CN1111721C - 等离子焊接熔池小孔尺寸的电弧检测方法 - Google Patents

等离子焊接熔池小孔尺寸的电弧检测方法 Download PDF

Info

Publication number
CN1111721C
CN1111721C CN 00103235 CN00103235A CN1111721C CN 1111721 C CN1111721 C CN 1111721C CN 00103235 CN00103235 CN 00103235 CN 00103235 A CN00103235 A CN 00103235A CN 1111721 C CN1111721 C CN 1111721C
Authority
CN
China
Prior art keywords
signal
pff
molten bath
orifice size
arc voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 00103235
Other languages
English (en)
Other versions
CN1264822A (zh
Inventor
王海燕
陈强
王耀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 00103235 priority Critical patent/CN1111721C/zh
Publication of CN1264822A publication Critical patent/CN1264822A/zh
Application granted granted Critical
Publication of CN1111721C publication Critical patent/CN1111721C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明属于等离子焊接质量控制技术领域,涉及一种等离子焊接熔池小孔尺寸的电弧检测方法及信号采集系统。本发明包括:首先利用信号采集系统将等离子电弧电压u(t)/电弧电流信号i(t)实时地采集并存储入计算机;再对采集的信号进行加工处理,得到可供机器识别的定量的熔池小孔尺寸传感信号pff(t);最后标定pff信号,根据pff信号与熔池小孔尺寸的定量比例关系实时传感熔池穿孔尺寸的大小。本发明能有效传感熔池小孔的大小,且系统结构简单、可达性好、实用廉价,容易推广使用。

