CN106268811A - 石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂的光催化脱氮用途 - Google Patents

石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂的光催化脱氮用途 Download PDF

Info

Publication number
CN106268811A
CN106268811A CN201610632668.7A CN201610632668A CN106268811A CN 106268811 A CN106268811 A CN 106268811A CN 201610632668 A CN201610632668 A CN 201610632668A CN 106268811 A CN106268811 A CN 106268811A
Authority
CN
China
Prior art keywords
graphene
coppe ferrite
azepine
intelligent optical
purposes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610632668.7A
Other languages
English (en)
Other versions
CN106268811B (zh
Inventor
刘守清
周洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Nipu Environmental Technology Co ltd
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201610632668.7A priority Critical patent/CN106268811B/zh
Publication of CN106268811A publication Critical patent/CN106268811A/zh
Application granted granted Critical
Publication of CN106268811B publication Critical patent/CN106268811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂的光催化脱氮用途。所述石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂可选择性地吸附并在可见光照射下光催化脱氮。所述石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂包括石墨烯或氮杂石墨烯和铁酸铜,所述铁酸铜分布于所述石墨烯或氮杂石墨烯的层状结构表面和/或内部,其中所述铁酸铜为尖晶石型结构,且所述铁酸铜具有Fd3m空间群结构。本发明提供的石墨烯/氮杂石墨烯‑铁酸铜智能光催化剂可选择性地光催化脱氮,并且在可见光照射下可实现污水脱氮,本发明提供的智能光催化剂重复光催化脱氮5‑10次后,氨氮的脱氮率仍在90%以上。本发明提供的述智能光催化剂制备方法简单、原料价格低廉、条件易控,大大提高了生产效率。

