CN106268689B - 一种用于甲烷吸附存储的共价有机聚合物及其制备方法 - Google Patents

一种用于甲烷吸附存储的共价有机聚合物及其制备方法 Download PDF

Info

Publication number
CN106268689B
CN106268689B CN201610743530.4A CN201610743530A CN106268689B CN 106268689 B CN106268689 B CN 106268689B CN 201610743530 A CN201610743530 A CN 201610743530A CN 106268689 B CN106268689 B CN 106268689B
Authority
CN
China
Prior art keywords
organic polymer
catalyst
covalent organic
added
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610743530.4A
Other languages
English (en)
Other versions
CN106268689A (zh
Inventor
向中华
郭佳宁
谢呈鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610743530.4A priority Critical patent/CN106268689B/zh
Publication of CN106268689A publication Critical patent/CN106268689A/zh
Application granted granted Critical
Publication of CN106268689B publication Critical patent/CN106268689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • B01J2220/445Materials comprising a mixture of organic materials comprising a mixture of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种用于吸附存储甲烷的共价有机聚合物的制备方法,涉及共价有机聚合物材料技术领域。该共价有机聚合物使用Yamamoto‑type偶联反应,以四溴四苯基甲烷和1,3,5‑三溴苯为单体制备而成。本发明可通过溶剂热法、微波法与超重力法等不同方法合成,制备的聚合物具有巨大的比表面积和丰富的多层次孔结构,其甲烷吸附能力远超过美国DOE标准,可广泛应用于天然气汽车、天然气分离、天然气储存与运输等行业。