Description

等离子焊接熔池小孔尺寸的电弧检测方法
技术领域
本发明属于等离子焊接质量控制技术领域。
背景技术
高能束流中,等离子电弧有实现容易和廉价等优点,是重要结构和合金材料的焊接方法之一,在航空航天系统尤其得到广泛的应用。利用等离子弧能量密度和穿透力大的特点,等离子焊接可在适当参数条件下获得“小孔效应”,如图1所示,这时等离子弧把工件10完全熔透并借助等离子流力的作用在熔池11中形成一个穿透工件的小孔12,小孔跟随等离子弧向前移动。“小孔效应”是等离子焊接中的特有现象,有助于焊缝的充分熔透。然而,实际生产过程中各种条件规范的波动在所难免,势必影响小孔尺寸的稳定性,从而造成焊缝均匀性的不一致,这在精密构件加工中更显突出。为此,根据现代加工制造技术发展的需要,提出了实时检测熔池小孔尺寸的研究,以便为精密熔透自动控制提供必要的条件。
目前国内外在等离子焊接生产和研究中采用背面光电检测法、背面接触导电法、背面声音检测法、正面光谱分析法和正面CCD摄像法检测熔池穿孔状态,但其中只有背面光电检测法和背面接触导电法可初略地进行熔池小孔尺寸的检测,其它方法目前只能用于传感熔池小孔是否存在。背面光电检测法如图2a所示,是利用安置在工件20背面的各种光电器件21检测穿过小孔的等离子焰流22的弧光辐射,弧光辐射强度与熔池小孔的大小成正比。背面接触导电法如图2b所示,是将一块铜测板23放置在工件24背面并与工件保持一定距离,当熔池小孔存在时,穿过小孔的等离子焰流25打到铜测板23上,由于等离子焰流具有导电特性,故与铜测板23相连的电阻R上将有电流,则整流器的一端U。将有输出,且其大小正比于熔孔的大小。这两种检测方法的最大缺陷是传感器必须安置在工件背面,这使得其推广应用受到工件和生产条件的限制,即传感器的可达性很差。
发明内容
本发明的目的在于为克服已有技术的不足之处,提出一种从等离子电弧电压和电弧电流信号中提取熔池小孔尺寸传感信号的检测方法。能有效传感熔池小孔的大小,可为实现中厚板的等离子焊接精密熔透自动控制提供必要的反馈信息。且系统结构简单、可达性好、实用廉价,容易推广使用。
本发明提出的一种等离子焊接熔池小孔尺寸的电弧检测方法,其特征在于,包括以下步骤:
1)首先利用信号采集系统将等离子电弧电压u(t)/电弧电流信号i(t)实时地采集并存储入计算机;
2)对采集的电弧电压/电弧电流信号进行加工处理,得到可供机器识别的定量的熔池小孔尺寸传感信号pff(t);
3)具体标定pff(t)信号,根据pff信号与熔池小孔尺寸的比例关系实时传感熔池穿孔尺寸的大小。
所说的对采集的电弧电压/电弧电流信号进行加工处理的方法包括:
1)段电弧电压信号u(t)(t=t1~t2)/电弧电流信号i(t)(t=t1~t2),首先对其进行FFT变换并对变换结果取模得到|U(f)|/|I(f)|;
2)然后在以下两个频率区间f=19kHz~20kHz和f=2.5kHz~3.5kHz之中任意一个频率区间搜索|U(f)|/|I(f)|在该区间的最大值,最大值时的|U(f)|/|I(f)|所对应的频率f即为该区间的传感信号pff;
3)采用以上方法在整个时间段内处理u(t)或i(t)可得pff(t)。
本发明的原理是由于熔透穿孔程度随着焊接过程的进行不断变化时,必然会对等离子电弧形态和行为产生影响,因此就有可能从电弧中提取相关信息来反馈穿孔程度。
本发明的方法实现原理如图3所示。首先利用信号采集系统将等离子电弧电压u(t)/电弧电流信号i(t)实时可靠地采集并存储入计算机。电弧电压和电弧电流信号本身并不能作为传感信号而直接用以检测熔池小孔的大小,但电弧信号携带着能够反映熔池穿孔程度的特征信息,该特征信息通过本发明开发的传感信号提取方法-pff算法的加工处理,便得到了可供机器识别的定量的熔池小孔尺寸传感信号pff。具体标定pff信号后,根据pff信号与熔池小孔尺寸的比例关系就可以实时传感熔池穿孔尺寸的大小。熔池小孔尺寸传感信号提取算法是本发明的关键技术,是在计算机上通过软件的方式实现的。以下介绍信号采集系统和传感信号提取算法的实现方法。
本发明的等离子电弧电压/电弧电流信号采集系统由电压传感器/电流传感器、低通滤波电路、数据采集卡、计算机和相关接口组成,如图4所示,图中,电弧电压/电弧电流信号首先引入电压传感器/电流传感器的输入端,电压传感器/电流传感器的输出端接低通滤波电路的输入端,低通滤波电路的输出端接数据采集卡的输入端子,数据采集卡直接插入计算机的相应插槽。其中,电弧电压信号直接由焊枪钨极40和工件41之间引出,电压传感器/电流传感器隔离焊接引弧时产生的高频高压信号,低通滤波电路滤除高频干扰信号,数据采集卡结合本发明开发的数据采集应用程序完成信号采集、模数转换,并利用采集卡与计算机的接口实现信号在计算机中的存储。
以下为从电弧电压/电弧电流信号的频谱信息中提取熔池小孔尺寸传感信号pff的算法流程,如图5所示:
取一段电弧电压u(t)(t=t1~t2)/电弧电流信号i(t)(t=t1~t2),首先对其进行FFT变换并对变换结果取模得到|U(f)|/|I(f)|,然后分别在以下两个频率区间f=19kHz~20kHz和f=2.5kHz~3.5kHz搜索|U(f)|/|I(f)|在该区间的最大值,最大值时的|U(f)|/|I(f)|所对应的频率f即为该区间的传感信号pff。采用以上方法在整个时间段内处理u(t)/i(t)可得pff(t)。