Description

石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的光催化脱氮用途
技术领域
本发明涉及一种智能光催化剂,特别涉及一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂及其在选择性光催化脱氮,属于光催化技术领域。
背景技术
2007年太湖蓝藻污染事件引起全国对氨氮污染的高度关注,氨氮处理方法分为生物法、物理法和化学法。目前,低浓度的氨氮(<100mg/L)可以通过硝化-反硝化工艺脱氮,硝化作用分为氨氧化和亚硝酸氧化,形成的硝酸盐通过反硝化变成气体排出达到脱氮效果。但是在高氨氮重污染条件下,由于细菌对气候、温度、有机物、溶解氧等因素非常敏感,该方法成本高,管理维护的投入高,因此需要开发新的脱氮工艺。
随着科学技术的发展,研究人员探索利用半导体材料(主要为TiO2)作为光催化剂来降解氨氮,但这些研究工作为开发太阳能净化环境作出了积极的尝试,但是光催化降解氨氮缺乏选择性,而且TiO2只能利用太阳能中的紫外光,不能利用其可见光,因此太阳能的利用率不高。
因此,需要开发高效高选择的光催化剂,以便快速、稳定、持久、廉价、清洁地实现脱氮的目标。
发明内容
本发明的目的在于提供一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂及其应用,以克服现有技术中的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例中提供了一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂选择性吸附并光催化脱氮的用途。所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂包括石墨烯和/或氮杂石墨烯和铁酸 铜,所述铁酸铜分布于所述石墨烯和/或氮杂石墨烯的层状结构表面和/或内部,其中所述铁酸铜为尖晶石型结构,且所述铁酸铜具有Fd3m空间群结构。
本发明实施例中还提供了一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的制备方法,其包括以下步骤:将可溶性铜盐、可溶性铁盐与石墨烯/氮杂石墨烯溶解于溶剂中混合均匀,之后调节溶液为碱性,再将溶液于150-200℃条件下反应6-10h,制得所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂。
与现有技术相比,本发明的优点包括:
(1)提供的石墨烯/氮杂石墨烯-铁酸铜智能光催化剂同时降解含有有机污染物和氨氮并存的溶液中当待测样品溶液为碱性,仅在可见光照射下氨氮的降解率达90%以上,有机污染物(例如:罗丹明B)的降解效率仅有49%,且单独降解氨氮时所述催化剂重复催化降解氨氮5-10次后,氨氮的降解率仍为90%以上。
(2)提供的石墨烯/氮杂石墨烯-铁酸铜智能光催化剂中的石墨烯/氮杂石墨烯可增强对可见光吸收的同时,且减少了光生电子与光生空穴的复合,提高了对太阳能的利用。
(3)提供的石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的制备方法简单、原料价格低廉、条件易控,大大提高了生产效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1中铁酸铜(CuFe2O4)、石墨烯-铁酸铜(rG-CuFe2O4)、氮杂石墨烯-铁酸铜(NG-CuFe2O4)的XRD图;
图2是本发明实施例1中铁酸铜(CuFe2O4)、石墨烯-铁酸铜(rG-CuFe2O4)、吸附氨氮的石墨烯-铁酸铜(rG-CuFe2O4)、同时吸附氨氮与RHB的石墨烯-铁酸铜(rG-CuFe2O4)的拉曼光谱图;
图3a-3d是本发明实施例1中rG、CuFe2O4、rG-CuFe2O4与NG-CuFe2O4的TEM图,其中图3a是rG的TEM图,图3b是CuFe2O4的TEM图,图3c是rG-CuFe2O4的TEM图,图3d是NG-CuFe2O4的TEM图;
图4是本发明实施例1中石墨烯-铁酸铜(rG-CuFe2O4)重复7次脱氮效率与脱氮时间的关系曲线图;
图5是本发明实施例1中制得的石墨烯-铁酸铜(rG-CuFe2O4)催化剂降解氨氮曲线图;
图6是本发明对比例1中制得的石墨烯-铁酸铜(rG-CuFe2O4)催化剂降解氨氮和罗丹明B的光催化降解曲线图;
图7是本发明实施例2中制得的石墨烯-铁酸铜(rG-CuFe2O4))催化剂降解氨氮和甲基橙的光催化降解曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明的反应机理包括以下步骤:
NH3+·OH→NH2+H2O…………….……..(1)
NH2+·OH→NH+H2O……………..….….(2)
NH+·OH→N+H2O……………….………(3)
NHx+NHy→N2Hx+y(x,y=0,1,2)…………..(4)
N2Hx+y+(x+y)OH→N2+(x+y)H2O……….(5)
本发明实施例中提供了一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂选择性吸附并降解氨氮中的用途。
进一步的,所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂包括石墨烯/氮杂石墨烯和铁酸铜,所述铁酸铜分布于所述石墨烯/氮杂石墨烯的层状结构表面或内部,其中所述铁酸铜为尖晶石型结构,且所述铁酸铜具有Fd3m空间群结构。