Description

一种用于甲烷吸附存储的共价有机聚合物及其制备方法
技术领域:
本发明涉及共价有机聚合物材料技术领域,具体涉及一种以四溴四苯基甲烷和1,3,5-三溴苯为反应单体,使用Yamamoto-type偶联反应,用于天然气吸附存储的共价有机聚合物材料。
背景技术:
尽管人们在最近数十年投入了大量财力和物力来开发节能技术和高能效技术,石油、煤炭等传统化石能源枯竭问题仍是人类发展不得不面对的挑战。同时,化石燃料的过度使用造成了大量的CO2、氮硫化物、粉尘颗粒排放进空气中,引发了全球变暖、酸雨污染、雾霾等气候问题。因此,开发清洁高效并且可循环再生的能源成为当务之急。
天然气多蕴藏于油田、气田、煤层等地下多孔隙岩层,但也可以通过生物发酵等方式人工制备。并且,天然气是一种非常“干净”的能源,与汽油相比,汽车尾气中的氮氧化物和非甲烷类可降低80%,一氧化碳可降低70%,二氧化碳可降低30%,HC可降低70%,同时也大大改善了颗粒排放。
目前,常用的天然气存储方式是压缩天然气(CNG)和液化天然气(LNG),但二者均存在不足之处。CNG在常温下的储存压力为20-25MPa,为达到这么高的压力,必须进行繁琐并且昂贵的多级压缩。同时,高压存储对于天然气罐的形状有着非常严格的要求,必须使用厚壁圆筒形天然气罐,重量大,也非常占据车内空间。液化天然气需要存储在-161.5℃条件下,液化过程费用高,容易产生蒸发损失,运输转移非常麻烦。为能够耐受并且维持低温环境,液化存储所用的罐体结构复杂,设计制作成本高。吸附存储(ANG)技术是使用多孔材料来吸附甲烷分子,在常温和中低压下即可达到合理的能量密度,避免了液化存储和压缩存储在应用方面的种种弊端。
石油大学、中科院山西煤炭化学研究所、清华大学、北京化工大学、天津大学、华南理工大学等单位已开始了对吸附存储(ANG)技术的开发与研究工作。目前我国各研究单位多使用碳材料作为天然气吸附剂,但碳材料普遍存在吸附量低、工作吸附量少、选择性差的缺点,限制了其应用发展。国外,以Yaghi为代表的研究者已经开发了一系列比较优异的金属有机骨架(MOFs)材料,具备非常好的甲烷吸附性能,如在298K、8MPa的条件下,MOF-205的吸附量可达到258mg g-1,MOF-210的吸附量可达到264mg g-1。然而,从化学结构组成来看,MOF材料是通过金属和有机单体间的配位键组成的,较共价键相比,其化学稳定性较差。尽管巴斯夫公司也放大合成了一些MOF材料,但大部分制备的MOF材料均表现出热稳定性和水稳定性较差的缺陷,限制了大规模工业应用。加上MOF材料中存在很多重金属,制备成本较高,也不利于保护环境,回收废弃MOF材料也面临很大挑战。
研发面向工业应用的多孔材料最重要的性质就是它们的水热稳定性和甲烷吸附性能。我们致力于开发新型多孔材料——共价有机聚合物(Covalent organic polymers:COPs),它们是由稳定的共价键C-C,C-H,C-N等连接构成的多孔聚合物材料,具有超高的比表面积,较低的骨架密度、可控的孔径分布、可裁剪性结构和多功能性等优点,同时将克服MOF材料水热稳定性较差和活性炭、分子筛等多孔材料吸附量小、选择性差的缺点,在气体的存储或分离方面展现出了优异的性质。
发明内容:
本发明公布了一种用于吸附存储甲烷的共价有机聚合物(COPs)的制备方法,其合成方法如下所示。
该共价有机聚合物使用Yamamoto-type偶联反应制备合成。
(1)首先将催化剂双-(1,5-环辛二烯)镍([Ni(cod)2])加入到有机溶剂中,搅拌至完全溶解;
(2)再将助催化剂2,2'-联吡啶和1,5-环辛二烯(cod)加入步骤(1)混合溶液中搅拌至完全溶解;
(3)然后将反应单体四溴四苯基甲烷(TBM)和1,3,5-三溴苯(XTBB)加入到步骤(2)溶液中,加热搅拌反应一定时间,反应溶液的加热温度为60-105℃。
步骤(3)反应为溶剂热法、微波法或超重力法;若使用溶剂热法,反应时间为8-12h;若使用微波法,反应时间为0.5h-1.5h;若使用超重力法,优选旋转填充床转子的转速为800r/min-2800r/min,反应时间为0.5h-2h。
(4)待冷却后,逐滴加入盐酸,不断搅拌至溶液变成带有絮状物的透明绿色溶液;
(5)过滤后分别用三氯甲烷(CHCl3)、四氢呋喃(THF)和去离子水洗涤,之后将过滤得到的样品干燥即可得到成品。
物料配比优选:所加入的单体四溴四苯基甲烷和1,3,5-三溴苯的摩尔比为3:4-3:40;每单位摩尔量的总反应单体对应有机溶剂为50-100ml体积;催化剂与总反应单体的摩尔比为6:1-1:1;优选催化剂与助催化剂的摩尔比为1:2;助催化剂中,优选2,2'-联吡啶与1,5-环辛二烯的摩尔比为1:1。有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲苯、氯苯等。
