CN106277746A - 一种大有效面积光纤的制备工艺 - Google Patents

一种大有效面积光纤的制备工艺 Download PDF

Info

Publication number
CN106277746A
CN106277746A CN201610689609.3A CN201610689609A CN106277746A CN 106277746 A CN106277746 A CN 106277746A CN 201610689609 A CN201610689609 A CN 201610689609A CN 106277746 A CN106277746 A CN 106277746A
Authority
CN
China
Prior art keywords
temperature
optical fiber
fiber
annealing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610689609.3A
Other languages
English (en)
Inventor
苏建丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Wenchuang Technology Co Ltd
Original Assignee
Qingdao Wenchuang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Wenchuang Technology Co Ltd filed Critical Qingdao Wenchuang Technology Co Ltd
Priority to CN201610689609.3A priority Critical patent/CN106277746A/zh
Publication of CN106277746A publication Critical patent/CN106277746A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6226Ultraviolet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明涉及一种大有效面积光纤的制备工艺,包括预制棒制备,光纤熔融退火工艺以及光纤拉丝固化工艺,采用VAD+MCVD+OVD工艺,其中VAD工艺沉积芯棒,实现芯棒的快速沉积,显著降低光纤衰减;MCVD工艺实现包层折射率的下陷结构,采用OVD工艺沉积外包层;在退火保温炉内形成800~1200℃的梯度温场,光纤在保温退火炉内逐渐降温,基本释放内应力;固化后的光纤经过筛选工序,即可完成加工。本发明的截止波长,弯曲损耗,色散等综合性能参数在应用波段良好,可以作为超跨越戈壁、深海等恶劣条件的长距离光纤通讯使用,且光纤各层圆度情况良好,保证外形成型圆润,该光纤的应变可达到2%甚至以上。