更进一步的,所述铁酸铜晶体中氧离子是按面心立方结构分布的,相邻的4个氧离子中心连线可获得四面体结构和/或相邻8个氧离子连接为八面体结构,铜离子占据四面体的间隙,铁离子占据八面体的间隙。
更进一步的,所述智能光催化剂中铁酸铜的质量百分比为100-90%。
进一步的,所述智能光催化剂中石墨烯/氮杂石墨烯的质量百分比为0%-10%。
本发明实施例中还提供了一种石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的制备方法,其包括以下步骤:将可溶性铜盐、可溶性铁盐与石墨烯/氮杂石墨烯溶解于溶剂中混合均匀,之后调节溶液为碱性,再将溶液于150-200℃条件下反应6-10h,制得所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂。
进一步的,所述可溶性铜盐与可溶性铁盐的摩尔比为1:1-3。
进一步的,所述的可溶性铜盐包括Cu(NO3)2·6H2O,但不限于此。
进一步的,所述的可溶性铁盐包括Fe(NO3)3·9H2O,但不限于此。
进一步的,所述的碱性溶液包括NaOH溶液,但不限于此。
该方法还包括:将反应釜置于温度为180-200℃的条件下反应8-10h,之后用去离子水洗涤,然后将其置于温度为40-80℃的真空干燥箱内干燥,即制得所述的石墨烯/氮杂石墨烯-铁酸铜智能光催化剂。
进一步的,采用0.1mol/L NaOH溶液调节所述待测样品的pH值。
以下结合附图和实施例对本发明的技术作进一步的解释说明。
实施例1
采用改进的Hummers法制备氧化石墨烯(GO):将2.0g石墨(99.85%)与1.0g硝酸钠放入500ml烧杯中,加入50ml浓硫酸,在冰浴条件下缓慢加入6.0g高锰酸钾,搅拌反应2h,然后升温至35℃后继续搅拌2h,接着缓慢加入200ml的去离子水,持续搅拌20min,再加入20ml5%的双氧水,还原未反应的高锰酸钾,至溶液变成亮黄色后,继续在室温下搅拌2h。将反应 体系静置分层,倒出上清液,将下层沉淀进行离心过滤,用5%HCl洗涤至少3次,再用2000ml蒸馏水分次洗涤。将产物在60℃真空干燥箱中干燥6h得GO。
铁酸铜(CuFe2O4)的合成:按摩尔比1:2准确称量Cu(NO3)2·6H2O(4.0400g,0.01mol)、Fe(NO3)3·9H2O(4.8480g,0.012mol)分别溶解于10ml去离子水,准确称量NaOH(1.9200g,0.048mol)溶解于10ml去离子水中。在磁力搅拌条件下将NaOH缓慢逐滴加入到混合溶液中,再用去离子水洗涤烧杯中残留的NaOH并加至混合溶液中。继续搅拌20min使其混合均匀,此时溶液总体积大约为50ml左右。然后将混合溶液加入100ml的水热反应釜中,用去离子水润洗烧杯内的残留液,并加入反应釜内,控制反应釜内的总体积为60ml左右,然后将反应釜置于180℃的条件下反应8h,冷却后,取出并静置,用去离子水洗涤3-4次,然后将其置于60℃的真空干燥箱内干燥24h,即得样品CuFe2O4
石墨烯-铁酸铜(rG-CuFe2O4)的合成:按摩尔比1:2准确称量Cu(NO3)2·6H2O(1.2080g,0.005mol)、Fe(NO3)3·9H2O(4.0400g,0.01mol))分别溶解于10ml去离子水,再称取GO(0.048g,CuFe2O4质量的4%)超声溶解于10ml去离子水中,在磁力搅拌作用下将前两者缓慢加入GO溶液中,搅拌30min混合均匀。准确称量NaOH(1.6000g,0.04mol)溶解于10ml去离子水中。在磁力搅拌条件下将NaOH缓慢逐滴加入到混合溶液中,再用去离子水洗涤烧杯中残留的NaOH并加至混合溶液中。继续搅拌20min使其混合均匀,此时溶液总体积大约为50ml左右。然后将混合溶液加入100ml的水热反应釜中,用去离子水润洗烧杯内的残留液,并加入反应釜内,控制反应釜内的总体积为60ml左右,然后将反应釜置于180℃的条件下反应8h,冷却后,取出并静置,用去离子水洗涤3-4次,然后将其置于60℃的真空干燥箱内干燥24h,即得样品rG-CuFe2O4
纳氏试剂的配制:准确称取16gNaOH,溶于40ml水,充分冷却至室温。称取10g HgI2和7g KI超声混合溶解于40ml水中。然后将此混合溶液在不断搅拌条件下缓慢注入NaOH溶液中,稀释并定容至100ml,密封保存于100ml容量瓶。氨氮与纳氏试剂的显色机理如下:
NH4 ++2[HgI4]2-(Yellow)+4HO-→HgO·Hg(NH2)I(Brown)+7I-+3H2O (1)
掩蔽剂的配制:准确称取50g酒石酸钾钠溶于100ml中水中,加热煮沸,冷却到室温,加水定容至100ml,密封保存于100ml容量瓶。
通过纳氏试剂比色法,在波长388nm处能测得氨氮的吸收强度,从而分析氨氮的浓度变化来研究催化剂降解氨氮最佳条件。
氨氮的降解:用50mL烧杯作为光催化降解氨氮的反应装置,在室温(25℃±2℃)下进行催化降解实验,烧杯杯壁用锡箔纸包围以避免杂散光辐射。用滤波片覆盖在反应器上端,让可见光λ>400nm通过。反应器中装入50ml的氨氮溶液,浓度为100mg/L,用Na2CO3-NaHCO3(0.1mol/L)作为缓冲溶液来调节反应液的pH,加入约0.1g的rG-CuFe2O4催化剂进行催化降解实验。反应液与光源的垂直距离约为10cm。反应过程中氨氮含量的测定采用纳氏试剂比色法。利用紫外可见分光光度计测定氨氮溶液在纳氏试剂显色下在波长388nm的吸收度,以此跟踪氨氮的降解,参见图5,经过7h的降解,氨氮的降解率仍达90%。。
参见图1,按照Debye-Scherrer公式:D=kλ/(Wcosθ)计算得材料CuFe2O4晶粒的平均粒径为12.1nm,rG-CuFe2O4晶粒的平均粒径为12.3nm。
参见图2在1100cm-1左右出现了NH4 +的吸收峰,说明催化剂将氨氮吸附在表面,同时吸附氨氮和RHB的拉曼图,但并未发现曲线出现新峰,这说明催化剂对氨氮具有选择性吸附。
参见图3石墨烯的TEM图像,为层状结构,CuFe2O4微粒分布在石墨烯的表面。
参见图4通过多次循环实验来评价杂化催化剂的稳定性,rG-CuFe2O4催化剂在可见光辐射下连续7次催化降解氨氮的降解率。每一次实验持续8h,在每一次降解结束后,通过离心分离、去离子水洗涤得到催化剂,然后再继续循环使用该催化剂。在7次循环降解氨氮后,氨氮去除率仍在90%以上。
对比例1
其他反应步骤和条件均与实施例1中的相同,不同之处在于:
光催化选择性降解氨氮的实验中反应器中同时加入50ml的氨氮溶液和罗丹明B(其中,氨氮的浓度为100mg/L,罗丹明B的浓度为100mg/L),利用紫外可见分光光度计测定溶液的吸收度,参见图6,经过8小时的降解过程罗丹明B的降解率仅为40%,体系中残余浓度仍大于60mg/L,而氨氮的降解率仍大于95%。
对比例2
其他反应步骤和条件均与实施例1中的相同,不同之处在于:
光催化选择性降解氨氮的实验中反应器中同时加入50ml的氨氮溶液和甲基橙(其中,氨氮的浓度为100mg/L,甲基橙的浓度为100mg/L),利用紫外可见分光光度计测定溶液的吸收度,参见图7,经过8小时的降解过程罗丹明B的降解率仅为40%,体系中残余浓度仍大于60mg/L,而氨氮的降解率仍大于90%。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.石墨烯/氮杂石墨烯-铁酸铜智能光催化剂选择性吸附并光催化脱氮的用途。
2.根据权利要求1所述的用途,其特征在于:所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂包括石墨烯和/或氮杂石墨烯和铁酸铜,所述铁酸铜分布于所述石墨烯和/或氮杂石墨烯的层状结构表面和/或内部,其中所述铁酸铜为尖晶石型结构,且所述铁酸铜具有Fd3m空间群结构。
3.根据权利要求2所述的用途,其特征在于:所述铁酸铜晶体中氧离子是按面心立方结构分布的,相邻的4个氧离子中心连线可获得四面体结构和/或相邻8个氧离子连接为八面体结构,铜离子占据四面体的间隙,铁离子占据八面体的间隙。
4.根据权利要求2所述的用途,其特征在于:所述智能光催化剂中铁酸铜的质量百分比含量为90-100%;和/或,所述智能光催化剂中石墨烯和/或氮杂石墨烯的质量百分比含量为0%-10%。
5.根据权利要求1所述的用途,其特征在于包括:将所述活智能光催化剂加入可能含有氨氮的水体并形成混合体系,再以可见光照射所述混合体系,使水体中的氨氮被降解为N2气,实现水体中氨氮的脱除。
6.根据权利要求5所述的用途,其特征在于包括:调节所述混合体系至呈碱性,再以可见光照射所述混合体系,实现水体中氨氮的脱除。
7.根据权利要求6所述的用途,其特征在于包括:将所述混合体系至pH值大于9,优选大于10.5,再以可见光照射所述混合体系,实现水体中氨氮的脱除。
8.根据权利要求1所述的用途,其特征在于,所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的制备方法包括:
将可溶性铜盐、可溶性铁盐与石墨烯或氮杂石墨烯溶解于溶剂中混合均匀,之后调节所述混合溶液为碱性,再将所述混合溶液于150-200℃条件下反应6-10h,制得所述石墨烯/氮杂石墨烯-铁酸铜智能光催化剂。
9.根据权利要求8所述的用途,其特征在于:所述可溶性铜盐与可溶性铁盐的摩尔比为1:1-3;
和/或,所述智能光催化剂中石墨烯/氮杂石墨烯的质量百分比含量为0%-10%;
和/或,所述的可溶性铜盐包括Cu(NO3)2·6H2O;
和/或,所述的可溶性铁盐包括Fe(NO3)3·9H2O;
和/或,用以调节所述混合溶液至碱性的碱性溶液包括NaOH溶液。
10.根据权利要求8所述的用途,其特征在于包括:将所述混合溶液置于温度为180-200℃的条件下反应8-10h,之后用去离子水洗涤,然后将其置于温度为40-80℃的真空干燥箱内干燥,即制得所述的石墨烯/氮杂石墨烯-铁酸铜智能光催化剂。
CN201610632668.7A 2016-08-04 2016-08-04 石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的光催化脱氮用途 Active CN106268811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610632668.7A CN106268811B (zh) 2016-08-04 2016-08-04 石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的光催化脱氮用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610632668.7A CN106268811B (zh) 2016-08-04 2016-08-04 石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的光催化脱氮用途

Publications (2)

Publication Number Publication Date
CN106268811A true CN106268811A (zh) 2017-01-04
CN106268811B CN106268811B (zh) 2018-11-30

Family

ID=57665448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610632668.7A Active CN106268811B (zh) 2016-08-04 2016-08-04 石墨烯/氮杂石墨烯-铁酸铜智能光催化剂的光催化脱氮用途

Country Status (1)

Country Link
CN (1) CN106268811B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828313A (zh) * 2021-09-23 2021-12-24 华北电力大学(保定) 一种用于锅炉烟气同时脱硫脱硝的催化剂及其制备和应用方法
CN116393154A (zh) * 2023-04-10 2023-07-07 江南大学 一种改性铜铁尖晶石催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788646A (zh) * 2014-02-27 2014-05-14 南京理工大学 氮掺杂石墨烯/铁酸钴/聚苯胺纳米复合材料及其制备方法
CN103871755A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸镍纳米复合材料及其制备
CN103864010A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸钴纳米复合材料及其制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788646A (zh) * 2014-02-27 2014-05-14 南京理工大学 氮掺杂石墨烯/铁酸钴/聚苯胺纳米复合材料及其制备方法
CN103871755A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸镍纳米复合材料及其制备
CN103864010A (zh) * 2014-03-05 2014-06-18 南京理工大学 一种氮掺杂石墨烯/铁酸钴纳米复合材料及其制备

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MINGYI TANG等: ""Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride"", 《HYDROGEN ENERGY》 *
XIFENG XIA等: ""One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)x (M=FeO,Ni,Co) nanoparticles"", 《ELECTROCHIMICA ACTA》 *
YANBIN WANG等: ""Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fentoncatalyst for the degradation of organic contaminants"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
YANG ZHOU ET. AL: ""Photo-Fenton degradation of ammonia via a manganese–iron double-active component catalyst of graphene–manganese ferrite under visible light"", 《CHEMICAL ENGINEERING JOURNAL》 *
付永胜: ""石墨烯—磁性尖晶石型铁氧体多功能异质结的控制合成及其性质研究"", 《中国博士学位论文全文数据库 工程科技I辑》 *
方景礼著: "《电镀配合物 理论与应用》", 31 January 2008 *
曾燕伟主编: "《无机材料科学基础》", 31 March 2015, 武汉理工大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828313A (zh) * 2021-09-23 2021-12-24 华北电力大学(保定) 一种用于锅炉烟气同时脱硫脱硝的催化剂及其制备和应用方法
CN116393154A (zh) * 2023-04-10 2023-07-07 江南大学 一种改性铜铁尖晶石催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN106268811B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Yang et al. Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions
Chen et al. Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst
Feng et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation
CN106186271B (zh) 活性炭-铁酸铜复合材料、其制备方法及光催化脱氮用途
Zhu et al. Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation
Zhao et al. One-step synthesis of phosphorus-doped g-C3N4/Co3O4 quantum dots from vitamin B12 with enhanced visible-light photocatalytic activity for metronidazole degradation
Zheng et al. In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes
Xu et al. Facile synthesis of magnetically retrievable Fe3O4/BiVO4/CdS heterojunction composite for enhanced photocatalytic degradation of tetracycline under visible light
Li et al. Architecturing CoTiO3 overlayer on nanosheets-assembled hierarchical TiO2 nanospheres as a highly active and robust catalyst for peroxymonosulfate activation and metronidazole degradation
Long et al. Metal–organic framework-derived magnetic carbon for efficient decontamination of organic pollutants via periodate activation: surface atomic structure and mechanistic considerations
Wang et al. High active radicals induced from peroxymonosulfate by mixed crystal types of CuFeO2 as catalysts in the water
CN106268819B (zh) 活性炭-铁酸钴复合材料、其制备方法及光催化脱氮用途
CN106186272B (zh) 活性炭-铁酸锌复合材料、其制备方法及光催化脱氮用途
Li et al. Amorphous zirconium oxide activates peroxymonosulfate for selective degradation of organic compounds: Performance, mechanisms and structure-activity relationship
Xie et al. Highly dispersed Co/Fe bimetal in carbonaceous cages as heterogeneous Fenton nanocatalysts for enhanced sulfamethoxazole degradation
Zhang et al. Hierarchical multi-active component yolk-shell nanoreactors as highly active peroxymonosulfate activator for ciprofloxacin degradation
CN106362783B (zh) 石墨烯/氮杂石墨烯-铁酸锌智能光催化剂的光催化脱氮用途
Jin et al. Preparation of Co-Fe based Prussian blue analogs loaded nickel foams for Fenton-like degradation of tetracycline
Kohantorabi et al. Deriving an ɑ-Fe2O3/g-C3N4 nanocomposite from a naturally hematite-rich soil, for dual photocatalytic and photo-Fenton degradation of Acetaminophen under visible light
Zhou et al. Hierarchically porous structure of two-dimensional nano-flakes assembled flower-like NiO promotes the formation of surface-activated complex during persulfate activation
Li et al. Novel porous Mn-Fe nanocubes toward peroxymonosulfate activation via non-radical/radical pathways for emerging contaminants degradation
Li et al. Efficient activation of peroxymonosulfate by C 3 N 5 doped with cobalt for organic contaminant degradation
Feng et al. Exploration the mechanisms underlying peroxymonosulfate activation by nano-cubic spinel M2MnO4 nanoparticles for degrading trichloroethylene
Liu et al. Cobalt–aluminum oxide clusters-embedded γ-Al2O3 nanosheets for peroxymonosulfate activation: Interfacial pH-buffering property to eliminate cobalt leaching and boost the catalytic activity
Zhu et al. Synergetic interaction of lithium cobalt oxide with sulfite to accelerate the degradation of organic aqueous pollutants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215000 No. 298 Binhe Road, Jiangsu, Suzhou

Patentee after: SUZHOU University OF SCIENCE AND TECHNOLOGY

Address before: Keruilu high tech Zone of Suzhou City, Jiangsu Province, No. 1 215009

Patentee before: University of Science and Technology of Suzhou

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191210

Address after: 215000 b4109 in No.1 Ruoshui Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province

Patentee after: Suzhou Nipu Environmental Technology Co.,Ltd.

Address before: 215000 No. 298 Binhe Road, Jiangsu, Suzhou

Patentee before: Suzhou University of Science and Technology