本发明的优点:本发明制备的COP材料对空气、环境湿度或者更苛刻的环境表现出良好的水热以及化学稳定性,不溶于传统有机溶剂,且耐酸耐碱。此外,COP材料还具有较低的骨架密度、高比表面积、可控的孔径分布和稳定的结构,在气体的存储或分离方面会展现出了优异的性质。该COP材料比表面积超过3000m2/g,在环境温度(25℃)、3.5MPa下甲烷吸附量可达到250V/V,6.0MPa下甲烷吸附量更可达到310V/V,高出美国DOE标准72%,在天然气汽车、储运与分离等行业将有着广阔的应用前景。
附图说明
图1为实施例1的COP-10合成结构流程示意图。
图2为COP-10的氮气吸附曲线;
图3为COP-10的孔径分布图;
图4为COP-10的C的核磁谱图
图5为COP-10的红外谱图(400-4000cm-1)
图6是COP-10的甲烷吸附曲线;
具体实施方式:
以下是根据本发明的方法,以TBM和XTBB制备共价有机聚合材料的非限定性实例。这些实施例进一步描述了本发明在可操作范围内的实施方案。本发明所给出的实施例仅用于说明的目的,并非对本发明权力保护范围的限制,在不背离本发明精神和范围的条件下对其进行的各种修饰和改变,均是本领域普通技术人员所认可的。
实施例1
首先将0.432g双-(1,5-环辛二烯)镍([Ni(cod)2]),溶解在30mL DMF溶液中,搅拌至完全溶解,再将0.246g 2,2'-联吡啶和0.192ml1,5-环辛二烯(cod)加入混合物中搅拌大约30分钟,然后将0.1065gTBM和0.07g XTBB加入溶液中,在85℃下搅拌反应10小时。待冷却后,加入适量浓盐酸至中溶液变成透明绿色,过滤后分别用CHCl3(5×15mL),THF(5×15mL)和H2O(5×15mL)洗涤。之后将过滤得到的样品在120℃下真空干燥24小时。该样品命名为COP-10。实验表征结果如下:
COP-10在180℃下脱气8h,后使用ASAP 2020进行比表面积和孔径分析。图2为COP-10的氮气吸附曲线,在P/P0<0.1时,曲线快速上升,表明材料含有大量的微孔结构;在中压段曲线趋向于平衡,而高压段由于微粒之间存在缝隙,发生大孔的吸附,等温线迅速上升;整个曲线存在明显的滞后环,表明材料具有一定的介孔结构。上述分析与图3结果一致,COP-10的孔径主要集中在1-2nm,该孔径范围适合甲烷气体吸附;同时还具有一定的介孔和大孔,多层次孔隙结构的构建有助于甲烷分子的扩散,也能提高多孔材料在较高压力下的吸附量。该多孔材料的BET比表面积为3093m2/g,Langmuir比表面积为4624m2/g,孔容为3.86cm3/g,平均孔径为5.0nm。
图4是COP-10的C的核磁谱图,从谱图中分析可知64.2ppm为单体四溴四苯甲烷上中心的碳原子的振动,说明了该单体的存在,125ppm和130.6ppm为苯环上碳的振动峰,140.1ppm和143.6ppm为苯环之间偶联的碳的特征峰,以上数据证明了聚合物已成功合成。
图5为COP-10的红外谱图(400-4000cm-1),从该谱图中我们可以得知512cm-1处C-Br键的特征峰消失了,说明反应通过脱溴聚合成了COP-10。
图6是COP-10的甲烷吸附曲线,在环境温度(25℃)、3.5MPa下,其吸附量可达到250V/V,远高出美国DOE标准(180V/V);在6.0MPa下甲烷吸附量更可达到310V/V,高出美国DOE标准72%;以脱附压力0.5MPa计算,其工作吸附量可达到250V/V,该共价有机聚合物的甲烷吸附性能达到世界顶尖水平。
实施例2
首先将和0.324g双-(1,5-环辛二烯)镍([Ni(cod)2])溶解在30mL DMF溶液中,搅拌至完全溶解,再将0.184g 2,2'-联吡啶0.144ml1,5-环辛二烯(cod)加入混合物中搅拌大约30分钟,然后将TBM和XTBB加入溶液中,使用微波法在100℃下搅拌反应1.5小时。待冷却,加入浓盐酸至中溶液变成透明绿色,过滤后分别用CHCl3(5×15mL),THF(5×15mL)和H2O(5×15mL)洗涤。之后将过滤得到的样品在120℃下真空干燥24小时。
由实施例1中的分析测试方法确定为本发明的共价有机聚合物,在环境温度(25℃)、6.0MPa下,其甲烷吸附量可达到300V/V。
实施例3
首先将双-(1,5-环辛二烯)镍([Ni(cod)2],1.125g,4.09mmol)溶解在65mL DMF溶液中,搅拌至完全溶解,再将2,2'-联吡啶(0.640g,4.09mmol)和1,5-环辛二烯(cod,0.50mL,3.96mmol)加入混合物中搅拌大约30分钟,然后将TBM和XTBB加入溶液中。使用超重力法,旋转填充床转子的转速为2000r/min,在80℃下搅拌反应1小时。待冷却,加入浓盐酸至中溶液变成透明绿色,过滤后分别用CHCl3(5×15mL),THF(5×15mL)和H2O(5×15mL)洗涤。之后将过滤得到的样品在120℃下真空干燥24小时。
由实施例1中的分析测试方法确定为本发明的共价有机聚合物,在环境温度(25℃)、6.0MPa下,其甲烷吸附量可达到300V/V。

Claims (2)

1.一种共价有机聚合物(COPs)的应用,用于甲烷的存储;
在环境温度、6.0MPa下吸附存储;
共价有机聚合物(COPs)的制备方法,包括以下步骤:
(1)首先将催化剂双-(1,5-环辛二烯)镍([Ni(cod)2])加入到有机溶剂中,搅拌至完全溶解;
(2)再将助催化剂2,2'-联吡啶和1,5-环辛二烯(cod)加入步骤(1)混合溶液中搅拌至完全溶解;
(3)然后将反应单体四溴四苯基甲烷(TBM)和1,3,5-三溴苯(XTBB)加入到步骤(2)溶液中,加热搅拌反应一定时间,反应溶液的加热温度为80℃;
(4)待冷却后,逐滴加入盐酸,不断搅拌至溶液变成带有絮状物的透明绿色溶液;
(5)过滤后分别用三氯甲烷(CHCl3)、四氢呋喃(THF)和去离子水洗涤,之后将过滤得到的样品干燥即可得到成品;
步骤(1)、(2)中催化剂添加的先后顺序可以调换;
所加入的单体四溴四苯基甲烷和1,3,5-三溴苯的摩尔比为3:4-3:40;每单位摩尔量的总反应单体对应有机溶剂为50-100ml体积;催化剂与总反应单体的摩尔比为6:1-1:1;催化剂与助催化剂的摩尔比为1:1-1:5;助催化剂中,2,2'-联吡啶与1,5-环辛二烯的摩尔比为2:1-1:4;
步骤(3)所述反应为超重力法,旋转填充床转子的转速为800r/min-2800r/min,反应时间为0.5h-2h。
2.按照权利要求1所述的一种共价有机聚合物(COPs)的应用,其特征在于,有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲苯或氯苯。
CN201610743530.4A 2016-08-28 2016-08-28 一种用于甲烷吸附存储的共价有机聚合物及其制备方法 Active CN106268689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610743530.4A CN106268689B (zh) 2016-08-28 2016-08-28 一种用于甲烷吸附存储的共价有机聚合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610743530.4A CN106268689B (zh) 2016-08-28 2016-08-28 一种用于甲烷吸附存储的共价有机聚合物及其制备方法

Publications (2)

Publication Number Publication Date
CN106268689A CN106268689A (zh) 2017-01-04
CN106268689B true CN106268689B (zh) 2019-11-15

Family

ID=57677695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610743530.4A Active CN106268689B (zh) 2016-08-28 2016-08-28 一种用于甲烷吸附存储的共价有机聚合物及其制备方法

Country Status (1)

Country Link
CN (1) CN106268689B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803990B2 (ja) * 2004-10-13 2011-10-26 日本碍子株式会社 下水汚泥由来のメタン濃縮方法及びメタン貯蔵装置
CN105199082B (zh) * 2015-10-16 2017-07-18 北京化工大学 一种使用超重力法制备多孔共价有机材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture;Zhonghua Xiang et al.;《Journal of the American Chemical Society》;20150927;第137卷;第13301-13307页及Supplementary Information第S1-S66页 *
杂合共聚COP材料的制备与气体吸附性能研究;吕岩龙;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20150615(第6期);第B014-122页 *

Also Published As

Publication number Publication date
CN106268689A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Liu et al. An N-rich metal–organic framework with an rht topology: high CO 2 and C 2 hydrocarbons uptake and selective capture from CH 4
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
Zhao et al. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101 (Cr)
Shi et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224
Wang et al. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage
Xiang et al. Covalent-organic polymers for carbon dioxide capture
Yan et al. Remarkable CO 2/CH 4 selectivity and CO 2 adsorption capacity exhibited by polyamine-decorated metal–organic framework adsorbents
Si et al. High and selective CO 2 uptake, H 2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1
Anbia et al. Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification
CN108786755A (zh) 一种有机胺负载的金属有机框架-多孔聚合物复合材料及其制备方法和应用
CN104056599B (zh) 一种复合二氧化碳吸附材料及其制备方法和应用
TW201223962A (en) Process for producing a carbon-comprising composite
Chang et al. A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage
Liu et al. A microporous yttrium metal–organic framework of an unusual nia topology for high adsorption selectivity of C 2 H 2 and CO 2 over CH 4 at room temperature
Pei et al. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures
Wang et al. A new microporous metal-organic framework with a novel trinuclear nickel cluster for selective CO2 adsorption
Salehi et al. Highly efficient CO2 capture with a metal–organic framework‐derived porous carbon impregnated with polyethyleneimine
CN103435620B (zh) 用于co2吸附与分离的多孔铜金属有机骨架材料及其制备方法
Qian et al. Sorption behaviour in a unique 3, 12-connected zinc–organic framework with 2.4 nm cages
Chen et al. Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation
An et al. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74
Tuci et al. Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption
Xu et al. Theoretical study of heterofullerene-linked metal–organic framework with lithium doping for CO2 capture and separation from CO2/CH4 and CO2/H2 mixtures
Sun et al. Ligand Functionalization in Zirconium‐Based Metal‐Organic Frameworks for Enhanced Carbon Dioxide Fixation
Wang et al. Adsorption of CO2 by a novel zeolite doped amine modified ternary aerogels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant