CN106252872B - Co-polarized microstrip duplex antenna array - Google Patents
Co-polarized microstrip duplex antenna array Download PDFInfo
- Publication number
- CN106252872B CN106252872B CN201610861115.9A CN201610861115A CN106252872B CN 106252872 B CN106252872 B CN 106252872B CN 201610861115 A CN201610861115 A CN 201610861115A CN 106252872 B CN106252872 B CN 106252872B
- Authority
- CN
- China
- Prior art keywords
- microstrip
- microstrip line
- power distribution
- receiving
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 230000009466 transformation Effects 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000000523 sample Substances 0.000 claims description 17
- 230000001131 transforming effect Effects 0.000 claims description 9
- 230000008030 elimination Effects 0.000 claims 6
- 238000003379 elimination reaction Methods 0.000 claims 6
- 238000003306 harvesting Methods 0.000 claims 5
- 238000013459 approach Methods 0.000 claims 2
- 238000002955 isolation Methods 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 8
- 238000005315 distribution function Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
Landscapes
- Waveguide Aerials (AREA)
Abstract
本发明公开了一种同极化微带双工天线阵列,包括两个相同的对称放置的微带贴片天线和一个带有双工功能的反相功率分配网络,所述反相功率分配网络包括功率分配微带线、发送微带带阻滤波器、发送阻抗变换微带线、接收微带带阻滤波器和接收阻抗变换微带线;发送微带带阻滤波器的一端与发送端口相连,另一端通过发送阻抗变换微带线与功率分配微带线相连;接收微带带阻滤波器的一端与接收端口相连,另一端通过接收阻抗变换微带线与功率分配微带线相连。本发明设计了一个即具有双工功能、又具有功率分配功能的双工功率分配网络,天线的结构比较紧凑,增益较高。同时通过设置发送和接收微带带阻滤波器,实现了发送与接收端口间的高隔离度。
The invention discloses a co-polarized microstrip duplex antenna array, which comprises two identical symmetrically placed microstrip patch antennas and an anti-phase power distribution network with a duplex function, the anti-phase power distribution network Including power distribution microstrip line, transmitting microstrip band-rejection filter, transmitting impedance conversion microstrip line, receiving microstrip band-rejection filter and receiving impedance conversion microstrip line; one end of the transmitting microstrip band-rejection filter is connected to the transmitting port , the other end is connected to the power distribution microstrip line through the transmission impedance transformation microstrip line; one end of the reception microstrip band-stop filter is connected to the receiving port, and the other end is connected to the power distribution microstrip line through the reception impedance transformation microstrip line. The present invention designs a duplex power distribution network with both duplex function and power distribution function. The structure of the antenna is relatively compact and the gain is high. At the same time, high isolation between the sending and receiving ports is realized by setting the sending and receiving microstrip band-stop filters.
Description
技术领域technical field
本发明属于无线通信技术领域,特别涉及一种同极化微带双工天线阵列。The invention belongs to the technical field of wireless communication, in particular to a co-polarized microstrip duplex antenna array.
背景技术Background technique
天馈系统是无线通信系统的最前端,是无线通信系统不可缺少的关键部件。天馈系统包括天线、滤波器和双工器,传统方法是三者单独设计,然后用射频电缆进行连接。缺点是三者都需要独自的匹配网络与50欧姆馈线进行匹配,带来体积大、总量重的问题,同时,过多的匹配网络带来了损耗大的缺点。The antenna feeder system is the front end of the wireless communication system and an indispensable key component of the wireless communication system. The antenna feed system includes antenna, filter and duplexer. The traditional method is to design the three separately and connect them with radio frequency cables. The disadvantage is that all three need a separate matching network to match the 50 ohm feeder, which brings about the problems of large volume and total weight. At the same time, too many matching networks bring about the disadvantage of large loss.
随着无线通信的发展,通信系统越来越趋向于小型化和集成化,因此,一体化的天馈系统具有极大的需求。双工天线将天线、滤波器、双工器等前端器件联合进行设计,能够使得射频前端系统的结构更加紧凑,减少不必要的损耗引入,使得通信系统的小型化和集成化更加容易实现。With the development of wireless communication, the communication system tends to be miniaturized and integrated more and more. Therefore, there is a great demand for an integrated antenna-feeder system. Duplex antennas combine antennas, filters, duplexers and other front-end components to make the structure of the RF front-end system more compact, reduce unnecessary loss, and make the miniaturization and integration of the communication system easier to achieve.
在现有的技术中,具有能够实现双工功能(发射接收信号同时进行)的天线主要为双极化天线,该类型的天线发射及接受信号采用不同的极化方式,天线的发射接收能工作在相同的频段或者不同的频段。然而,在大部分的通信系统中,发射和接收往往要求是同极化的,而且要求发射和接收的方向图尽可能一致。因此,研制同极化的双工天线就很有必要。In the existing technology, antennas capable of duplexing (transmitting and receiving signals at the same time) are mainly dual-polarized antennas. This type of antenna adopts different polarization modes for transmitting and receiving signals, and the transmission and reception of the antenna can work on the same frequency band or different frequency bands. However, in most communication systems, transmission and reception are often required to be of the same polarization, and the radiation patterns of transmission and reception are required to be as consistent as possible. Therefore, it is necessary to develop a co-polarized duplex antenna.
目前,同极化双工天线的设计主要利用微带贴片或者槽结构辐射两个相同极化的模式。通过模式间的隔离,或者在馈电网络中添加谐振结构,与辐射结构组成滤波天线,实现两个同极化工作频率间的端口隔离度。目前提出的同极化双工天线,发射与接收两个频率的间隔比较大,端口隔离度一般在20-30dB之间,而且天线的增益在5dBi以下。因此,目前的同极化双工天线总体来说存在端口隔离度不高,天线收发频率间隔较大,天线的增益不高的缺点。At present, the design of co-polarized duplex antenna mainly utilizes microstrip patch or slot structure to radiate two modes of the same polarization. Through the isolation between modes, or adding a resonant structure to the feed network to form a filter antenna with the radiation structure, the port isolation between two co-polarized operating frequencies can be achieved. Currently proposed co-polarization duplex antennas have relatively large intervals between transmitting and receiving frequencies, port isolation is generally between 20-30dB, and antenna gain is below 5dBi. Therefore, the current co-polarized duplex antennas generally have the disadvantages of low port isolation, a relatively large interval between transmitting and receiving frequencies of the antenna, and low gain of the antenna.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种同极化微带双工天线阵列,与现有的同极化双工天线相比,天线的发射与接收频率间隔较近,天线发射接收的端口隔离度高,并且天线的增益较高。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a co-polarized microstrip duplex antenna array. Compared with the existing co-polarized duplex antenna, the transmission and reception frequency intervals of the antenna are closer, The port isolation of the antenna for transmitting and receiving is high, and the gain of the antenna is high.
本发明的目的通过以下的技术方案实现:同极化微带双工天线阵列,包括两个相同的对称放置的微带贴片天线和一个带有双工功能的反相功率分配网络,所述反相功率分配网络包括功率分配微带线、发送微带带阻滤波器、发送阻抗变换微带线、接收微带带阻滤波器和接收阻抗变换微带线;发送微带带阻滤波器的一端与发送端口相连,另一端通过发送阻抗变换微带线与功率分配微带线相连;接收微带带阻滤波器的一端与接收端口相连,另一端通过接收阻抗变换微带线与功率分配微带线相连。The purpose of the present invention is achieved through the following technical solutions: co-polarized microstrip duplex antenna array, including two identical microstrip patch antennas placed symmetrically and a reversed-phase power distribution network with duplex function, said The reverse-phase power distribution network includes a power distribution microstrip line, a transmission microstrip band-stop filter, a transmission impedance conversion microstrip line, a receiving microstrip band-stop filter and a receiving impedance conversion microstrip line; the transmission microstrip band-stop filter One end is connected to the transmitting port, and the other end is connected to the power distribution microstrip line through the transmitting impedance transformation microstrip line; one end of the receiving microstrip band-stop filter is connected to the receiving port, and the other end is connected to the power distribution microstrip line through the receiving impedance transformation microstrip line. Connected with wire.
优选的,所述发送微带带阻滤波器通过发送阻抗变换微带线与功率分配微带线在距离功率分配微带线中心点λg发/4处相连,λg发为发送信号在功率分配微带线上的波长。Preferably, the transmitting microstrip bandstop filter is connected to the power distribution microstrip line at a distance of λg /4 from the central point of the power distribution microstrip line through the transmission impedance transformation microstrip line, and λg is the transmission signal at the power Assign wavelengths on the microstrip line.
优选的,所述接收微带带阻滤波器通过接收阻抗变换微带线与功率分配微带线在功率分配微带线中心点的另一侧而且距离中心点λg收/4处相连,λg收为接收信号在功率分配微带线上的波长。Preferably, the receiving microstrip bandstop filter is connected to the power distribution microstrip line on the other side of the center point of the power distribution microstrip line through the receiving impedance transformation microstrip line and at a distance of λg /4 from the center point, λ g is received as the wavelength of the received signal on the power distribution microstrip line.
具体的,所述同极化微带双工天线阵列,还包括两个平行放置的上层介质基板和下层介质基板,下层介质基板的上表面覆盖有金属的反射地板,底面设置反相功率分配网络;微带贴片天线包括印刷在上层介质基板上表面的两个矩形金属贴片和激励微带贴片天线的T形探针,所述T形探针由印刷在上层介质基板表面的金属微带和接在金属微带中心的金属探针组成,金属探针的另一端分别穿过反射地板和下层介质基板上的通孔与功率分配微带线的两端相连。Specifically, the co-polarized microstrip duplex antenna array also includes two parallel upper dielectric substrates and lower dielectric substrates, the upper surface of the lower dielectric substrate is covered with a metal reflective floor, and the bottom surface is provided with an anti-phase power distribution network The microstrip patch antenna includes two rectangular metal patches printed on the upper surface of the upper dielectric substrate and the T-shaped probe for exciting the microstrip patch antenna, and the T-shaped probe is printed on the metal microstrip on the surface of the upper dielectric substrate. The metal probe is connected to the center of the metal microstrip, and the other end of the metal probe is respectively connected to the two ends of the power distribution microstrip line through the reflection floor and the through hole on the lower dielectric substrate.
优选的,发送微带带阻滤波器由两段末端开路微带线和一段连接微带线组成,连接微带线两端分别接两个末端开路微带线,末端开路微带线和连接微带线的长度和宽度使得频率为f发的发送信号能够通过、而频率为f收的接收信号不能通过。Preferably, the transmitting microstrip bandstop filter is composed of two open-ended microstrip lines and a connecting microstrip line. The length and width of the stripline are such that the transmitted signal at frequency f can pass but the received signal at frequency f cannot pass.
优选的,接收微带带阻滤波器由两段末端开路微带线和一段连接微带线组成,连接微带线两端分别接两个末端开路微带线,末端开路微带线和连接微带线的长度和宽度使得频率为f收的接收信号能够通过、而频率为f发的发送信号不能通过。Preferably, the receiving microstrip bandstop filter is composed of two sections of open-ended microstrip lines and a section of connecting microstrip lines, the two ends of the connecting microstrip lines are respectively connected with two end-opening microstrip lines, the end-opening microstrip lines and the connecting microstrip line The length and width of the stripline are such that the received signal at frequency f can pass through, but the transmitted signal at frequency f cannot pass through.
更进一步的,发送微带带阻滤波器和接收微带带阻滤波器的工作通带与阻带频率相反。Furthermore, the operating passband and stopband frequencies of the transmitting microstrip bandstop filter and the receiving microstrip bandstop filter are opposite.
优选的,发送阻抗变换微带线的长度和宽度满足以下要求:保证对于频率为f收的接收信号而言,其在发送端口接匹配负载时,与功率分配微带线的连接端的阻抗接近开路。从而不影响频率为f收接收信号在功率分配微带线上的传输。Preferably, the length and width of the transmission impedance transformation microstrip line meet the following requirements: to ensure that for the received signal at a frequency of f, when the transmission port is connected to a matched load, the impedance of the connection end of the power distribution microstrip line is close to an open circuit . Thus, the transmission of the received signal at the frequency f on the power distribution microstrip line is not affected.
优选的,接收阻抗变换微带线的长度和宽度满足以下要求:保证对于频率为f发的发送信号而言,其在接收端口接匹配负载时,与功率分配微带线的连接端的阻抗接近开路。从而不影响频率为f发发送信号在功率分配微带线上的传输。Preferably, the length and width of the receiving impedance transformation microstrip line meet the following requirements: to ensure that for the transmission signal with a frequency of f, when the receiving port is connected to a matching load, the impedance of the connection end of the power distribution microstrip line is close to an open circuit . Therefore, the transmission of the transmitted signal with the frequency f on the power distribution microstrip line is not affected.
更进一步的,所述发送阻抗变换微带线和接收阻抗变换微带线是左右两段工作在不同频率下的长度为λg收/4及λg发/4的50Ω阻抗变换线。Furthermore, the transmitting impedance transforming microstrip line and the receiving impedance transforming microstrip line are left and right sections of 50Ω impedance transforming lines with lengths of λ g receiving /4 and λ g sending /4 working at different frequencies.
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明将阵列天线的功率分配网络与双工网络设计结合在一起,设计了一个既具有双工功能、又具有功率分配功能的双工功率分配网络。因此天线的结构比较紧凑。同时通过在发送端口设置发送微带带阻滤波器,在接收端口设置接收微带带阻滤波器,实现了发送与接收端口间的高隔离度。同时,本发明通过设计天线阵列,提高了天线的增益。1. The present invention combines the power distribution network of the array antenna with the duplex network design, and designs a duplex power distribution network with both duplex function and power distribution function. Therefore, the structure of the antenna is relatively compact. At the same time, the high isolation between the sending and receiving ports is realized by setting the sending microstrip band-stop filter at the sending port and the receiving microstrip band-stop filter at the receiving port. At the same time, the invention improves the gain of the antenna by designing the antenna array.
2、本发明发射与接收的信号均通过T型探针上的微带与贴片天线进行耦合,其极化方向与耦合微带的方向相同,实现了发射接收同极化。2. The signals transmitted and received by the present invention are coupled with the patch antenna through the microstrip on the T-type probe, and its polarization direction is the same as that of the coupled microstrip, realizing the same polarization for transmission and reception.
3、本发明发送接收互扰小,通过在发送微带带阻滤波器与功率分配微带线间插入发送阻抗变换微带线,发射支路不会对功率分配微带线上的接收信号产生影响。通过在接收微带带阻滤波器与功率分配微带线间插入接收阻抗变换微带线,能够使得在发送端口(端口1)工作时,接收支路不会对功率分配微带线上的发送信号产生影响。因此,发送接收之间的互扰较小。3. The present invention transmits and receives little mutual interference. By inserting a transmission impedance conversion microstrip line between the transmission microstrip band-rejection filter and the power distribution microstrip line, the transmission branch will not generate a signal on the received signal on the power distribution microstrip line. Influence. By inserting the receiving impedance conversion microstrip line between the receiving microstrip band-stop filter and the power distribution microstrip line, it is possible to make the receiving branch not affect the transmission on the power distribution microstrip line when the transmitting port (port 1) is working. Signals have an impact. Therefore, the mutual interference between transmission and reception is small.
4、现有的同极化双工天线,通常是基于带通滤波器的设计方法进行设计,而带通滤波器通带较关注于通带内的设计,在距离通带比较近的带外,抑制信号通过的效果一般不是很好,因此发送接收的频率间隔一般较远,以获得较好的端口隔离度。而本发明采用带阻滤波器的方法设计同极化双工天线,其在距离通带较近的带外,抑制信号通过的效果较好,因此能实现比较小的发送接收频率间隔,并保持较好的发射接收隔离特性。4. Existing co-polarized duplex antennas are usually designed based on the design method of band-pass filters, while the pass-band of band-pass filters is more concerned with the design within the pass-band, and outside the band that is relatively close to the pass-band , the effect of suppressing the passage of signals is generally not very good, so the frequency interval of sending and receiving is generally far away to obtain better port isolation. However, the present invention adopts the method of band-rejection filter to design the co-polarization duplex antenna, which has a better effect of suppressing the passing of signals outside the pass-band, so it can realize a relatively small sending and receiving frequency interval, and keep Better transmission and reception isolation characteristics.
附图说明Description of drawings
图1为本实施例的总示意图以及主要组成部分的编号标注;Fig. 1 is the general schematic diagram of the present embodiment and the numbering label of main components;
图2为本实施例的总示意图以及细化的编号标注;Fig. 2 is the overall schematic diagram of the present embodiment and the numbering labeling of refinement;
图3为本实施例天线的正面剖视图;Fig. 3 is the front sectional view of the antenna of this embodiment;
图4为本实施例上层介质基板的俯视图;FIG. 4 is a top view of the upper dielectric substrate of this embodiment;
图5为本实施例上层介质基板的仰视图;FIG. 5 is a bottom view of the upper dielectric substrate of this embodiment;
图6为本实施例下层介质基板的俯视图;FIG. 6 is a top view of the lower dielectric substrate in this embodiment;
图7为本实施例下层介质基板的仰视图;FIG. 7 is a bottom view of the lower dielectric substrate of this embodiment;
图8为本实施例上层介质基板上表面结构的尺寸标注图;FIG. 8 is a dimensional drawing of the upper surface structure of the upper dielectric substrate in this embodiment;
图9为本实施例上层介质基板下表面结构的尺寸标注图;FIG. 9 is a dimensional drawing of the lower surface structure of the upper dielectric substrate in this embodiment;
图10为本实施例下层介质基板上表面结构的尺寸标注图;FIG. 10 is a dimensional drawing of the upper surface structure of the lower dielectric substrate in this embodiment;
图11为本实施例发送带阻滤波器实例的仿真S参数曲线图;Fig. 11 is the simulation S-parameter curve diagram of the embodiment sending the band-stop filter example;
图12为本实施例接收带阻滤波器实例的仿真S参数曲线图;Fig. 12 is the simulation S-parameter curve diagram of the receiving bandstop filter example of the present embodiment;
图13为本实施例发送变换微带线连接发送微带带阻滤波器的仿真S参数、以及发送端口(端口1)接匹配负载后的阻抗图;Fig. 13 is the simulation S parameter of transmitting and transforming the microstrip line connected to transmitting the microstrip bandstop filter of the present embodiment, and the impedance diagram after the transmitting port (port 1) is connected to the matching load;
图14为本实施例接收变换微带线连接接收微带带阻滤波器的仿真S参数、以及接收端口(端口2)接匹配负载后的阻抗图;Fig. 14 is the simulation S parameter of receiving transformed microstrip line connection receiving microstrip band-stop filter of the present embodiment and the impedance diagram after the receiving port (port 2) is connected to the matched load;
图15为本实施例天线的测试S参数曲线图;Fig. 15 is the test S parameter curve diagram of the antenna of the present embodiment;
图16(a)为本实施例天线端口2(2.2GHz)激励的E面测试方向图;Fig. 16 (a) is the E plane test pattern of the excitation of the antenna port 2 (2.2GHz) of the present embodiment;
图16(b)为本实施例天线端口2(2.2GHz)激励的H面测试方向图;Fig. 16 (b) is the H surface test pattern of the excitation of the antenna port 2 (2.2GHz) of the present embodiment;
图17(a)为本实施例天线端口1(2.4GHz)激励的E面测试方向图;Fig. 17 (a) is the E plane test pattern of the excitation of the antenna port 1 (2.4GHz) of the present embodiment;
图17(b)为本实施例天线端口1(2.4GHz)激励的H面测试方向图;Fig. 17 (b) is the H plane test pattern of the excitation of the antenna port 1 (2.4GHz) of the present embodiment;
图18为本实施例天线的测试增益随频率变化曲线。FIG. 18 is a curve of test gain versus frequency of the antenna of this embodiment.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
参照图1,图2及图3,本实施例同极化微带双工天线阵列,包括两个相同的对称放置的微带贴片天线1和一个带有双工功能的反相功率分配网络2,所述反相功率分配网络2包括功率分配微带线3、发送微带带阻滤波器4、发送阻抗变换微带线6、接收微带带阻滤波器5和接收阻抗变换微带线7。With reference to Fig. 1, Fig. 2 and Fig. 3, the co-polarized microstrip duplex antenna array of this embodiment includes two identical
发送微带带阻滤波器4的一端与发送端口(端口1)相连,另一端通过发送阻抗变换微带线6与功率分配微带线3在距离功率分配微带线中心点λg发/4处相连,λg发为发送信号在功率分配微带线3上的波长。One end of the sending microstrip bandstop filter 4 is connected to the sending port (port 1), and the other end passes through the sending impedance
接收微带带阻滤波器5的一端与接收端口(端口2)相连,另一端通过接收阻抗变换微带线7与功率分配微带线3在功率分配微带线中心点的另一侧而且距离中心点λg收/4处相连,λg收为接收信号在功率分配微带线3上的波长。One end of the receiving microstrip band-
发送阻抗变换微带线6和接收阻抗变换微带线7是左右两段工作在不同频率下的长度为λg收/4及λg发/4的50Ω阻抗变换线。微带阻抗变换线6,7之后分别是两段低阻抗传输线21,22,随后通过两段50Ω的传输线25,26连接到射频系统的两个端口。四段加载的L型终端开路枝节线19、20、23、24分别加载在两段低阻抗线21,22的两端,与两段低阻抗线组成了发送接收端口的两个带阻滤波器。两个带阻滤波器的工作通带与阻带频率正好相反。The transmitting impedance transforming
发送微带带阻滤波器4由两段末端开路的微带线19、23和一段连接微带线21组成,连接微带线21两端分别接两个开路微带线19、23。末端开路微带线19、23和连接微带线21的长度和宽度通过合理选择使得在频率为f发的发送信号能够通过、而频率为f收的接收信号不能通过。作为一个实例,当要求f发=2.4GHz,f收=2.2GHz时,可以采用相对介电常数为2.55、厚度为h=0.8mm的介质板做基板,开路微带线19的长度取25.7mm、宽度取0.5mm,开路微带线23的长度取26.5mm、宽度取0.5mm,连接微带线21的长度取25.7mm、宽度取7mm,图11是这个时候的发送微带带阻滤波器的S参数,可以看到在频率为2.4GHz时其S12为-1.94dB、在频率为2.2GHz时其S12为-35.45dB,实现了通过发送信号而阻隔接收信号的功能。The transmitting microstrip bandstop filter 4 is composed of two sections of open-ended
接收微带带阻滤波器5由两段末端开路的微带线20、24和一段连接微带线22组成,连接微带线22两端分别接两个开路微带线20、24。末端开路微带线20、24和连接微带线22的长度和宽度通过合理选择使得在频率为f收的接收信号能够通过、而频率为f发的发送信号不能通过。作为一个实例,当要求f发=2.4GHz,f收=2.2GHz时,可以采用相对介电常数为2.55、厚度为h=0.8mm的介质板做基板,开路微带线20的长度取26.5mm、宽度取0.5mm,开路微带线24的长度取25.9mm、宽度取0.5mm,连接微带线22的长度取25.5mm、宽度取13mm,图12是这个时候的接收微带带阻滤波器的S参数,可以看到在频率为2.2GHz时其S12为-1.22dB、在频率为2.4GHz时其S12为-38.07dB,实现了通过接收信号而阻隔发送信号的功能。The receiving
发送阻抗变换微带线6通过适当选取其长度和宽度,保证对于频率为f收的接收信号而言,其在与功率分配微带线3的连接端的阻抗(发送端口(端口1号)接匹配负载时)为很大(接近开路),从而不影响频率为f收接收信号在功率分配微带线3上的传输。作为一个实例,当要求f发=2.4GHz,f收=2.2GHz时,可以采用相对介电常数为2.55、厚度为h=0.8mm的介质板做基板,发送阻抗变换微带线6的长度取24mm、宽度取2.25mm,连接上上述的发送微带带阻滤波器的实例,其S参数、以及发送端口(端口1)接匹配负载后的阻抗如图13所示。可以看到,在f收=2.2GHz时,阻抗大于1000欧姆,而对于频率为f发=2.4GHz的发送信号则衰减很少。Transmitting impedance transforming
接收阻抗变换微带线7通过适当选取其长度和宽度,保证对于频率为f发的发送信号而言,其在与功率分配微带线3的连接端的阻抗(接收端口(端口2)接匹配负载时)为很大(接近开路),从而不影响频率为f发发送信号在功率分配微带线3上的传输。作为一个实例,f发=2.4GHz,f收=2.2GHz时,可以采用相对介电常数为2.55、厚度为h=0.8mm的介质板做基板,接收阻抗变换微带线7的长度取20mm、宽度取2.25mm,连接上上述的接收微带带阻滤波器的实例,其S参数、以及接收端口(端口2)接匹配负载后的阻抗如图14所示。可以看到,在f收=2.4GHz时,阻抗大于1000欧姆,而对于频率为f发=2.2GHz的接收信号则衰减很少。The receiving impedance transformation microstrip line 7 ensures that for the transmission signal with frequency f, its impedance at the connection end with the power distribution microstrip line 3 (the receiving port (port 2) is connected to the matching load by selecting its length and width appropriately) ) is very large (close to an open circuit), so that it does not affect the transmission of the transmitted signal at the frequency f on the power
所述同极化微带双工天线阵列,还包括两个平行放置的上层介质基板8和下层介质基板10,下层介质基板10的上表面覆盖有金属的反射地板9,底面设置本天线的反相功率分配网络2。The co-polarized microstrip duplex antenna array also includes two parallel upper layer
所述微带贴片天线1包括印刷在上层介质基板8上表面的两个矩形金属贴片11,12和激励微带贴片天线的T形探针。所述T形探针由印刷在上层介质基板8下表面的金属微带13、14和接在金属微带13、14中心的金属探针15、16组成,金属探针15、16的另一端分别穿过反射地板9和下层介质基板10上的通孔17、18与功率分配微带线3的两端相连。The
当发送时,发送信号从发送端口(端口1)送入,经过发送微带带阻滤波器4和发送阻抗变换微带线6送入功率分配微带线。经过功率分配微带线的信号被以相同的幅度、相反的相位(相位相差180度)分配到两个T型的探针13、14、15、16处,并通过T型探针上的微带13、14耦合给辐射贴片11、12。由于两个贴片11、12对称放置并激励,通过微带13、14耦合的电磁波会在两个贴片处再次产生180度的相位差,使得两个辐射贴片辐射11、12的信号相位相同,能够在天线的正Z方向同向叠加,产生较高的天线增益。天线辐射的电磁波极化方向与耦合微带13、14长边的方向相同。When sending, the sending signal is sent from the sending port (port 1), and sent to the power distribution microstrip line through the sending microstrip band-rejection filter 4 and the sending impedance
当接收时,接收信号从两个辐射贴片天线11、12处接收,并耦合给T型探针13、14、15、16。接收电磁波的极化方向与耦合微带13、14长边的方向相同。接收信号经过T型探针13、14、15、16后被送入到功率分配微带线3的两端。此时,功率分配微带线3两端的信号也是幅度相等,相位相差180度。功率分配微带线3两端的信号分别经过相位180度的功率分配微带线到达接收阻抗变换微带线7时刚好以相同的相位叠加,随后经过接收阻抗变换微带线7和接收微带带阻滤波器5,从接收端口(端口2)输出。When receiving, received signals are received from the two radiating
图4、5、6、7分别为两个介质基板上下表面的电气结构图,条纹填充部分为导体铜覆盖的结构,其余部分为介质基板。Figures 4, 5, 6, and 7 are the electrical structure diagrams of the upper and lower surfaces of the two dielectric substrates respectively. The stripe filling part is the structure covered by conductor copper, and the rest is the dielectric substrate.
图8、9、10为各部分电气结构的尺寸标注图。Figures 8, 9, and 10 are dimensioned diagrams of the electrical structure of each part.
结合图2,图8,图9,图10的尺寸标注,本实施例中天线的具体参数如下:两个介质板均为FR4板,厚度c为0.8mm,宽度b为130mm,长度a为200mm。两个介质板之间的高度h为6mm。矩形贴片的边长1a、1b分别为49mm、50mm,间距1c为49.5mm。两个用于耦合的细长微带长2a,宽2b,间距2c分别为2mm,6.5mm,69.5mm。功率分配网络成左右对称,其主要尺寸3a,4a,5a,6a,3b分别为28.5mm,21.78mm,22.73mm,27.3mm,1.27mm。两段50Ω的阻抗变换线的长度7a和8a分别为24mm及20mm,宽度7b为2.25mm。四段末端开路的L型枝节线的宽度4b均为0.5mm,长度9a,10a,13a,14a分别为25.7mm,26.5mm,26.5mm,25.9mm。两段低阻抗传输的长度11a,12a和宽度5b,6b分别为25.7mm,25.5mm,7mm,13mm。连接到端口的两段传输线的长度28.83mm,33.03mm,宽度分别为2.25mm。该天线的端口1工作在2.4GHz的频带,作为发送端口。端口2工作在2.2GHz的频带,作为接收端口。在两个频带内,两个端口的隔离度均大于33dB,如图15。两个工作频带范围内,天线的增益基本上都大于9.5dBi,交叉极化大于20dB,如天线的仿真测试方向图16、17所示。在天线的端口2工作时,天线在端口2工作频率2.2GHz处的增益为10dBi,而在端口1工作频率2.4GHz处的增益则迅速下降到了-25dBi以下,增益差达到了30dB以上,如图18。同理,在天线的端口1工作时,天线在端口1工作频率2.4GHz处的增益为9.8dBi,而在端口2工作频率2.2GHz处的增益也迅速下降到了-25dBi以下,增益差达到了30dB以上,如图18。这侧面证明了双工天线两个端口间具有较高的端口隔离度。Combined with the dimensions in Figure 2, Figure 8, Figure 9, and Figure 10, the specific parameters of the antenna in this embodiment are as follows: both dielectric plates are FR4 plates, the thickness c is 0.8mm, the width b is 130mm, and the length a is 200mm . The height h between the two dielectric plates is 6mm. The
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610861115.9A CN106252872B (en) | 2016-09-28 | 2016-09-28 | Co-polarized microstrip duplex antenna array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610861115.9A CN106252872B (en) | 2016-09-28 | 2016-09-28 | Co-polarized microstrip duplex antenna array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106252872A CN106252872A (en) | 2016-12-21 |
CN106252872B true CN106252872B (en) | 2023-03-21 |
Family
ID=57611056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610861115.9A Expired - Fee Related CN106252872B (en) | 2016-09-28 | 2016-09-28 | Co-polarized microstrip duplex antenna array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106252872B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107171078B (en) * | 2017-04-28 | 2023-11-24 | 华南理工大学 | Circularly polarized microstrip duplex antenna |
CN107302130A (en) * | 2017-05-11 | 2017-10-27 | 广东通宇通讯股份有限公司 | Aerial array, Anneta module and its microband antenna unit |
CN107134645B (en) * | 2017-05-23 | 2023-03-21 | 华南理工大学 | FDD antenna based on dual-mode resonator |
CN107369899B (en) * | 2017-07-18 | 2023-03-21 | 华南理工大学 | Filtering antenna array based on multi-mode resonator |
EP3680986A4 (en) | 2017-09-07 | 2021-04-07 | Tongyu Communication Inc. | Base station antenna and antenna array module thereof |
CN108400449A (en) * | 2018-03-19 | 2018-08-14 | 重庆大学 | A kind of three array element Microstrip Planar Array Antennas row of high degree of isolation |
CN108847865A (en) * | 2018-08-24 | 2018-11-20 | 南京濠暻通讯科技有限公司 | A kind of Anneta module for the 5th third-generation mobile communication mimo system |
EP3734757B1 (en) | 2019-05-02 | 2023-05-17 | Nokia Solutions and Networks Oy | A multi-band antenna arrangement |
US11509060B2 (en) | 2019-10-21 | 2022-11-22 | City University Of Hong Kong | Filter-antenna and method for making the same |
CN116722360B (en) * | 2023-08-10 | 2023-10-31 | 广东工业大学 | Stacked high-isolation full-duplex antenna based on deep learning optimization and communication equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5068669A (en) * | 1988-09-01 | 1991-11-26 | Apti, Inc. | Power beaming system |
US8854159B2 (en) * | 2011-03-20 | 2014-10-07 | King Saud University | Triple-mode microstrip filter |
CN102403562A (en) * | 2011-11-02 | 2012-04-04 | 华南理工大学 | Powder divider integrating a dual-frequency bandpass filter |
CN103887583B (en) * | 2012-12-21 | 2016-09-14 | 京信通信系统(中国)有限公司 | Micro-strip triplexer |
CN105140645A (en) * | 2015-08-26 | 2015-12-09 | 电子科技大学 | Harmonic suppressing antenna |
CN206076497U (en) * | 2016-09-28 | 2017-04-05 | 华南理工大学 | Same polarization micro-strip duplexed antenna array |
-
2016
- 2016-09-28 CN CN201610861115.9A patent/CN106252872B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106252872A (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106252872B (en) | Co-polarized microstrip duplex antenna array | |
US11296418B2 (en) | Low-profile dual-polarization filtering magneto-electric dipole antenna | |
CN108493602B (en) | Dual-polarized duplex antenna and dual-frequency base station antenna array formed by same | |
CN107134645B (en) | FDD antenna based on dual-mode resonator | |
KR101086743B1 (en) | Antenna based on metamaterial structure | |
KR101679555B1 (en) | Patch antenna element | |
CN107425272B (en) | filter antenna array | |
CN114552210B (en) | Low-profile millimeter wave filtering antenna | |
CN109888478B (en) | Multifunctional radio frequency device based on dual-polarized magneto-electric dipole | |
CN107369899A (en) | Based on multimode resonator filter antenna array | |
CN107171078B (en) | Circularly polarized microstrip duplex antenna | |
CN105305058B (en) | A kind of ultra wide band mimo antennas with three frequency range trap characteristics | |
CN206076497U (en) | Same polarization micro-strip duplexed antenna array | |
WO2019223318A1 (en) | Indoor base station and pifa antenna thereof | |
CN114122698A (en) | An integrated three-frequency Beidou navigation antenna | |
CN207217788U (en) | Circularly Polarized Microstrip Duplex Antenna | |
CN105406182B (en) | A kind of UWB mimo antennas that notch bandwidth is controllable | |
CN205211933U (en) | Ultra wide band multiple -input multiple -output antenna with three frequency channel trap characteristics | |
CN104134836A (en) | Planar duplexer based on quarter-wavelength short circuit feeder | |
CN106549227A (en) | A kind of dual-band dual-circular polarization common reflector | |
CN109728424B (en) | Four-port sucker combined antenna | |
Kanaya et al. | Development of an electrically small one-sided directional antenna with matching circuit | |
CN207217770U (en) | filter antenna array | |
CN107181055A (en) | Vivaldi antennas with trap characteristic | |
CN205211936U (en) | Controllable UWB MIMO antenna of trapped wave bandwidth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230321 |
|
CF01 | Termination of patent right due to non-payment of annual fee |