Pff值随着熔池小孔尺寸的增大逐渐递增或递减。根据pff信号的单调特点,可以通过具体标定后,根据pff信号与熔池小孔尺寸的定量比例关系实时传感熔池的穿孔尺寸大小。
本发明可以从电弧电压和电弧电流信号中任意选用其一作为提取传感信号的信号源,并可以从频率区间f=19kHz~20kHz和f=2.5kHz~3.5kHz中任选其一来提取pff信号。频率区间相同时,采用电弧电压还是电弧电流信号作为信号源提取pff的结果是一致的。
本发明的检测方法能有效传感熔池小孔的大小,可为实现中厚板的等离子焊接精密熔透自动控制提供必要的反馈信息。该方法适用于以逆变焊机为热源的等离子焊接过程,由于直接利用了电弧作为传感信号源,因此具有系统结构简单、可达性好、实用廉价等优点,容易在实际生产制造中推广使用。
附图说明
图1为等离子焊接在适当参数条件下获得“小孔效应”示意图。
图2为已有技术的焊接熔池小孔尺寸检测方法示意图。其中,图2a为背面光电检测法,图2b为背面接触导电法。
图3为本发明的方法实现原理框图。
图4为本发明的等离子电弧电压/电弧电流信号采集系统结构示意图。
图5为本发明的传感信号pff提取算法流程框图。
图6为本发明的实施例的低通滤波电路原理图。图中,I为电弧电压比例放大电路,II为电弧电流比例放大电路,III为电弧电压低通滤波电路,IV为电弧电流低通滤波电路。
图7为本实施例的pff算法软件实现流程图。
图8a为本实施例的厚度渐变工件结构图,
图8b为图8a对应的焊缝背面成形,
图8c为从图8a所示工件取得的传感信号pff(t)曲线图。
具体实施方式
本发明设计的一种等离子焊接熔池小孔尺寸的电弧检测方法及信号采集系统实施例结合附图详细说明如下:
考虑到实际生产中散热条件、工件厚度及焊接规范等条件的变化,采用厚度渐变的工件,工件最厚处为8mm,最薄处为3mm,设置焊接规范为工件厚6mm处恰能穿孔熔透,使用逆变焊机在不锈钢工件上进行了焊接。厚度渐变工件及其对应的焊缝背面成形分别如图8a和图8b所示,可以看到背面焊缝从无到有,逐渐由细变粗,显然熔池经历了从未穿孔到穿孔程度由小变大的过程。
本实施例的信号采集系统由电压/电流传感器、滤波限幅电路、数据采集卡、计算机的接口及计算机组成,如图4所示。电弧电压信号直接由焊枪钨极40和工件41之间引出。电弧电压/电弧电流信号首先经过电压/电流传感器的隔离作用,电压/电流传感器选用磁平衡式电压/电流传感器“科海KV100A”/“科海KT200A”,其原边电路与副边电路绝缘,绝缘电压为6000V有效值,能够有效隔离焊接引弧时的高频高压信号;经过隔离后的电弧信号由输入接插件1引入低通滤波电路如图6所示,信号首先被比例放大电路衰减如图6中I/图6中II所示,以抵消滤波电路对信号的放大,然后通过二阶压控有源低通滤波电路滤除高频干扰信号如图6中III、IV所示,滤波电路的截止频率为10kHz,最后信号由输出接插件输出给数据采集卡,整个低通滤波电路由直流稳压电源通过输入接插件2供电;经过隔离和滤波后的电弧电压/电弧电流信号可靠地到达数据采集卡,数据采集卡选用“PCI-9118HG”,精度12位,采集速度330kHz,每次采集数据容量可达64M,数据采集卡结合本发明开发的数据采集应用程序完成信号采集,模数转换,并利用采集卡与计算机的接口实现信号在计算机中的存储。
本实施例的方法具体步骤为:首先通过本实施例的信号采集系统以40kHz的采样频率将焊接过程中的电弧电压/电弧电流信号实时采集进计算机。随后采用图5所示的pff算法对存入计算机中的电弧电压/电弧电流信号进行处理,在此以电弧电流为信号源并选取频率区间f=2.5k~3.5k提取pff信号。图7为本实施例的软件实现流程图,其运行步骤为:首先从计算机中调入采集到的电弧电流信号i(t),然后从i(t)中按照焊接的时间顺序取nfft=8192个数据点构成一长度为8192的数据段utemp。计算该数据段电弧电流信号的均值,减去均值后的电弧电流信号为idm,该步是对信号做FFT变换前的预处理。对idm做FFT变换并对变换结果取模得到|I(f)|,接着在频率区间f=2.5k~3.5k寻找|I(f)|在该区间的最大值,最大值时的|I(f)|所对应的频率f即为该段电弧电流信号的pff值。得到pff值后舍去数据段utemp段首的delay=500点,再从i(t)中顺序添入新的500个数据重新构成一长度为8192点的数据段,然后判断是否已完成预先设定的计算次数k,即j值(程序开始时设置为1)是否等于k,如果“不等于”则j值增加1,重复以上运算;若“等于”则退出循环处理,此时已得到传感信号pff(t)如图8c所示,图8c中横坐标为时间,单位为s,纵坐标为pff信号的幅值,单位为Hz。用软件实现以上算法的编程环境为Matlab 5.01。
设定熔池小孔尺寸阈值区间,当pff值位于区间3150Hz~3180Hz中时,判断熔池为未穿孔未熔透状态;当pff值位于3000Hz~3060Hz区间时,判断熔池小孔过大;而在3060Hz~3150Hz区间内pff和小孔尺寸有良好对应定量比例关系,根据该比例关系pff信号就可实时传感熔池穿孔尺寸的大小。

Claims (1)

1、一种等离子焊接熔池小孔尺寸的电弧检测方法,其特征在于,包括以下步骤:
1)首先利用信号采集系统将等离子电弧电压u(t)/电弧电流信号i(t)实时地采集并存储入计算机;
2)对采集的电弧电压/电弧电流信号进行加工处理,得到可供机器识别的定量的熔池小孔尺寸传感信号pff(t);
3)具体标定pff(t)信号,根据pff信号与熔池小孔尺寸的定量比例关系实时传感熔池穿孔尺寸的大小;
所说的对采集的电弧电压/电弧电流信号进行加工处理的方法包括:
1)取一段电弧电压信号u(t)(t=t1~t2)/电弧电流信号i(t)(t=t1~t2),首先对其进行FFT变换并对变换结果取模得到|U(f)|/|I(f)|;
2)然后在以下两个频率区间f=19kHz~20kHz和f=2.5kHz~3.5kHz之中任意一个频率区间搜索|U(f)|/|I(f)|在该区间的最大值,最大值时的|U(f)|/|I(f)|所对应的频率f即为该区间的传感信号pff;
3)采用以上方法在整个时间段内处理u(t)或i(t)可得pff(t)。
CN 00103235 2000-03-17 2000-03-17 等离子焊接熔池小孔尺寸的电弧检测方法 Expired - Fee Related CN1111721C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00103235 CN1111721C (zh) 2000-03-17 2000-03-17 等离子焊接熔池小孔尺寸的电弧检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00103235 CN1111721C (zh) 2000-03-17 2000-03-17 等离子焊接熔池小孔尺寸的电弧检测方法

Publications (2)

Publication Number Publication Date
CN1264822A CN1264822A (zh) 2000-08-30
CN1111721C true CN1111721C (zh) 2003-06-18

Family

ID=4576834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00103235 Expired - Fee Related CN1111721C (zh) 2000-03-17 2000-03-17 等离子焊接熔池小孔尺寸的电弧检测方法

Country Status (1)

