CN106238875A - 基于背面尾焰电压对于k‑tig小孔行为的控制方法 - Google Patents

基于背面尾焰电压对于k‑tig小孔行为的控制方法 Download PDF

Info

Publication number
CN106238875A
CN106238875A CN201610697756.5A CN201610697756A CN106238875A CN 106238875 A CN106238875 A CN 106238875A CN 201610697756 A CN201610697756 A CN 201610697756A CN 106238875 A CN106238875 A CN 106238875A
Authority
CN
China
Prior art keywords
aperture
voltage
efflux
current
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610697756.5A
Other languages
English (en)
Inventor
刘祖明
刘知易
罗震
伊松
邱嘉玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610697756.5A priority Critical patent/CN106238875A/zh
Publication of CN106238875A publication Critical patent/CN106238875A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明涉及一种基于背面尾焰电压对于K‑TIG小孔行为的控制方法,包括:在工件下方放置作为尾焰检测板的金属测量板,测量工件与金属测量板之间的尾焰电压,获取熔池是否穿孔以及小孔尺寸等信息;一个完整的方波脉冲周期分为两个阶段,峰值电流阶段和基值阶段;根据尾焰电压大小改变焊接电流,当反馈得到的尾焰电压超过预设阈值,判断小孔已开启,当小孔开启时常达到所设定的时间tkh后,将焊接电流由峰值转变为基值;在基值阶段,继续检测尾焰电压Vep,并作为判断熔池能量状态的小孔参数,计算下一脉冲的峰值电流。本发明能够根小孔动态行为特征,实时调整焊接过程中的小孔穿透行为,稳定焊接过程。

Description

基于背面尾焰电压对于K-TIG小孔行为的控制方法
技术领域
本发明属于焊接技术领域,涉及一种焊接控制方法。
背景技术
K-TIG(Keyhole Tungsten Inert Gas)焊是一种先进的新型穿孔焊接工艺。与传统TIG焊相比,K-TIG的工艺效率大大提高,能够对中厚板在不开坡口的前提下能实现单面焊接双面成形,在3~12mm厚度的黑色及有色金属焊接领域具备广泛的应用前景。
在穿孔焊接过程中,小孔稳定性是决定熔池稳定与否的关键,直接决定了焊缝质量。K-TIG焊采用自由电弧作为焊接热源,电弧的平均能量密度比较低,在焊接较高导热参数的材料、或者焊接厚度较薄的工件时,小孔的稳定性不够高,得到稳定焊缝质量的工艺窗口较窄。目前,对于K-TIG焊的研究主要侧重于工艺研究,现有的K-TIG焊接工艺为开环控制,需要进行大量的试验才能得到合适的参数,耗费大量的物力和精力。另外,焊接工况是随机变化的,容易对小孔形态产生影响,由实验得到的参数适应性较差。
发明内容
本发明提供一种能够根据K-TIG小孔动态行为特征,实时调整焊接过程中的小孔穿透行为,克服焊接过程中的干扰因素,稳定焊接过程的控制方法。本发明的技术方案如下:
一种基于背面尾焰电压对于K-TIG小孔行为的控制方法,该方法包括下面几个方面:
(1)在工件下方放置作为尾焰检测板的金属测量板,测量工件与金属测量板之间的尾焰电压,获取熔池是否穿孔以及小孔尺寸信息;
(2)一个完整的方波脉冲周期分为两个阶段,第一阶段采用方波脉冲峰值焊接电流,称为峰值电流阶段,第二阶段采用方波脉冲基值电流,称为基值阶段;根据尾焰电压大小改变焊接电流,当反馈得到的尾焰电压超过预设阈值,判断小孔已开启,当小孔开启时常达到所设定的时间tkh后,将焊接电流由峰值转变为基值;在基值阶段,继续检测尾焰电压,设此阶段的尾焰电压为Vep,通过计算此脉冲过程中的Vep,作为判断熔池能量状态的小孔参数,通过比较反馈的Vep与目标值Vep*的差,基于PID控制算法计算下一脉冲的峰值电流,基值阶段结束后,开始新一脉冲周期,从而周期性地控制小孔的穿透与闭合,动态调节焊接热输入。
本发明通过检测每个电流脉冲所对应的尾焰电压值,比较实测尾焰电压值与预设值之间的偏差,运用预测控制算法计算下一个脉冲电流的峰值电流,实时控制焊接热输入,稳定小孔行为,得到合格焊缝。
附图说明
图1 尾焰电压传感器原理
图2 K-TIG穿孔控制系统
图3 基于方波脉冲电流的穿孔控制策略
图4 方波脉冲电流的穿孔控制策略流程图
附图标记说明如下:1.焊接电源 2.焊接电缆 3.K-TIG焊枪 4.工件 5.焊接小孔6.尾焰 7.尾焰检测板 8.尾焰滤波电路 9.数据采集模块 10.隔离模块1 11.计算机 12.隔离模块2 13.焊接电流传感器
具体实施方式
下面结合附图和实施例对本发明进行说明。
控制系统中,反映小孔状态的传感器非常重要。尾焰电压传感方法是一种结构简单,鲁棒性较高的小孔状态传感方法。其原理图如附图图1所示。当电弧使熔池形成穿孔时,工件背面会喷射出等离子弧尾焰。在工件下方放置作为尾焰检测板的金属测量板,由于等离子弧尾焰的等离子体特性,尾焰中的电子和正离子撞击到冷的金属导体表面时,将复合成中性粒子。由于尾焰中自由电子的数量多、运动速度大,进入金属导体的电子数量远大于与正离子复合及从金属导体表面溢出的电子数量,所以从整体上看,尾焰中的自由电子的运动方向是从工件至测量板,即金属测量板的电位要低于工件的电位,那么工件与测量板之间会产生电位差,即为等离子弧的尾焰电压。如果熔池没有形成小孔,则尾焰电压为零;随着熔池穿孔之后小孔尺寸的增大,尾焰尺寸也随之增大,尾焰电压信号也随之增强。因此,通过检测工件背面的等离子弧尾焰电压信号,可以得到熔池是否穿孔以及小孔尺寸的信息。
K-TIG焊小孔行为检测与控制系统主要包括K-TIG焊接系统和焊接过程检测与控制系统。如图2所示,其中,焊接系统包括焊接电源1,焊接电缆2,K-TIG焊枪3和工件4;焊接过程检测与控制系统包括由尾焰检测板7和尾焰滤波电路8构成的尾焰传感器、数据采集模块9、隔离模块10、计算机11组成。
焊接电源输出焊接电流,经过电缆到达K-TIG焊枪和工件。在K-TIG焊枪钨极与工件之间形成电弧,电弧能量足够大时,在工件上形成小孔。如果小孔穿透工件,电弧等离子体会沿着小孔通道流到工件背面,形成尾焰。尾焰喷到安装在小孔底部的尾焰检测板上,由于等离子体的空间放电特性,会产生一定的电势。滤波电路联通尾焰检测板与工件,在滤波电路的电阻中可以检测到一定数值的尾焰电压。该尾焰电压值与小孔大小有关系。一般的,小孔不穿透,则尾焰电压为零,较大的小孔产生较大的尾焰电压值,过大的尾焰电压预示可能形成熔池烧穿。尾焰电压信号经过隔离电路进入数据采集卡转换为数字信号进入计算机,在采集程序中读取并保存信号。计算机内的采集程序能够控制数据采集卡输出任意波形的电压,控制焊接电源输出任意波形的焊接电流。较大的电流可以使得小孔穿透,形成尾焰电压;较小的电流会使小孔闭合,尾焰电压为零。
本发明采用脉冲焊接电流,穿孔控制策略是关键。本系统采用的方波脉冲电流穿孔控制策略如附图图3所示,控制流程如附图图4所示。
控制系统采用方波脉冲焊接电流。在峰值电流阶段,控制系统通过尾焰电压传感器检测尾焰电压大小,当反馈得到的尾焰电压超过一定值后,说明小孔已开启,系统累计尾焰电压,当小孔开启时常达到所设定的时间tkh后,电流由峰值转变为基值;在基值阶段,累计尾焰电压过程结束,系统通过计算该脉冲过程中的Vep,作为判断熔池能量状态的小孔参数,控制系统通过比较反馈的Vep与目标值Vep*的差,基于PID控制算法计算下一脉冲的峰值电流,基值阶段结束后,开始新一脉冲周期。如此,控制系统可以周期性地控制小孔的穿透与闭合,动态调节焊接热输入,既保证了焊缝全熔透,又避免了烧穿,从而保证得到合格焊缝。在脉冲电流峰值期间保证穿孔和熔透;在基值电流期间,小孔闭合;下个周期重复上述过程。基于实际采集的等离子弧尾焰电压信号,在不改变峰值与基值电流的情况下,调节其作用时间。
控制系统通过检测每个电流脉冲所对应的尾焰电压值,比较实测尾焰电压值与预设值之间的偏差,运用预测控制算法计算下一个脉冲电流的峰值电流,实时控制焊接热输入,稳定小孔行为。

Claims (1)

1.一种基于背面尾焰电压对于K-TIG小孔行为的控制方法,该方法包括下面几个方面:
(1)在工件下方放置作为尾焰检测板的金属测量板,测量工件与金属测量板之间的尾焰电压,获取熔池是否穿孔以及小孔尺寸等信息;
(2)一个完整的方波脉冲周期分为两个阶段,第一阶段采用方波脉冲峰值焊接电流,称为峰值电流阶段,第二阶段采用方波脉冲基值电流,称为基值阶段;根据尾焰电压大小改变焊接电流,当反馈得到的尾焰电压超过预设阈值,判断小孔已开启,当小孔开启时常达到所设定的时间tkh后,将焊接电流由峰值转变为基值;在基值阶段,继续检测尾焰电压,设此阶段的尾焰电压为Vep,通过计算此脉冲过程中的Vep,作为判断熔池能量状态的小孔参数,通过比较反馈的Vep与目标值Vep*的差,基于PID控制算法计算下一脉冲的峰值电流,基值阶段结束后,开始新一脉冲周期,从而周期性地控制小孔的穿透与闭合,动态调节焊接热输入。
CN201610697756.5A 2016-08-18 2016-08-18 基于背面尾焰电压对于k‑tig小孔行为的控制方法 Pending CN106238875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610697756.5A CN106238875A (zh) 2016-08-18 2016-08-18 基于背面尾焰电压对于k‑tig小孔行为的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610697756.5A CN106238875A (zh) 2016-08-18 2016-08-18 基于背面尾焰电压对于k‑tig小孔行为的控制方法

Publications (1)

Publication Number Publication Date
CN106238875A true CN106238875A (zh) 2016-12-21

Family

ID=57592726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610697756.5A Pending CN106238875A (zh) 2016-08-18 2016-08-18 基于背面尾焰电压对于k‑tig小孔行为的控制方法

Country Status (1)

Country Link
CN (1) CN106238875A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885244A (zh) * 2017-11-20 2018-04-06 昆山华恒焊接股份有限公司 环缝焊控制方法、装置及系统、计算机可读存储介质
CN109202226A (zh) * 2018-09-27 2019-01-15 天津大学 基于k-tig的双面双弧穿孔焊接方法
CN110238487A (zh) * 2019-05-22 2019-09-17 北京航空航天大学 一种基于视觉传感的中厚板铝合金深熔焊系统及控制方法
CN110919142A (zh) * 2019-12-18 2020-03-27 唐山松下产业机器有限公司 脉冲焊接方法、脉冲焊接系统与焊机
CN111515497A (zh) * 2020-04-30 2020-08-11 山东大学 一种焊接系统及快速形成熔孔的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885244A (zh) * 2017-11-20 2018-04-06 昆山华恒焊接股份有限公司 环缝焊控制方法、装置及系统、计算机可读存储介质
CN109202226A (zh) * 2018-09-27 2019-01-15 天津大学 基于k-tig的双面双弧穿孔焊接方法
CN110238487A (zh) * 2019-05-22 2019-09-17 北京航空航天大学 一种基于视觉传感的中厚板铝合金深熔焊系统及控制方法
CN110238487B (zh) * 2019-05-22 2020-09-22 北京航空航天大学 一种基于视觉传感的中厚板铝合金深熔焊系统及控制方法
CN110919142A (zh) * 2019-12-18 2020-03-27 唐山松下产业机器有限公司 脉冲焊接方法、脉冲焊接系统与焊机
CN110919142B (zh) * 2019-12-18 2021-06-11 唐山松下产业机器有限公司 脉冲焊接方法、脉冲焊接系统与焊机
CN111515497A (zh) * 2020-04-30 2020-08-11 山东大学 一种焊接系统及快速形成熔孔的方法
CN111515497B (zh) * 2020-04-30 2021-06-25 山东大学 一种焊接系统及快速形成熔孔的方法

Similar Documents

Publication Publication Date Title
CN106238875A (zh) 基于背面尾焰电压对于k‑tig小孔行为的控制方法
CN103264216B (zh) 基于背面小孔视觉检测的受控穿孔等离子弧焊接系统与工艺
CN105397212B (zh) 放电加工装置和方法
Liu et al. Visualizing the influence of the process parameters on the keyhole dimensions in plasma arc welding
CN105750754B (zh) 电阻点焊质量影响因素辨识方法与系统
Zhang et al. Modeling and control of quasi-keyhole arc welding process
CN1111721C (zh) 等离子焊接熔池小孔尺寸的电弧检测方法
CN105387796B (zh) 一种电感式位移传感器的检测电路及其检测方法
US8372252B2 (en) Method for setting a distance between an electrode and a workpiece
CN111037056B (zh) 一种焊接工艺性能测评方法及系统
Yu et al. Application of arc plasma spectral information in the monitor of Al–Mg alloy pulsed GTAW penetration status based on fuzzy logic system
CN105312781A (zh) 一种利用气体压力或流量变化检测材料穿透与否的方法
CN103487136A (zh) 一种利用电阻点焊过程声发射信号能量当量定量检测焊接喷溅的方法
CN104007182B (zh) 一种利用声发射信号频谱定量检测电阻点焊熔核形核质量的方法
CN109290664B (zh) 基于声音传感与电流控制的k-tig焊熔透监控系统与方法
Lu et al. Sensing of weld pool surface using non-transferred plasma charge sensor
CN102778194B (zh) 基于双电层电容的微细电解加工间隙的在线检测方法
Di et al. Online monitoring of weld defects for short-circuit gas metal arc welding based on the self-organizing feature map neural networks
Tianyu et al. Breakthrough detection in electrochemical discharge drilling to enhance machining stability
CN104858559B (zh) 熔化极脉冲氩弧焊熔滴滴落速度的装置及其分析方法
CN102131607B (zh) 使用放电机械改进轧辊毛化的方法和装置
CN2850798Y (zh) 一种电阻点焊质量控制装置
CN106979967B (zh) 利用浓差型氧传感器获得放电电压-时间曲线的方法
CN106100003B (zh) 电力系统的电压安全评估方法及系统
CN103245711A (zh) 基于神经网络的铝液非金属夹杂物在线软测量装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161221

WD01 Invention patent application deemed withdrawn after publication