Description

一种大有效面积光纤的制备工艺
技术领域
本发明涉及一种光纤领域,特别涉及一种大有效面积光纤的制备工艺。
背景技术
光纤强度是超低损耗光纤关键指标之一,主要体现在筛选应变上,普通光纤的应变一般在1%左右来应对来自敷设和热胀冷缩引起的张力,而超低损耗光纤应用在超长距离光通讯链路中,常常需要跨越戈壁、深海等恶劣环境,从考虑敷设或环境温度变化时,所受到的张力相比于普通光缆更大,综合考虑《深海光缆》国家标准、敷设难度和使用寿命等方面,希望超低损耗光纤的应变达到2%甚至以上,能够完全满足光纤成缆和敷设的需要。
光纤的强度主要取决于裸光纤表面的微裂纹。光纤中为微裂纹主要来自拉丝炉内的杂质粒子。杂质粒子附着在光纤表面,在冷却过程中,形成裂纹和应力集中,光纤表面裂纹受大气环境中水分子作用而逐渐侵蚀,导致硅氧四面体结构被破坏,硅氧键的断裂会扩大微裂纹的范围,影响光纤强度。
拉丝炉长期工作后,炉内石墨件表面发生少量氧化使拉丝炉炉体表面变得粗糙,预制棒在高温下产生少量二氧化硅升华与拉丝炉炉体内表面反应生成坚硬的碳化硅微粒,并随炉内气流的影响在炉内漂浮。减少光纤拉丝炉内灰尘对光纤的影响。
光纤衰减系数除了受限于预制棒的制备过程,同时也受石英玻璃假想温度的影响。当石英光纤从软化温度降低到假想温度时,石英玻璃内部结构向平衡态转化。当石英温度低于假想温度后,光纤内部结构就被定型,很难再改变。如果光纤在到达假想温度时没有充分释放内应力,那么光纤由密度不均造成的瑞利散射则会显著影响光纤的衰减系数。
发明内容
本发明要解决的技术问题是提供一种大有效面积光纤的制备工艺。
为解决上述技术问题,本发明的技术方案为:一种大有效面积光纤的制备工艺,步骤如下:
(1)预制棒制备:采用VAD+MCVD+OVD工艺,其中VAD工艺沉积芯棒,实现芯棒的快速沉积,显著降低光纤衰减;MCVD工艺实现包层折射率的下陷结构,采用OVD工艺沉积外包层,沉积速率高,有效降低生产成本;
(2)光纤熔融退火工艺:预制棒从拉丝炉炉顶进入拉丝炉,拉丝炉炉体内部的温度设定为2100~2200℃,预制棒在拉丝炉炉体内熔融拉丝,牵引速度大于2000m/min,拉丝炉内的参数实时反馈给控制单元;炉顶气盘上的进气孔供应惰性气体进入拉丝炉;风向倾斜向下的进风孔能减小炉灰与光纤接触的几率;风向竖直向下的进气孔,吹扫拉丝炉炉体内壁,防止炉灰沉积在拉丝炉炉体;退火管中采用多孔分散式排气方式,漏斗形的设计有效防止炉灰沉积影响光纤强度,排出的炉灰通过软管连接至炉灰回收装置;光纤在退火管出口温度为1730°;光纤进入保温退火炉,保温退火炉中的每个加热元件由控制单元独立控制,每个加热元件的温度为1000~1200℃,加热元件的温度自动反馈给控制单元;在退火保温炉内形成800~900℃的梯度温场,光纤在保温退火炉内逐渐降温,基本释放内应力;
(3)光纤涂覆固化工艺:光纤进入涂覆机进行涂层后,随即进入紫外光固化炉,环境温度20~30℃,环境湿度40~65%,紫外光固化炉功率控制在70~95%,紫外光固化炉内使用抽风系统,将光纤表面涂层固化挥发物抽出,并抽走有害气体,温度探测仪检测到紫外光固化炉内的温度,同时将温度反馈至控制单元,固化抽风管道中的风速检测仪检测到的风速流量也反馈至控制单元,如果紫外光固化炉内温度及固化抽风管道中的风速流量全部在设定范围内,则光纤正常生产;如果反馈至控制单元的紫外光固化炉内的温度波动,且固化抽风管道中的风速流量也产生对应的波动,则控制单元 将控制调节自动调节阀门,改变抽风效果,若调节无效,或波动异常,则对外提示对设备进行保养维修;固化后的光纤经过筛选工序,即可完成加工;所述拉丝炉自上而下包括同轴设置的炉顶气盘、拉丝炉炉体以及下端退火管,所述炉顶气盘为竖直设置的环形结构,其侧壁上具有若干圈环布的进气孔,所述炉顶气盘侧面上具有一路或者两路向下送风的进气孔,其余进气孔皆平行设置,送风风向与竖直方向呈15~45°夹角;所述拉丝炉炉体为一柱体,其内部具有容纳预制棒加热拉丝的中空孔,所述退火管设置在拉丝炉炉体下端。
进一步的,所述退火保温炉具有上下同轴设置的两个,其内部皆包括上下两组独立的加热元件,且两组加热元件分别由独立电源控制线控制,并与控制单元A电连接。
进一步的,所述紫外光固化炉上设置有抽风系统,所述抽风系统包括抽风管道、检测装置以及控制单元B,所述检测装置包括安装在紫外光固化炉中的温度探测仪、安装在固化抽风管道内的风速检测仪以及自动调节阀门,所述控制单元B与检测装置电连接。
本发明的优点在于:
(1)本发明的截止波长,弯曲损耗,色散等综合性能参数在应用波段良好,可以作为超跨越戈壁、深海等恶劣条件的长距离光纤通讯使用,该光纤的应变可达到2%甚至以上;合理的光纤掺氟包层设计,结合芯层和各包层的合理设计,使得该光纤具有较大的有效面积;在拉丝制备过程中,光纤的圆度保持较好,表面基本无杂质割伤,其强度和抗疲劳参数能够达到恶劣环境的要求,连续使用25年以上;
(2)拉丝炉炉顶气盘上设置有多路进气孔,竖直向下的进气孔可以防止拉丝炉炉体内壁沾染附着炉灰,倾斜设置的进气孔可以阻隔炉灰在光纤表面附着,防止其在冷却过程中形成裂纹和应力集中,保证了光纤的强度,使其能够满足恶劣环境的考验;
(3)将保温退火炉原先的单一发热元件改为独立的上下两组加热元件,并且通过独立电源控制线对其分别进行控制;并通过数据线与拉丝炉相连,实现远程控制,设置合适的加热元件长度和加热元件之间的距离,每个加热元件皆独立控制,达到保温退火炉内的全覆盖,保证在工作时各个位置实际温度与设置温度相同,光纤在该保温退火炉内的内应力基本得到释放,很好的保证了光纤的衰减系数在理想范围内;
(4)紫外光固化炉可以在线监控抽风情况,并且自动进行抽风调节。
具体实施方式
在高速大容量DWDM(密集波分复用)系统中,传统的G.652D光纤以及超低损耗光纤由于非线性效应,传输距离受到限制。随着各种新型编码方式(如RZ(归零码)等)、纠错技术(如FEC(前向纠错)、SFEC(超强前向纠错)等)的出现和各种低噪声放大器(如DRA(分布式拉曼光纤放大器)等)的发展,对DWDM系统的OSNR(光信噪比)容限要求和OSNR劣化有非常明显的改善,光纤损耗不再是限制系统传输的决定性因素。在目前DWDM系统中,非线性效应成为了当前高速光纤通信系统的主要限制因素。在光功率传输下,光纤会发生拉曼散射、克尔效应等非线性效应,影响光纤在强光场下的损耗系数和折射率变化。适用于DWDM 的光纤已有报道,纯石英纤芯的光纤具有较低的损耗,但制作较为复杂,有效面积增大意味着光纤应力附加损耗也随之增大。
超低损耗光纤是未来大容量光通讯发展的物质基础,是我国推行“宽带中国”的战略,实现400G超高速带宽的重要媒介。
超低损耗光纤由丙烯酸酯内外涂层、掺氟包层和纯硅芯层组成。芯层为纯二氧化硅玻璃层,其半径为5~7μm,其不圆度为1.5%,包层包括内包层、中包层以及外包层,内包层为掺氟内包层,其半径r2为5~12μm,相对折射率差为-0.4~-0.2%,中包层半径r3为12~25μm,外包层为纯石英玻璃层,其半径r4为25~45μm,该包层整体不圆度为0.2%,涂层材料采用聚丙烯酸酯,包括内涂层以及外涂层,内涂层直径为192μm,其不圆度为0.6%,外涂层直径为245μm,其不圆度为0.8%。
超低损耗光纤的主要技术指标如下表所示:
光纤的强度主要取决于裸光纤表面的微裂纹。光纤中为微裂纹主要来自拉丝炉内的杂质粒子。杂质粒子附着在光纤表面,在冷却过程中,形成裂纹和应力集中,光纤表面裂纹受大气环境中水分子作用而逐渐侵蚀,导致硅氧四面体结构被破坏,硅氧键的断裂会扩大微裂纹的范围,影响光纤强度。
拉丝炉长期工作后,炉内石墨件表面发生少量氧化使石墨件表面变得粗糙,预制棒在高温下产生少量二氧化硅升华与石墨件表面反应生成坚硬的碳化硅微粒,并随炉内气流的影响在炉内漂浮。拉丝炉炉体上端为炉顶气盘,下端为退火管,常规光纤拉丝炉惰性气体进气方式一般为上部平吹进气,惰性气体通过层流的方式自上而下通过拉丝炉内部进入退火管,这种进气方法的优点在于平缓的气流不会在引起拉丝炉内气流扰动,使炉灰沉积于石墨件内壁,减少炉灰与光纤接触的几率,但经过长时间的拉丝生产,石墨件内壁的炉灰积累到一定程度,其在高温扩散的影响下将会对光纤造成严重的影响导致拉丝中途强度骤变,影响光纤的质量和石墨件的使用寿命。
光纤衰减系数除了受限于预制棒的制备过程,同时也受石英玻璃假想温度的影响。当石英光纤从软化温度降低到假想温度时,石英玻璃内部结构向平衡态转化。当石英温度低于假想温度后,光纤内部结构就被定型,很难再改变。如果光纤在到达假想温度时没有充分释放内应力,那么光纤由密度不均造成的瑞利散射则会显著影响光纤的衰减系数。退火工艺的影响光纤的内应力,但是目前的退火炉内温度不均,容易造成光纤内应力释放不完全。
现有的光纤涂覆固化系统中,固化炉内一般要使用抽风系统,一方面降低紫外光固化炉内温度,延长紫外光固化炉寿命,另一方面抽取光纤表面涂层固化挥发物,提高光纤加工质量;同时,抽走有害气体,避免挥发物污染周围环境和造成人身危害,但同时抽风流量太大或太小又会影响光纤的固化效果,一般抽风流量都是在一个稳定的范围内。
当在实际生产过程中,一方面抽风管道在长时间的使用中容易堵塞,抽风量会减小,必须在停炉期间通过人工定期对抽风流量进行检测和调整,以保证正常使用的流量;另一方面,如果抽风流量调节太大或太小,则会影响光纤的固化效果。原有的固化工艺需要人工进行监控和调节,人为因素较多;另一方面光纤生产中途涂覆固化出现问题,必须强制终止生产才可以进行监控调节,正常生产时,无法监控抽风实际流量。
在超低损耗光纤的制备过程中,使用超低损耗光纤拉丝退火系统进行制备,预制棒从拉丝炉炉顶进入拉丝炉,拉丝炉炉体内部的温度为2100~2200℃,预制棒在拉丝炉炉体内熔融拉丝,牵引速度为≥2000m/min,拉丝炉上的温度炉顶气盘上的进气孔供应惰性气体进入拉丝炉;风向倾斜向下的进风孔能减小炉灰与光纤接触的几率,这样的进风孔具有平行设置的若干个,送风风向与竖直方向呈15~45°夹角;风向竖直向下的进气孔,吹扫拉丝炉炉体内壁,防止炉灰沉积在拉丝炉炉体;退火管中采用多孔分散式排气方式,漏斗形的设计有效防止炉灰沉积影响光纤强度,排出的炉灰通过软管连接至炉灰回收装置;光纤在退火管出口温度为1730°;光纤进入保温退火炉,保温退火炉中的每个加热元件由控制单元独立控制,形成800~900℃的梯度温场。
光纤的散射损耗是光纤损耗的最大原因。光纤散射最重要的部分就是瑞利散射。瑞利散射是由光纤材料中折射率的微小不均匀所造成的,可知,由密度不均匀所产生的瑞利散射主要是由折射率n、假想温度Tf和等温压缩率βT所决定。这三个因素都受拉丝过程的影响。等温压缩率的大小与温度密切相关。当光纤温度高于假想温度时,玻璃粘度相对较小,低于10MPa 的应力就能够造成玻璃的密度改变;而当光纤温度低于假想温度时,需高达2000MPa 的应力才能影响玻璃的密度。因此,等温压缩率对瑞利散射的影响依赖于假想温度,光纤的假想温度主要由玻璃粘度和冷却速度所决定。对于光纤生产而言,玻璃的种类和粘度都已确定,则假想温度主要由光纤的冷却速度所决定,可知,光纤在固定拉丝速度下的实际温度和降温速率。通过加入保温退火炉温场,控制光纤出退火保温炉时的实际温度,保证光纤温度在1000℃以上,使光纤充分释放内应力。光纤降温速率随保温炉温场温度的升高而下降,当降温速率在5000k/s以下时,光纤内应力能够完全释放,消除由密度不均产生的瑞利散射达到降低光纤衰减的目的,同时如果保温温场设置过高,光纤出口温度高于1200℃进入环境时,有可能导致光纤包层受温度突变、而芯层仍然保持高温,容易导致内外在此产生应力,影响光纤衰减。另外过高的光纤出口温度使光纤冷却需要更大的能耗和冷却氦气,提高了光纤成本,因此将保温温场设置为800-900℃。
由于采用不规则超低损耗大有小面积光纤预制棒拉丝,在拉丝炉内控制光纤熔融温度时加热温度会有适当微调,使光纤出退火管温度发生变化,此时需要设置合适的退火保温场温度来配合光纤出炉温度。该关键技术利用数据线连接保温炉电源和拉丝机主控计算机,实现保温炉温度远程控制,同时,结合实时炉温、实时拉丝速度和恒定的降温速率,计算保温炉合适温度进行自动微调控制。实现恒定的光纤退火最优温度。
光纤进入紫外光固化炉,一般生产环境温度20~30℃,环境湿度40~65%,紫外光固化炉功率控制在70~95%,紫外光固化炉内使用抽风系统,抽风系统包括抽风管道、检测装置以及控制单元B,检测装置包括安装在紫外光固化炉中的温度探测仪、安装在固化抽风管道内的风速检测仪以及自动调节阀门,控制单元B与检测装置电连接;将光纤表面涂层固化挥发物抽出,并抽走有害气体,温度探测仪检测到紫外光固化炉内的温度,同时将温度反馈至控制单元B,固化抽风管道中的风速检测仪检测到的风速流量也反馈至控制单元B,如果紫外光固化炉内温度及固化抽风管道中的风速流量全部在设定范围内,则光纤正常生产。如果反馈至控制单元B的紫外光固化炉内的温度波动,且固化抽风管道中的风速流量也产生对应的波动,则控制单元B 将控制调节自动调节阀门,改变抽风效果,若调节无效,或波动异常,则对外提示对设备进行保养维修。
紫外光固化炉抽风系统改进后:1、可以通过在线监控紫外光固化炉的抽风情况;2、通过在线监控紫外光固化炉的抽风,可以判断光纤的固化效果,通过光纤的固化质量,可以自动调节固化抽风;3、通过紫外光固化炉内的温度监控,与抽风调节,可以增加紫外光固化炉寿命;4、充分满足光纤拉丝过程中的紫外光固化炉挥发物的去除,增加光纤质量。
固化后的光纤经过筛选工序,即可完成加工。
以上显示和描述了本发明的基本原理和主要特征。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种大有效面积光纤的制备工艺,其特征在于:步骤如下:
(1)预制棒制备:采用VAD+MCVD+OVD工艺,其中VAD工艺沉积芯棒,实现芯棒的快速沉积,显著降低光纤衰减;MCVD工艺实现包层折射率的下陷结构,采用OVD工艺沉积外包层,沉积速率高,有效降低生产成本;
(2)光纤熔融退火工艺:预制棒从拉丝炉炉顶进入拉丝炉,拉丝炉炉体内部的温度设定为2100~2200℃,预制棒在拉丝炉炉体内熔融拉丝,牵引速度大于2000m/min,拉丝炉内的参数实时反馈给控制单元;炉顶气盘上的进气孔供应惰性气体进入拉丝炉;风向倾斜向下的进风孔能减小炉灰与光纤接触的几率;风向竖直向下的进气孔,吹扫拉丝炉炉体内壁,防止炉灰沉积在拉丝炉炉体;退火管中采用多孔分散式排气方式,漏斗形的设计有效防止炉灰沉积影响光纤强度,排出的炉灰通过软管连接至炉灰回收装置;光纤在退火管出口温度为1730°;光纤进入保温退火炉,保温退火炉中的每个加热元件由控制单元独立控制,每个加热元件的温度为1000~1200℃,加热元件的温度自动反馈给控制单元;在退火保温炉内形成800~1000℃的梯度温场,光纤在保温退火炉内逐渐降温,基本释放内应力;
(3)光纤涂覆固化工艺:光纤进入涂覆机进行涂层后,随即进入紫外光固化炉,环境温度20~30℃,环境湿度40~65%,紫外光固化炉功率控制在70~95%,紫外光固化炉内使用抽风系统,将光纤表面涂层固化挥发物抽出,并抽走有害气体,温度探测仪检测到紫外光固化炉内的温度,同时将温度反馈至控制单元,固化抽风管道中的风速检测仪检测到的风速流量也反馈至控制单元,如果紫外光固化炉内温度及固化抽风管道中的风速流量全部在设定范围内,则光纤正常生产;如果反馈至控制单元的紫外光固化炉内的温度波动,且固化抽风管道中的风速流量也产生对应的波动,则控制单元 将控制调节自动调节阀门,改变抽风效果,若调节无效,或波动异常,则对外提示对设备进行保养维修;固化后的光纤经过筛选工序,即可完成加工;
所述拉丝炉自上而下包括同轴设置的炉顶气盘、拉丝炉炉体以及下端退火管,所述炉顶气盘为竖直设置的环形结构,其侧壁上具有若干圈环布的进气孔,所述炉顶气盘侧面上具有一路或者两路向下送风的进气孔,其余进气孔皆平行设置,送风风向与竖直方向呈15~45°夹角;所述拉丝炉炉体为一柱体,其内部具有容纳预制棒加热拉丝的中空孔,所述退火管设置在拉丝炉炉体下端。
2.根据权利要求1所述的一种大有效面积光纤的制备工艺,其特征在于:所述退火保温炉具有上下同轴设置的两个,其内部皆包括上下两组独立的加热元件,且两组加热元件分别由独立电源控制线控制,并与控制单元A电连接。
3.根据权利要求1所述的一种大有效面积光纤的制备工艺,其特征在于:所述紫外光固化炉上设置有抽风系统,所述抽风系统包括抽风管道、检测装置以及控制单元B,所述检测装置包括安装在紫外光固化炉中的温度探测仪、安装在固化抽风管道内的风速检测仪以及自动调节阀门,所述控制单元B与检测装置电连接。
CN201610689609.3A 2016-08-19 2016-08-19 一种大有效面积光纤的制备工艺 Withdrawn CN106277746A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610689609.3A CN106277746A (zh) 2016-08-19 2016-08-19 一种大有效面积光纤的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610689609.3A CN106277746A (zh) 2016-08-19 2016-08-19 一种大有效面积光纤的制备工艺

Publications (1)

Publication Number Publication Date
CN106277746A true CN106277746A (zh) 2017-01-04

Family

ID=57661415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610689609.3A Withdrawn CN106277746A (zh) 2016-08-19 2016-08-19 一种大有效面积光纤的制备工艺

Country Status (1)

Country Link
CN (1) CN106277746A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383375A (zh) * 2018-02-12 2018-08-10 江苏富春江光电有限公司 光纤拉丝退火装置及光纤
WO2020181787A1 (zh) * 2019-03-11 2020-09-17 江苏永鼎光纤科技有限公司 一种高芯包同心度的光纤及其制备方法
CN115594396A (zh) * 2022-11-07 2023-01-13 江苏亨通光纤科技有限公司(Cn) 多芯光纤拉丝装置、多芯光纤拉丝方法及多芯光纤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383375A (zh) * 2018-02-12 2018-08-10 江苏富春江光电有限公司 光纤拉丝退火装置及光纤
CN108383375B (zh) * 2018-02-12 2023-08-04 浙江富春江光电科技有限公司 光纤拉丝退火装置及光纤
WO2020181787A1 (zh) * 2019-03-11 2020-09-17 江苏永鼎光纤科技有限公司 一种高芯包同心度的光纤及其制备方法
CN115594396A (zh) * 2022-11-07 2023-01-13 江苏亨通光纤科技有限公司(Cn) 多芯光纤拉丝装置、多芯光纤拉丝方法及多芯光纤
CN115594396B (zh) * 2022-11-07 2024-05-14 江苏亨通光纤科技有限公司 多芯光纤拉丝装置、多芯光纤拉丝方法及多芯光纤
WO2024099321A1 (zh) * 2022-11-07 2024-05-16 江苏亨通光纤科技有限公司 多芯光纤拉丝装置、多芯光纤拉丝方法及多芯光纤

Similar Documents

Publication Publication Date Title
CN106125192A (zh) 一种超低损耗大有效面积光纤及其制备工艺
CN106019465A (zh) 一种超低损耗光纤生产系统及其应用于生产的工艺
CN110794509B (zh) 一种单模光纤及其制备方法
CN101925548B (zh) 制造低衰减光纤的方法
CN1782756B (zh) 光纤母材、光纤母材的制造方法以及光纤的制造方法
KR20060033861A (ko) 점도 불일치를 감소시킨 광섬유
CN102583997A (zh) 光纤母材、光纤母材的制造方法以及光纤的制造方法
CN104649577B (zh) 一种对vad 和ovd 火焰温度进行在线调整的装置和方法
CN106277746A (zh) 一种大有效面积光纤的制备工艺
US20140226948A1 (en) Optical fiber producing method and apparatus and optical fiber
WO2010124535A1 (zh) 高强度大盘长海底光缆用单模光纤的制备方法
CN101302076B (zh) 提高光纤预制件中低包层-纤芯比(D/d)的芯棒的D/d比
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
CN102010123A (zh) 一种光纤的热处理方法及装置
CN106226864A (zh) 一种超低损耗大有效面积光纤
CN106199823A (zh) 一种大有效面积光纤
CN205774105U (zh) 一种超低损耗光纤生产系统
CN105271710B (zh) 一种光纤拉丝炉
CN108609844A (zh) 一种损耗较小的光纤制造工艺
CN205099574U (zh) 一种光纤拉丝炉
CN106277745A (zh) 一种超低损耗大有效面积光纤的制备工艺
CN106380069A (zh) 一种超低损耗光纤的制备工艺
US4298366A (en) Graded start rods for the production of optical waveguides
JP5046500B2 (ja) 光ファイバ用ガラス母材の製造方法
CN211078919U (zh) 等离子沉积设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170104

WW01 Invention patent application withdrawn after publication