Country Link
CN (1) CN1111721C (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146359A1 (en) 2008-05-28 2009-12-03 Illinois Tool Works Inc. Welding training system
US9583014B2 (en) 2012-11-09 2017-02-28 Illinois Tool Works Inc. System and device for welding training
US9583023B2 (en) 2013-03-15 2017-02-28 Illinois Tool Works Inc. Welding torch for a welding training system
CN103264216B (zh) * 2013-05-15 2016-05-04 山东大学 基于背面小孔视觉检测的受控穿孔等离子弧焊接系统与工艺
US10056010B2 (en) 2013-12-03 2018-08-21 Illinois Tool Works Inc. Systems and methods for a weld training system
US10170019B2 (en) 2014-01-07 2019-01-01 Illinois Tool Works Inc. Feedback from a welding torch of a welding system
US9589481B2 (en) 2014-01-07 2017-03-07 Illinois Tool Works Inc. Welding software for detection and control of devices and for analysis of data
US10105782B2 (en) 2014-01-07 2018-10-23 Illinois Tool Works Inc. Feedback from a welding torch of a welding system
US10307853B2 (en) 2014-06-27 2019-06-04 Illinois Tool Works Inc. System and method for managing welding data
US10665128B2 (en) 2014-06-27 2020-05-26 Illinois Tool Works Inc. System and method of monitoring welding information
US11014183B2 (en) 2014-08-07 2021-05-25 Illinois Tool Works Inc. System and method of marking a welding workpiece
US10210773B2 (en) 2014-11-05 2019-02-19 Illinois Tool Works Inc. System and method for welding torch display
US10402959B2 (en) 2014-11-05 2019-09-03 Illinois Tool Works Inc. System and method of active torch marker control
US10417934B2 (en) 2014-11-05 2019-09-17 Illinois Tool Works Inc. System and method of reviewing weld data
US10373304B2 (en) 2014-11-05 2019-08-06 Illinois Tool Works Inc. System and method of arranging welding device markers
US10490098B2 (en) 2014-11-05 2019-11-26 Illinois Tool Works Inc. System and method of recording multi-run data
US10427239B2 (en) 2015-04-02 2019-10-01 Illinois Tool Works Inc. Systems and methods for tracking weld training arc parameters

Also Published As

Publication number Publication date
CN1264822A (zh) 2000-08-30

Similar Documents

Publication Publication Date Title
CN1111721C (zh) 等离子焊接熔池小孔尺寸的电弧检测方法
CN200954573Y (zh) 电阻点焊工艺参数实时在线计算机监测系统
CN106881516B (zh) 一种利用电弧电压信号监测电弧弧长的方法
CN102248235A (zh) 电火花线切割加工间隙放电状态检测装置与方法
CN2872385Y (zh) 一种地埋电缆路径的识别装置
Li et al. Multi-scale statistical process monitoring in machining
CN106238875A (zh) 基于背面尾焰电压对于k‑tig小孔行为的控制方法
CN105312781A (zh) 一种利用气体压力或流量变化检测材料穿透与否的方法
CN102601472A (zh) 放电加工系统及方法
CN109290664B (zh) 基于声音传感与电流控制的k-tig焊熔透监控系统与方法
CN108627743B (zh) 一种局部放电纳秒级窄脉冲序列的无损捕捉方法
CN102682200B (zh) 一种实时焊缝跟踪信号的小波降噪方法
CN107727978B (zh) 一种电除尘电场火花闪络检测方法及系统
CN1105617C (zh) 等离子焊接熔池穿孔状态的电弧电压传感方法及其系统
CN110280849A (zh) 穿孔机用穿透检测系统
CN100590424C (zh) 基于电弧多谱段光信息传感的mig焊质量监测方法
CN105880819A (zh) 热压电阻焊显微焊接点焊机
CN1102477C (zh) 等离子弧焊熔池穿孔状态的声音信号传感方法及其系统
CN105689876B (zh) 自动监测焊接质量的电阻焊点焊机
CN109128446B (zh) 一种交流钨极氩弧焊电弧声音信号特征快速提取方法
CN203049058U (zh) 一种用于脉冲电镀的高智能监控电源
CN105312770A (zh) 基于等离子体电信号的激光焊接模式判定方法
CN117428297B (zh) 一种k-tig焊枪短路、焊缝全自动实时检测装置及控制系统
CN111650043A (zh) 一种超声波焊接质量的检测方法
CN205120648U (zh) 一种多通道植物有机小分子在线检测装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee