聚乙烯醇薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344484A (zh) * 2008-09-01 2009-01-14 楚雄师范学院 高效检测生物大分子和微生物纳米银膜制备方法
CN101759374A (zh) * 2008-12-25 2010-06-30 西北工业大学 一种基于三维纳米银树枝状结构的可见光频段左手超材料的制备方法
CN101717522A (zh) * 2009-12-01 2010-06-02 西安交通大学 具有电阻突变性的复合高分子薄膜材料的制备方法
CN103614863A (zh) * 2013-12-19 2014-03-05 哈尔滨工业大学 Pva/金属纳米粒子复合纳米纤维膜的制备方法
CN104558993A (zh) * 2014-12-24 2015-04-29 武汉工程大学 一种改性聚乙烯醇薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张杰等: "聚乙烯醇基热致导电复合膜的制备", 《化学研究与应用》 *

Similar Documents

Publication Publication Date Title
Babel et al. A review on polyaniline composites: Synthesis, characterization, and applications
Ang et al. One-pot synthesis of Fe (III)–polydopamine complex nanospheres: morphological evolution, mechanism, and application of the carbonized hybrid nanospheres in catalysis and Zn–air battery
Ma et al. Preparation and characterization of silica/polyamide-imide nanocomposite thin films
Feng et al. Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine
Zhong et al. High-yield synthesis of superhydrophilic polypyrrole nanowire networks
Jiang et al. Preparation and characterization of silver nanoparticles immobilized on multi-walled carbon nanotubes by poly (dopamine) functionalization
KR101295671B1 (ko) 고분자-금속나노복합체 및 그 제조방법, 고분자-금속나노복합체를 이용한 고분자 구동기
Wei et al. One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface
US20170140846A1 (en) Silver-coated copper nanowire and preparation method therefor
Mamaghani et al. Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization
Draper et al. Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink
Wattanodorn et al. Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties
Hao et al. Bridged Ti3C2T x MXene film with superior oxidation resistance and structural stability for high-performance flexible supercapacitors
Fujii et al. Electroless nickel plating on polymer particles
Yu et al. Constructing of strawberry-like core-shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites
Peng et al. Conductivity improvement of silver flakes filled electrical conductive adhesives via introducing silver–graphene nanocomposites
Wang et al. Electrically conductive polyaniline/polyimide microfiber membrane prepared via a combination of solution blowing and subsequent in situ polymerization growth
CN109926054A (zh) 一种高分散NiCo合金-石墨烯纳米复合催化剂的制备方法
Li et al. Silver-nanoparticle-embedded hybrid nanopaper with significant thermal conductivity enhancement
Bhandari et al. Synthesis of graphene-like ultrathin polyaniline and its post-polymerization coating on nanosilica leading towards superhydrophobicity of composites
Chondath et al. Water–Chloroform Interface Assisted Microstructure Tuning of Polypyrrole–Silver Sheets
Han et al. Ultrafast synthesis of silver nanoparticle decorated graphene oxide by a rotating packed bed reactor
Simon et al. Functionalized polystyrene maleic anhydride copolymer/ZnO nanocomposites for enhanced electrochemical performance
JP5879257B2 (ja) イオン伝導性有機無機複合粒子、粒子含有樹脂組成物およびイオン伝導性成形体
Du et al. One‐step anchored polymers via phenolamine bionic design on textile‐based heater for application in personal heat management

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104

WD01 Invention patent application deemed withdrawn after publication